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Abstract

Finding the number of limit cycles, as described by Poincaré (Memoire sur les coubes
definies par une equation differentielle, Editions Jacques Gabay, Sceaux, 1993), is one of
the main problems in the qualitative theory of real planar differential systems. In general,
studying limit cycles is a very challenging problem that is frequently difficult to solve. In
this paper, we are interested in finding an upper bound for the maximum number of limit
cycles bifurcating from the periodic orbits of a given discontinuous piecewise differential
system when it is perturbed inside a class of polynomial differential systems of the same
degree, by using the averaging method up to third order. We prove that the discontinuous
piecewise differential systems formed by a linear focus or center and a cubic weak focus or
center separated by one straight line y = 0 can have at most 7 limit cycles.

Keywords Cubic weak focus - Limit cycle - Discontinuous piecewise differential system -
Averaging theory

Mathematics Subject Classification Primary 34C05 - 34A34

Introduction

In this paper, we deal with polynomial differential systems in R? of the form

d
E_pey. 2= oy, (1)

dt dr
where the degree of the systems is the maximum degree of P and Q. The second part of the
16th Hilbert problem [7, 9] proposes to find an upper bound for the maximum number of
limit cycles and relative configurations for the differential system (1). We recall that a limit
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cycle of the differential system (1) is an isolated periodic orbit in the set of all periodic
orbits of the system.

The study of the limit cycles of piecewise differential systems has recently gained
much attention in the qualitative theory of differential equations. The 16th Hilbert prob-
lem, which many writers have studied, involves determining the maximum number of
limit cycles that a polynomial differentiation system of a specific order can have. See for
example [8].

To study the periodic solutions of differential systems, the averaging theory is a use-
ful tool; see for instance the books of Sanders, Verhulst, and Murdock [18] and Llibre
Moeckel-Sim6 [15]. This method has a long history, dating back to the classical works
of Lagrange and Laplace, who intuitively justified the process. In 1928, Fatou [4] for-
malized this theory. Significant practical and theoretical contributions to the averaging
method were made in 1930s by Bogoliubov-Krylov [3] and in 1945 by Bogoliubov. This
technique, originally created for smooth systems, has recently been applied to research
on limit cycle of discontinuous piecewise smooth systems, see [14, 19]. The authors of
the articles [6, 13] developed the averaging method for discontinuous piecewise dif-
ferential systems and showed a relationship between the number of limit cycles of the
corresponding differential system and the zeros of the averaged functions of periodic
differential equations, see for instance [5, 11]. In 2022 Baymout and Benterki [1] proved
that five is the maximum number of limit cycles that can bifurcate from the discontinu-
ous piecewise differential systems formed by an arbitrary linear focus or center and an
arbitrary cubic uniform isochronous center separated by a straight line, by using the
averaging theory up to seven-order.

The objective of this paper is to study the limit cycles that can bifurcate from the
discontinuous piecewise differential systems separated by the straight line y = 0 and
formed by a linear differential system having a center or focus of the form

X=ax+py+vy, y=—px+ay+o. )

defined in the half-plane y > 0, where a, f, v, and 6 € R, and by an arbitrary cubic weak
focus or center located at the origin given by

¥= —y—ax®—cxy—zy* — ke —mxly — pxy? — hy?,

V= x+by? +dxy + g + Iy} + nxy? + gx?y + wxl. @)

defined in the half-plane y < 0, where all the parameters of the system are real.

The averaging theory described in "Third Order Averaging Theory for Computing
Limit Cycles" section allows to study analytically the existence of limit cycles of a non-
autonomous differential system, by studying the simple zeros of the averaged function.
Here we shall use the averaging theory up to the third order for studying the number
of limit cycles that can bifurcate from the discontinuous piecewise differential systems
formed by (2) for y > 0, when we perturb it inside the class of all polynomial differen-
tial systems of degree 1 as follows

3 3
i=) Py ye,y= Z 0,;(x, y)e', €]

i=1 i=1

and by the differential system (3) for y < 0 when we perturb it inside the class of all poly-
nomial differential systems of degree 3 as follows
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3 3
i = ; Py(x, y)E, 3 = ; 05;(x, y)e'. 5)

Here € > 0 is a small parameter, i = 1, ...,3, P,; and Q,;, are real polynomials of degree 1
in the variables x and y, and Pj;, Q5; are real polynomials of degree 3 in the variables x and
y.

The main result of our paper focuses on determining the maximum number of limit
cycles using the averaging theory up to third order, which is presented in the following
Theorem.

Theorem 1 For |e| # O sufficiently small and by using the averaging theory up to third
order the maximum number of limit cycles of the discontinuous piecewise differential sys-
tems formed by linear differential focus or center (2) and the cubic weak focus or center (3)
is at most seven. There are examples with exactly seven limit cycles bifurcating from the
periodic orbits of these systems.

Theorem 1 is proved in "Proof of Theorem 1" section 3.

Third Order Averaging Theory for Computing Limit Cycles

In this section we summarise the basic results of the classical averaging theory that we
will use to study the number of limit cycles of discontinuous piecewise differential sys-
tems, for more details see [10].

We consider the following discontinuous differential system

| F*,re) if 0<60<m,
r(e)_{F‘((?,r,e) if #<6<2n. (6)

where F£(0,r,¢€) = Z?:o e'FE(0,r) + *R%(0,r,¢€), 0 € S' and r € D where D is an open
interval of R,

A fundamental inquiry in the investigation of discontinuous differential systems (6)
revolves around comprehending which periodic orbits of the unperturbed system
@) = F*(0, r) persists for |e| # 0 sufficiently small. To address this, we introduce a set

of functions f; : D — R, for i = 1,2, ...k, called averaged functions, such that their
simple zeros provide the existence of isolated periodic solutions of the differential equa-

y;Q2rm,r)

tion (6). In [12] it was proved that these averaged functions are given by f; = ’
il

where y; : RX D — R, are defined by the following integrals
Vi) = [ FEG, s,
= [ <2F§(t, F) + 20FE (6, r)yE(, r))dt,
yis.ry = [y <6F;—’(t, r) + 60F (1, r)yy(t,2) + 30°F (1, r)yy (t, r)* + 30F; (1, 7)
G, r))dt.
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Also, we have the functions

FEe = [ FEe L,

= [ (th(t, P + OF (1, PyE(, r))dt,

zFo= 5 (Ff(t, rdt + OF5 (1, r)yy (t,1) + %62F11(t, Ny r? + %6Fli(t, r)
¥ (@, r))dt.

For more details see [10].

The averaged function of order & is the function f,(r) = fk+ (r) + f (r). The simple positive
real roots of the functions f, () which satisfy f;(r) = Ofor! € {1,2}but f, ,(r) # 0, provide
limit cycles of the piecewise differential system (6).

We need to state the following lemma and Descartes Theorem in order to demonstrate our
results regarding the number of zeros in a real polynomial.

Lemma2 Consider p + 1linearly independent functions f; : U CR - R,i=0,1,...,p

(1) Given p arbitrary values x; € U, i=1,...,p there exist p+ 1 constants C;,
i=0,1,...,p such that

p
f6) =) CfW (7)
i=0
is not the zero function and f(x;) = 0fori =0,1,...,p.
(i1) Furthermore, if all f; are analytical functions on U and it exists j € {1,...,p} such

that f;|U has constant sign, it is possible to get an f given by (7), such that it has at
least p simple zeroes in U.

For a proof, see Proposition 1 of [16].
Theorem 3 (Descartes Theorem) Consider the real polynomial r(x) = a; x + a, x + ... + a; x*

with) =i, <i, <...<i.and a # 0 real constant for j € {1, ...,r}). When a;a; <o» We say
that a; and a;  have a variation of the sign. If the number of variations of signs is m, then r(x)
J I

has at most m positive real roots. Moreover, it is always possible to choose the coefficients of r(x)
in such a way that r(x) has exactly r — 1 positive real roots.

For more details see [2].

Proof of Theorem 1

In order to apply the averaging method for studying the limit cycles for € sufficiently small, we
need to write systems in the standard form. So we have developed the parameters of the dif-
ferential systems until the third order in £. To ensure that the origin of system (2) is a center,
we must add — 1 with regard to the growth of . Then in y > 0 we have the following system

Xx=—-y+ax+fy+y, y=x—px+ay+o,
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0= €+ apE” + aqE, B=—1+pe+ hre® + p3e°,
with 2 3 _ 2 3
Y = V1E+ 1€ + 1€, 0 =06, + 6,e” + 03¢,
Then the perturbed system of system (2) is given by
= =2y +e(ax+ By +7)) + 2(apx + By + 1) + £3(a3x + B3y + 13), ®
y=2x+e(=fx+ay+38)+e(—=hx + ayy + 8,) + £3(—=fix + a3y + 83).
According (ystem @) know that
Py (x, y)—01X+ﬁ1y+J/1, Pi(x,y) = ax + By + 75, P13(x ¥) = azx + By + 73,

0116 y)==Bx+ a1y +6;, Qppx,y) = —fpx+ apy+6,, O13(x,y) =—fx+azy+6;.
In y < 0 we have the differential system

k= —y—ax® —cxy —zy? — kX’ —mx?y — pxy* — hy?,

y = by* +dxy + gx> + Iy> + nxy® + gx’y + wx + x.

a=ae+ae’ +aze’, € =16+ Er + 03, P =Ppi€ + P’ + pae’,

2=2716 + 2,8 + 736, k=ke+ke>+ked,  m=me+me® +myed,
Where h = he + hye? + hye®,  g=gie+ge2 + g3,  d=de+dye® +dye’,

b=be+bye® + bye’, W =W e +wye? +wyed, q=qi€ + @ > + g,

n=ne+nye’ +nye, I=1le+Le* + Led,
Then the perturbed system of system (3) is given by

k= —yte(-aix —cpxy —2y° =k —myxy = pixy? = hyy?) + €2(—apx’
= Xy = Y = ko = mpx’y = poxy? — hyy?) + € (—azx® — cyxy — 2357
— k3x? = myx?y — pyxy? — hay),
¥ =x+eby? +dixy+ 837 + 1,y + nxy? + 7y + wix?) + €2(byy* + doxy
+ g2x2 + 12y3 + nzxy2 + q2x2y + w2x3) + 63(b3y2 + dyxy + g3x2 + l3y3 + n3xy2
+ @3x%y + wixd).
)
According to system (®)] we know that
Py (x,y) = —a ;X — ¢;xy — zly — ke’ = mlx Y= plxy -y,
Pyp(x,y) = —a2x2 —CpXy — Zzy - k2x3 - mzx Y= Pz)W - hzy .
Py(x,y) = —aaxz —C3XyY — Z3y2 - k3x3 - m3x2y —p3xy2 - h3y3,
051(x,y) = by +dixy + g3k + Ly + nyxy? + ¢ 3%y + wyxd,
03, (x,y) = byy? + dyxy + 8,37 + LY? + nyxy? + gox%y + wyx?,
033(x,y) = b3y2 +dyxy + g3x2 + l3y3 + n3)cy2 + q3x2y + w3x3.
We compute the averaged function f;(r), fori = 1 we get

fi(n = —ﬂr( =3k, + 31, - p1+q1)—%r2(2b1—c1+g1)+7m1r+261.

By using Descartes Theorem we know that the polynomial f;(r) can have at most three
positive real roots, which provide three limit cycles for the discontinuous piecewise dif-
ferential system (2)-(3).

In order to apply the averaging theory of second order we need that f(r) = 0. So we
must take ¢, = 2b, + g, p; = =3k, +3[, + q,, 6; =0, a; = 0. Computing the function
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f(r) we get
1
L) = Eﬂrs(}h(ﬂh =3k +ky(=my +ny + 3w+ 2Lmy = 2lin +mq, —nyq,

—qwy) + %r4(a1(3k1 —4l, = 3q,) —4bym; +4bn, — 3d,k,; + 2d,1, + 2d,q,
+g1(=2h = 3m| +2n; +3w) + 6k z; — 2q,2;) + %nr3(2alb1 +3a,8, — b,d,

2
—dig,+8z, =3k +3L, —p, +q,) — 5;"2(2172 — ¢y + 8) + wayr +26,.

This polynomial can have at most five positive real roots, which provide at most five limit
cycles for the discontinuous piecewise differential system (2)-(3).

In order to apply the averaging theory of third order we need to have f,(r) = 0, for that we
must . take
N (k= 1)@, 3k, = 41y = 3q)) = 4bym, +4byny +d, 20, +4,)

= 3kp) = 3gumy + 2gim, +6ki2 = 2012) + 28, (m = m)ky =2 = ) ),
ey = 2by+gy.py = a;2b, +3g)) —d, (b + &) + 812 — 3ky + 3, + g5, 2, =0,
h = - m(“1(3k1 —q)Bk, —4l, —3q,) — 12b,kym; + 12b,k;n,
+4bymq, — 4bynq, — d,(3k; — )k = 2(1) + qy)) — 6g,kymy + 3g,kin,
—6g,L;m +6g,l,n, +g,n,q, +2z,(q, — 3k1)2>,52 =0.

For w, and h, we considered four cases g,(3k; —¢,) #0,g, =0and 3k, — ¢, #0, 8, #0

and 3k, — g, = 0or g, = 0and 3k, — g, = 0. We start with the first case g;(3k, — q;) # 0.

Case 1. g,(3k, — q,) # 0. Computing the function f;(r) we obtain

L) = AT + A0 + AP + At + AP - %(2193 —c3+ g3)r + magr + 265,

Where

A= —<”(k1 =5l = 2q,((Bky — q1)(my — ny)(a; 3k, — 41, — 3q,)
6481(3k1 - C]1)
—4bym; +4bn; + d(=3k, + 21, + 2q,) + 6k,2; —2q,2;) + 8,(k;(6l,q, + 12m;n,
— 6mf - 6nf + qf) - 3kf(3ll +2q,) + 9k? =L, (=8myn; + 4m% + 4nf + qf)))),

YV — (2((297151* - 36091, + Tq )k +3(7205 +132q,1, — 32m? — 32n3

105g, (g = 3k;)?
+ 23] + 64m n) k2 — 6(24q, 1 + 2(4m? — 8nym, +4nt +13¢D)1, + q,(~8m?
+ 16n,m; — 8n? + g}k, + 41, (61,2m> — 4nym, + 202 + ¢2) + q,(12m? — 24n,m,
+12n2 +5¢7))gT + 4(m; — n))3k; — q,)(d,(—15k} + 331k, + 24q,k; — 647
—101,gy) + a; (12K = 3(131; + 8q )k, + ¢, (111, + 64,)) + 23k, — q,)(3k, — 41,
—3q,)2))8; — 48b2(m; — n,)*(q; — 3k,)* + 2(q, — 3k))*231, + q,)(3k, — 41, —3q;)
ai + ((3k; — q,) Bk, + 81, + g))z; — d,(Ok, — 81, — 73, + g)a, +2(q, — 3k,)?
2y +diGly +q) Bk = 2 +q1)) = dy Bky +4,)(3k; = q1)z;) + 2b1(q; = 3k;)* (g
Q7K = 3(121; + 5q))k; +2(—12m? + 24n;m; — 1207 + ¢* + 61,q,)) + 2(m; — n,)

(=9d ky + 127,k + 12d,1, +8d,q, + a,(Ok, — 241, — 13q,) —4q1Z1)))),
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Ay = ;<ﬂ(2(3k1 —q,)(byBk; — 41, = 3q)) + &,(8k, — 111, — 8g)))a;
16g, (3k1 - ‘11)
+ (=8(m; —n;)(Bk; — ql)bf + (4(z(q; — 3k))? + g,(=20k;m; — 21;m, + 6q,m,
+ 17kyny + 2l,n; — 5n,q,)) — d (%, — 81, — 7q,)(3k, — q\)b, + g,(—d,(Bk; — q})
21k, — 171, — 15q,) + g,(=37kym, — 16/;m; +7q,m, + 19k;n, + 16/,n, — n,q,)
+ Bk, — q,)(3%, — 101, — 17g,)z)))a; + b1(3k, — q)(3g,k, +4d;m, — 4d,n,
—8191) + 8 (Bk; —q,)(5k; —3(,; + ql))d% +(g,(6l,(m; —n;)+k,(Om; —3n,)
= (my +ny)q) — (18k; =51, = 8q,)Bk; = q1)z)d, = 9h2k% - th% - sz% + ”261%
+45K322 + 56722 — 30k, q,2% — 6kylymy + 6k, Lym; — 3k2my + 6k, 1,m, + 6kylin,
— 6k l,n; + 3kfn2 — 6kl n, — Zg?(k1 + 1))k, — q;) + 6hyk g, — 2kym q, — 21,m, q,
+akymygy = 2lmyqy + 2kyniqy + 20,y — Akinagy + 20nyqy + 2kimy g, + 20m g,
—2kn;q, —2ln,q, + 9k%w2 + q%wz — 6k,g,w, + g,(—10,(m; — ny) + k;(7n,
— 13my) + (my +ny)q,)z)) + by (Gk; — q)Bky = 2(1; + g)))d; + (8,(25k;m; + 4l,m,
= Tqymy = 19kiny — 4lyny + 5nyqy) = 2(q; = 3k)z)d, + 8, (3ky — q1)(g, Bk, = 51,

—2q,) + 10(n; — m1)21)))>,

1
Ay = §<2(a1(4b1d181 + 6d18? +3g1ky — 38,k —4g,l, +4g,1; — 38,9, + 38,9,
1

- 6g°z)) +33a2g1k, —4ayg,l, = 3a,8,q, — 3ag% + b (4(—g,my + gm; + g1,
— &N +8)— Zd%gl) —4bygimy +4bygn + 4b?8f —3d,8,ky — 3d,8,k,
+3d, 8,k + 2d,8,1) +2d,8,1, — 2d, 8,1, +2dy8,q, +2d,8,9, — 2d, 8,4,
+ 2d1g%21 - degf - 28% +68,kyz) +681k12, — 682k 7 — 38%’”2 + 28%”2
= 2816221 — 281912 + 28,4171 + 3g?w2)>,
T

As = g(zazbl +2a,b, +3a,8, +3a,8, — bydy — byd) —dyg, —d & + 821 + 812

~ 3k + 3L = py+ 43 ).

Since the rank of the Jacobian matrix of the function 4 — 4, --~A5»—§(2h3 — oy +83), 7@, 285)
with respect to its parameters which appear in their expressions is maximal, i.e. it is 8. In
view of Lemma 2, we conclude that the maximum number of real solutions of the equation
f3(r) = 0is at most seven. Now by using Descartes Theorem we conclude that the function
Jf3(r) = 0 can have at most seven positive solutions. Therefore the averaging theory up to
third order can provide at most seven limit cycles for the discontinuous piecewise differen-
tial system (2)-(3).

Now we consider the second case.

Case 2. g; = 0 and g; # 3k,. Computing the function f,(r) we obtain

1
H) = Bﬂrs(hl(q1 =3k) + ki (=m; +n; +3w))+2lim; =2l in; + mq, —n,q,
—qwy) + %r“(al(f}k1 —4l, —3q,) —4bym; +4b\n, +d(=3k; + 21, +2q,)
1 2
+ 6k,z, —2q,2)) + §7U’3 (alcl —byd, —3ky+3l, —p, + qz) - §r2(2b2 -+ 8)
+ ma,r + 26,.

So the polynomial f,(r) can have at most five positive real roots and produce at most five
limit cycles for the discontinuous piecewise differential system (2)-(3) when € is
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sufficiently small. In order to apply the averaging theory of third order we put f,(r) = 0. So
¢, = 2b,+g,pp =ac; —bydy =3k, +3l, + q,, 2, =0,6, =0,

1
we need to consider ™1 = m((k1 =21, — q))(ayBky — 41, = 3q)) +dy 2 + q,) — 3k,) + 6k 2,

—2q,2;) + 4b, by (3k; — ‘11)>s

1
my = o= (@G =41y = 3q) + 4bymy +d, QU +9) = 3k) + 6z, — 20,7, )-
1

From the expression of f,(r) we distinguish immediately two subcases b, # 0 or
b, =0.

Subcase 2.1. b; # 0. Computing f;(r) we get

f3(r) = Byr" + Byr® + Byrd + Byr* + Bsr® — %(2!73 —c3+ ;)7 + mar + 255,

B, = 512})%(3+%)(k1 — 51, — 2q,)(=2a,(3k, — 41, — 3q,)(b,(h, — n,)(3k,
—qp) +1,(dy Bk, = 201, + q)t) + 22, (qy — 3k)) + @31, (=3k, + 41, + 3q,)?
+8b2(ky — 1)(qy — 3k + ¢ hy — )3k, — g)dy Bk, — 21, + q))) + 22,4,
—3k)) + 1,(d, 201, + q,) = 3k;) + 6k,z; — 2¢,2,)%),

B, = m( = 2a,(b,(hy — n,)(=28k,q, + 27K + 5¢2) + d, K381,
+4q,) — 3k, (1519, + 51% + 3‘1%) +q:(29%,q, + 251% + 641%)) +2;8k — qy)

(=33k, 1, — 9k, q, +3k3 + 291, g, + 1613 + 64%)) + a2(kX(751, + 36q,) — 3k,
(500,q; + 2812 + 15¢%) — 9K + q,(751,, + 6812 + 18¢2)) + 4b*(q, — 3k,)?

Ok, — 2061, + q,)) + ¢, (hy — n,)3k; — q,)(d, (9K, — 4q,) + 8z, (q, — 3k,))
+90d,ky[yq,2, + 6d%ki1yq; — 54d, K21z, + 48d, ki Pz, — 1582K2, + 62k, P
+42d,K3q, 2, — 12d, ky P2y — 242K g, + 122K, 7 — 18, K3z + 92K}
—24d,1,¢%z, — 16d,Pq,z, + 831, % + 8d>IPq, — 96k, 1, q,2% + 144k, 2
+161,432}).
_ -7
64b,(3k, — q,)
— 22kyqy + K% + 221, q, + 162 +9¢2)) + 8b2(hy + )3k, — q1) — 23k,
— 41y = 3g)(~ky Bl + ) + 3ky Ly + ki gy — by +10,)) + 4adb, (=5ky (L
+q)) + 3k +50,q; + 4L +2¢°) + b, (2d, 7,3k, — q,)(2k, + 21, + q))
+ a'lz(—Sklll —3k,q, — 3k? +6l,q, + 4If + qu) + 43k, — q,)(3h,k,
= hygy +kymy — kyny = 3kywy = 2Lymy + 21,0y — myqy + nyqy + g, wy))
—4b3d, (hy + n)(3k; — q,) — 4b3(q; — 3k)2 + 20,3l + ) — k Bl
+ 0+ bay — ha)@ @, +a) = 3k) + 6ki2 = 20,2) ).
B, = m <a1(8bfdl(3k1 —q,) + Bk, — 41, —3q,)(=b,(6k; —2q,)
—3g,(k; + 1))+ ¢,3k; — q,)(Bk, — 41, — 3q,)) + ¢,(3k; — q,)(a,(3k,
— 41, —3q,) —3d\k, +2d,l, +2d,q, — 3d k| +2d,1, + 2d,q, + g,
—ny) + 6k z, + 6ky2y — 29,20 — 2q,21) + (b, (6k, — 2q,) + 3g,(k, + 1))

(d,(3k; —2(1; + q,)) + 22, (g, — 3k,)) — 4623k, — q))(d} + 2m, — 2n2)>,

(al(hl(Zzl(?akl —q,)(Sk; — 4l — 5q,) — d;(—26k,1,

T
Bs = g(Zalbz +3a,8, + aycy — byd, — byd, —d g, + 8,2; — 3ks + 313 — p3 + q3).
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In the similar way in the proof of Case 1 and according to Descartes Theorem, we know
that the function f;(r) can have at most seven positive real roots, which provide at most
seven limit cycles.

Subcase 2.2. If b; = 0 the polynomial function f,(r) becomes

1
L= 1—67£r5(h](q] = 3k) + ki (=m; +ny +3w,) +2l,m = 2lin; +mq, —n,q,

2
—q,wy) + Er“(al@k1 — 41, = 3q,) + d;(=3k; + 21, + 2q,) + 6k z; —2q,2;)

+ %nr3(—3k2 +3lL—py+qy) — §r2(2h2 — ¢y + ) + mayr +26,.

This function can have at most five positive real roots. We should have f,(r) = 0 to apply
the averaging theory of the third orderr So we need to take
a;(=3k, + 41, +3q,) +d, (3k; —=2(1; + q,))

= ,a; =0,6, =0,
2 6k, — 24, ) 2

Z(kl +ll)(m1 _”1)
q1 — 3k

¢y = 2by + g5,py = =3k, + 31, + g5, Wy = hy + +my —ny.

Computing f5(r) we get

£r)=Cir' + Cyr® + Cyr° + Cyr* + C5r° = %(2])3 —c3+ 83)r2 + mar + 265.

Where
C = — (ﬂ(k1 =51, = 2q,)(k;(=3hym; + 3hyn; +6l,q, + 3mn; — 3”? + q%)
64(3k, — q,)
+q,(hy = ny)(my —ny) = 3kf(311 +2q) + 9k? + 4 (=4mny + Zm% + 2”% - q%))),
= — L <2(a1(h1(3k1 — g3k, = 161, = 7q,) + 6k;3lymy + 51ny + 3m,q,

105(3k1 - ql)
+n.q)) - 3k%(2m1 +ny)—10l;mq, + 321%m1 —6lnq, — Z’)Zl%n1 - 12m1q%
+ 5n1qf) +d,(=h(3k; — q,)(Bk; — 421, + q))) + 3k, (10;m, — 18,n, + 4m,q,
-9n,q,)+ kf(lSn1 —6m,) — 42l + q)2lm; = 2ln; — nlql)))>,

S S

64(3/{, —ql)

+ d2ky(=3k, + 6, +4g,) — 4(hy(q; — 3k))? + 2k, 3L, + g1)my — ny) — 6k, Lym,
— 6k, lymy + 6k [,n, + 6kl in, — 4kymyq, — 2k;m,q, + 3l<%m2 +4kynyq, + 2kin,q,

(n(—Zald,(Sklll +q, Gl +2g) + @k, — )3k, — 121, —Tq;)

- 3kfn2 + 6k q W, — 9kfw2 +2Lmq, +2l,myq, — 2l,m q, — 2lyn,q, — 21 n,q,
+2lnq, + sz? - ”2‘1% - quQ))),

1
_ m (2(—02(3/(1 —q,)@Bk, —4l, = 3q,) + 12a,k|l, — 12a,k,1, + 6a,k,q,
—6a,k,q, —4a,l,q, +4a,l,q, + 12b,kym| — 12b,k;n; — 4b,m,q, + 4b,n,q,
— 6dyk 1y — 6,k + 6dykyl, — 9dykyqy — 31k, qy + 3dy kg, + 9o + 251,
+2d,l,q, —2d,l,q, + 2d2q% + 8,(hy(q, = 3k)) + 6kym| — 3k n; + 6l;m; —6l,n,
-mq,) + 12k q,2, — 18"?22 - 2’1%2))’

1
Cs = m(”("l(ubzkl —4byq, + 1583k +4gal, = 38,41) + 2byd, (g, — 3ky)
—3d,g,ky — 2d, 8,1, + 18k 13 — 6k p3 + 6k g3 + 6k3q, — 18ksk; — 6l3q, + 2p3q,

—241‘13))-

C,=
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The polynomial f;(r) can have at most seven positive real roots, and generate when &
is sufficiently small at most seven limit cycles for the discontinuous piecewise differential
system (2)-(3).

Case 3. g; # 0 and g; = 3k,. The polynomial f,(r) is written as

L) = %ﬂ'rS(kl +1)(m; —n))— %r4(6a1k1 +4a,l, +4bym; —4b,n, —3d,k; —2d,l,
+8,2h; +3m; —2n; = 3w))) + %nr3(2albl +3a,8,—bd, —dg, +8z -3k,
+3L—p,+q,) — §r2(2b2 =)+ 8) twayr+26,.

This polynomial can have at most five positive real roots. In order to apply the averaging

theory of third order we must have f,(r) = 0, and in order to eliminate the coefficient of >
we need to have m; = n, or k; = —[,. Here also we have two subcases.

Subcase 3.1. We consider
_“1(21’1 + 331) +d, (bl +gl) +3k, = 3L +p,—q,
Z]= ,a2=0’52=0,

81
(2a, — d,) (3k; +21,) + g, (2h, +ny)

38
Computing f;(r) we get

w, = Jky #F=l,m =n,¢c, =2b, + g,.

f3(r) =Dyr® + Dy + Dy + Dy — %(2[73 —c3 +g3)r2 + wazr + 26;.

Where

1
D, = E(Z(—Zgl(Zal —d))(h, —m)(15k, + 81,) — 101,(d, — 2a))*2l, + q,) +g%
1

(—8hymy + 4h7 + T2k, 1, + 45k3 + 7207 + 4m%))),

1
D, = - @(ﬂ(al(@?l@dlll +g(my — h) +d g, (2l; —15k) _78%(}’1 —my)
1

+ 291, — 9k, L + S5L,py — 31,y — 15L1, + pyg)) + 2a3(—6b, 1, + 15g,k;
+2g,1;) — 3b,(d,g,(m — 1) + dfll - g%(511 +q)+ 2d18fh1 - deglll
—9d,kyl; +9d,k,l, — 3d,k,p, — 5d,l,p, + 15d,1,1, + d\p,q, + 18g,h,k,
+58,hpy — 68,11y q, — 68 kymy + 68,k n, + 68?/(1 —3g,,m; — 6g,1,m,
+ 68,1y + 6831, + gymyp, — 158 1, — 2d1g%m1)>,

D, = é (2(a1(=2, (g, + 6k, = 20y) — 6,83 = 3381k, + 682k, + 1481,

1

—6g,p, +98,9,) + 3ajg1(4b1 +5g,) — 6a,8,k; —4a,g,l, + b,(6d,k, —2d,q,
—4g my +4g ny +4g) + 4blgt — 3d g,k +9d,8,ky + 2d,g,1, — 2d, 8,1,
—4d, gL, +2d,g,py — 2d181q5 + drg1qy — 281y — 3gTmy + 2gin, + 3giw,
— 18k,l, + 6k,py — 12k,q, + 18k§ +6l,q, — 2p,q, + qu + 4g211)),

1
D, = _8g (r(2a;b,g, + a,8,(2b, +3g,) —2a,b,g, — b,d, g, — bd,g, + b,d 8, — dzg%
1
—381ky +3gyky + 38113 = 381, — 8103 + &Py + 8143 — 8202 + 8122))-
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This polynomial can have at most six positive real roots, which provide at most six
limit cycles.
Now we analyze the second subcase.

Subcase 3.2. We consider the following values of the parameters of the function f;(r)

—a1(2b1 +3g1) +d1(b1 +g1) +3k, = 3L+ p,—q,
a4 = ky ==l cy =2by + g5,

81
—2a,l; — 2n, (2b1 +g1) +4bym; +d,l, +2g,h, +3g,m,
38

w, = ,a, =0,6, =0,m; # ny.

J3(r) becomes

S = Flr7 +F2r6 +F3r5 +F4r4 +F5r3 — %(2193 - +g3)r2 + mayr + 26,.

Where
7l
F= 15 ((my = ny) (5(=2a,1, + 4bymy = 4byn; +d,1y) + g, (=5hy + 12m; = Tny) )),
81
F,= 31;g (2(2g1(2a111(7h1 —45my + 38n,) — 8b,(m; — n)(2h, +3m; —5n)) +d, [,
1

(=Thy +24m, — 17n))) + 2(=4a,l,(17b,(m;, — ny) + 5d,1,) + ZOaflf +34b,d,[,
(my —ny) —8(my — ”1)(5[7%(’”1 —ny) = 9%kl + 31,3, —p, + ¢5)) + Sd%l%)
+ g%(—8h1(3m1 —2n))+ 4h% + 45[? + 4n,(6m; — Snl)))),

1
B = 2 (;:(al(—zbl(éarlll+g1(—3hl+2ml+nl))+12b§(m1 —ny) = 17d,g,l, + g}
1

(Thy = 12m, + 5ny) + 21,(=9k, + 61, — 2p, + 3q,)) + 2afll(6bl +13g,) + b,(d, g,
(=3hy —4m; +Tn)) + 3d71; — 2(3gi1, + (m; — n,)(9k, — 151, + 5p, — 3¢,)))
+6b2d, (n, — my) — 2d, g*hy +2dg,1, + 2d,@%n, + 9d,kyl, + 2d,1,p, — 3d,1,q,
—6d,l)l, — 18g,hyky + 158 1, — 58,1 p, + 68111, — 38, kym + 38,k
+ 158,,my — 12g,lyny — 3gymyp, + 3g,mq, + 2g,mp, — 36’1”1%))»
1
F,= E(Z(—al@bl(?ﬁdlgl + 6k, —2q,) + 6d1g% +33g,k, — 14g,1, + 28,1, + 6g,p,
1
-9g,9,) + Safgl(élb1 +5g)) + 2a,8,!, + b,(6d,k, — 2d,q, — 4g,m, + 4g,m, +4g,n,
—4gn; + 48?) —4b,gm; +4b,g\n; + 4bfg% +9d, gk, — dyg,l, +d, 8,1, —4d, g1,
+2d,8,p, —2d,8,9, — Zg%hz - 38?’”2 + 28%"2 + 38?“’2 — 18kyl, + 6kyp, — 12k,q,
+ 18k§ +6L,q, — 2p,q, + 2q§),

1
Fs = @(”(Zallhgl +a,8,(2b, +3g,) — 2a,b,8, — byd, 8, — b1d,8, + b,d, g, _dzg%
1

= 3g1ks + 3gaky + 30113 — g2l — 103 + 8apy + 8103 — 8202+ 802 )-
Then the polynomial f;(r) can have at most seven positive real roots.
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Case 4. g, = 0 and g, = 3k,. Computing the function f,(r) we obtain

H) = %n’rs(kl +1)(m; —ny) — %r4(6a1k1 +4a,l, + 4bym, — 4b\n, — 3d,k, — 2d,l,)

+ %7[7‘3(0]01 —-bd, =3k, +3l, —p, +q,) — §r2(2b2 — ¢y + &) +mayr +26,.

This polynomial can have at most five positive real roots. Now we apply the averaging
theory of third order by considering f,(r) = 0. We see that to remove the coefficient of >
we need to have k; = —[, or m; = n,. Here we also have two subcases.

Subcase 4.1. We consider k, = —[, ¢, =2b, + g, g, = —2a,b, + b,d, + 3k, — 31, + p,,
I, (2a, —d;)
4b,
subcases b; #0orb; = 0.

m; = +n,a,=0,6,=0, b; #0, m; # n;, and we distinguish another two

Subcase 4.1.1. For b, # 0. Computing f;(r) we get

f(r) = Gir" + Gyr® + Gy + Gur* + Gsr® — %(2[)3 — 3+ g3)r* + mazr + 26

Where
1
G, = 102%%(-7:1%(2% —d,) (I, (2ay — dy) +20b, (hy —w;))),
G, = ﬁ(zl(za1 —d,)(1,(10a;, — 11d, + 16z)) + 12b, (4h; + n; — 5w,))),

Gy= - Mﬂ'(Za](bl(&lzl — 5d, 1) + 4b3(hy +ny) + 1 (=2k, + Ly — p,)) + 8by
+by(=6d, 1z, + Epy + 4y = w3l = po) = 453, (hy + my) + i1y 2Ky = Ly + o)),
1

G, = W< - ZaI(bf(6d, —8zy) + [,(4b, + 3g,) + ¢,(6k, — 51, + 3p,)) — 4b,(—2a,],
1

—3d,ky + dyl; +4d,l, — 2d,py + 8,(2hy + ny = 3w) — 6,7, +2p,2)) + 24a%bf
+dy 1, (4, + 3g,) — 8b2(d, 2, + 2m, — 2n2)),

1
Gs = g(2a1bs + 30,8, + sy = bady = bydy = dygs + 87, = 3ks +31 = ps +3) -

This polynomial can have at most seven positive real roots, consequently at most seven
limit cycles for the discontinuous piecewise differential system (2)-(3).

Subcase 4.1.2. If b; = 0 the polynomial f,(r) is written as
Hr) = gﬂ'r (ky +1))m; —n;) — Er 2a, —d))(Bk; +2) + gﬂ'r (=3k, + 3L, —pr, + q5)
- §r2(2b2 — ¢y + 8y) + mayr +26,.
In this case the function f,(r) can have at most five positive real roots. We set f,(r) = 0,

and to delete the coefficients of #* we need another two subcases 3k, + 2/, = 0 or d; = 2a,.
We start with the first subcase 3k, + 2, = 0.
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Subcase 4.1.2.1. ¢, =2b, + g,, p, = -3k, +3l, + g5, ¢, =0,6,=0,[, =0, k;, =0 and
d, # 2a,. Computing the function f;(r) we obtain

1
f(r) = 1_67”5(h1(‘12 = 3ky) + ky(—=my + ny + 3wy) + 2Lmy — 2l,n, + myq, — nyq,

—qowy) + %r4(a1(3k2 —4l, — 3q,) — 4bym, + 4b,n, — 3d,k, + 2d,l, +2d,q,
+ g,(=2h; = 3m; + 2n, + 3w|) + 6k,z; — 2¢52¢) + %ﬁr3(2a1b2 +3a,8, — b,d,

2
—d g, + 8,7 — 3k + 3L, —p3 +q3) — §r2(2b3 —C3+ g3) + wasr + 265,

Then the polynomial f;(r) can have at most five positive real roots.
Now we compute f;(r) for the second case d; = 2a,.

Subcase 4.1.2.2. ¢; =2b, +g,, @, =0, ¢; =2b, +g,, 6, =0, d| =2a,, k; =—I; and
3k, +21, #0. Computing the function () we obtain

. 1 8 1
fn= - 6—4rrllr7(m1 —n)(5h, + my —n; —5w;) — Ellrﬁ(&t] —4z)(m; —ny) + 16
71'1"5(2}11(q2 = 3k,) + ky(=m; +n, +3w)) +2L,m; = 2L,n, + m;q, — nyq, — g,w,)

- E}"‘(Balk2 —2a,l, —a,q, + 4b,m; — 4b,n, + d,l, + g,(2h, +3m; —2n; = 3w,)
1 2
— 6kyzy +2g,2)) + §W3(a1gz +821 =3k + 3L —p; +q3) - §r2(2b3 —c3+83)
+ mosr + 265.
This polynomial function can have at most seven positive real roots. Now taking the
second subcase m; = n,.

Subcase 4.2. m; =n,, ¢, =2b, + g5, p, =2a,b, —bd; =3k, +3, +¢q,, , =0, 6, =0
21
and k| = —?1. Computing f5(r) we get

4 1
H) = ﬁllrﬁ(Zal —d)@4h, +n; —5w)) — En’rs(al(6(bl(nl +w,)+1zy)—3dl)
+ Zafl1 —3b,d\n, — ;bldlwl —3dljz; + d%l1 + h, (9%, — 3q,) — Ok,w, —21;m,
+2liny + 3g,w;) — Er“(al(—4bld1 — 3k, + 41, +3q,) + 2b1(df +2m, — 2n,)

+3d,k, —2d,l, — 2d,q, + 2g,h, + g,n; — 3g,w; — 6kyz; + 2¢,2)) + %nr3(2a2bl

2
+2a,by,+3a,8, —bydy —byd; —d 8, + 8,2y —3k; +3l; —p3 + q3) — 51’2(2173
— 3+ 83) + wazr + 26;.

This polynomial can have at most six positive real roots. In general, in all the cases men-
tioned above, the polynomials f;(r), withi = 1,2, 3 can have at most 3, 5, 6, and 7 real posi-
tive roots. Thus the maximum number of limit cycles that can be obtained via the averag-
ing theory up to third order is seven.

Now we are going to reach our result by giving an example with exactly seven limit
cycles.

Example with seven limit cycles.

In the half plane y > 0, we consider the linear differential system (8) with the values
{051, ﬁl, Y1» 51, oy, ﬂz, Y2, 52, as, ﬂ3’ V3, 53 } - 1{0,1,2,0,0,1,1,0,13, 068/757 -1,-1,-2520}.
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Now in the half plane y <0, we consider the cubic weak focus or center (9) with
{ay. by ey dy. gy hyskys Lmy,ny, pra gy wis 21, g, by, €, dy, 82, by Ky, by my g, . G, W, 29

a3, by, ¢3,d3, 83, 3, k3, Iy, m3, 3, p3, g3, w3, 231 = {0, Hy /Ky Hy /Ky +1,0,1,-24 /25 + % -9,2,0,1,

1,(=57 — V64r +2572)/2x), Tx — \64n + 2572)/(27), =24 /25 + o4 -9,2,0,1,1,1,-1,-1,
V z

—1302.26,0, %,—%,3907.78,—1, 163.431,-1,1,-20,0,-1,19,738,-1,1,1,-1,-1,-54,152 /=,

H,/K,,-2,1}, with H = —234/7(64 + 257) — 8807 — 128, K, = 8(57 + 4 + /(64 + 257)),
H,= 9( 764 + 257) — 807[) and K, = 8<\/7r(64 ¥ 257) + 57 + 4).

An exhausting computation shows that f; (r) = f,(r) = 0 and
L) =0 —-Dr—=2)F-3)r—8H0T-50F—-6)(r—"7).

Then for these systems we have seven limit cycles bifurcating from the periodic orbits of
the discontinuous piecewise differential system (2)-(3).

Moreover, in polar coordinates (r,0) the periodic orbits that bifurcate are
r=1,2,3,4,5,6,7. This completes the proof of the Theorem 1.
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