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Abstract
In planar piecewise differential systems it is known that when the discontinuity curve is 
a straight line and both differential systems are linear centers, these piecewise differen-
tial systems have no limit cycles but if they are separated by other types of discontinuity 
curves, such as parabolas, then they have limit cycles. All these results are in the plane 
and although the qualitative theory of planar piecewise differential systems has been the 
subject of many research, this is not the case for piecewise differential systems in higher 
dimensions. In this paper, we study the maximum number of limit cycles of discontinuous 
piecewise differential systems in ℝ3 separated by a paraboloid (elliptic or hyperbolic), and 
formed by what we call two linear differential centers. We prove that these systems can 
have at most one limit cycle and that this upper bound is reached. We also provide systems 
of these types without periodic solutions and with a continuum of periodic solutions.

Keywords Discontinuous piecewise linear systems · Limit cycles · First integrals

Introduction and Statement of the Main Result

The study of piecewise linear differential systems goes back to Andronov et  al. [1] and 
still continues to receive attention from researchers. These last years a renewed interest 
has appeared in the mathematical community for understanding the dynamical richness of 
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these piecewise linear differential systems because they are widely used to model processes 
appearing in electronics, mechanics, economy, etc., see for instance the books of di Ber-
nardo et al. [5], Simpson [18], the survey of Makarenkov and Lamb [14] and the hundreds 
of references quoted in these works.

In the qualitative theory of dynamical systems the existence of periodic orbits and 
more precisely of limit cycles is very important because when they exist, they enable us 
to understand the dynamical behavior of differential systems. Moreover many real world 
phenomena are related to their existence, see for instance the Van der Pol oscillator [19, 20], 
among many others. In order to understand the dynamical behavior of the discontinuous 
piecewise differential systems it is also important to know if they have crossing periodic 
orbits and crossing limit cycles. In discontinuous piecewise differential systems a crossing 
periodic orbit is a periodic orbit that intersects the discontinuity manifold in a finite 
number of crossing points and a crossing limit cycle is a crossing periodic orbit that is 
isolated in the set of all periodic orbits of the system.

In the last years, the study of the existence and maximum number of limit cycles of 
planar piecewise differential systems has been a subject of intense research. Most of the 
studies developed in this direction were done considering piecewise linear differential 
systems with only two zones and separated by a straight line and only a few of them were 
done taking into account more zones or considering discontinuity curves with different 
shapes than a straight line.

In the case of planar piecewise differential systems separated by a straight line, the 
following interesting question emerged: discontinuous piecewise linear differential systems 
with only centers can create limit cycles? In 2018 Llibre and Teixeira answered this 
question by proving that these piecewise differential systems have no limit cycles, see [11].

In this regard, recently in [2, 4, 7, 8, 13] some authors studied the existence and the 
maximum number of limit cycles for discontinuous piecewise differential systems formed 
by differential centers that have either two or more zones, and they are separated either 
straight line or conics (reducible or irreducible) and they proved that these systems 
have limit cycles. In particular, in [13] the authors proved that discontinuous piecewise 
differential systems separated by a parabola and formed by two linear differential centers 
have at most 3 limit cycles and that this upper bound is reached. From these works, it is 
apparent that the shape of the discontinuity curve plays an important role in the number of 
limit cycles that a discontinuous piecewise differential system can have.

In this way, a natural question arises, namely, to consider discontinuous piecewise 
differential systems in ℝ3 , since although the qualitative theory of planar piecewise 
differential systems has been a subject of many research this is not the case for piecewise 
differential systems in higher dimensions. Most of the existing results are related to very 
specific families of systems (see for instance [12], where the authors characterized the 
families of periodic orbits of two discontinuous piecewise differential systems in ℝ3 where 
the discontinuity surface is a plane).

Our objective is to study the existence and the maximum number of crossing limit cycles 
for discontinuous piecewise differential systems in ℝ3 formed by two linear differential 
systems which we will call linear centers in ℝ3 and separated by a paraboloid ( elliptic or 
hyperbolic). Without loss of generality, we can consider that an elliptic paraboloid is of the 
form

And a hyperbolic paraboloid is of the form

PE =
{

(X, Y , Z) ∈ ℝ
3 ∶ Z = X2 + Y2

}

.
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We observe that indeed PE and PH divide the space ℝ3 in two regions, namely

and

respectively.
We recall that a center of a differential system in the plane ℝ2 is an equilibrium 

point p having a neighborhood U such that U ⧵ {p} is filled of periodic orbits. A global 
center is a center p such that ℝ2⧵{p} is filled with periodic orbits. The notion of a center 
appeared already in the works of Poincaré [15–17] in 1881 and Dulac [6] in 1908.

In ℝ3 there are no centers in the sense that there are no equilibrium points p having a 
neighborhood U such that U ⧵ {p} is filled of periodic orbits, see for instance [3]. In the 
following, we introduce the notion of the linear center in ℝ3 that we shall use.

One of the differential systems in ℝ3 with more periodic orbits is

This differential system has two linearly independent first integrals, namely

Moreover system (1) has a global center at the equilibrium point (0, 0, z0) of each plane 
z = z0 . So all its orbits are periodic except the points of the z- axis which are equilibrium 
points. We denote this differential system as a linear center in ℝ3.

The aim of this paper is to study the maximum number of crossing limit cycles that 
the discontinuous piecewise differential systems formed by two linear centers (after 
applying an affine change of variables) and separated by the paraboloid either PE or PH 
can have. Moreover, we also want to show that this maximum is reached.

Our main result is as follows.

Theorem 1 Consider discontinuous piecewise linear differential systems in ℝ3 formed by 
two linear centers (after applying an affine change of variables) and separated by a parab-
oloid ( elliptic or hyperbolic). The following statements hold: 

(i)  The maximum number of limit cycles in both cases is one.
(ii)  In both cases there are systems without crossing periodic orbits.
(iii)  In both cases there are systems with a continuum of crossing periodic orbits. See 

Fig. 1 for the case of the elliptic paraboloid and Fig. 2 for the case of the hyperbolic 
paraboloid.

(iv)  In both cases there are systems with one crossing limit cycle. See Fig. 3 for the case 
of the elliptic paraboloid and Fig. 4 for the case of the hyperbolic paraboloid.

PH =
{

(X, Y , Z) ∈ ℝ
3 ∶ Z = X2 − Y2

}

.

R
1

E
=
{

(X, Y , Z) ∈ ℝ
3 ∶ Z − X2 − Y2 ≥ 0

}

;

R
2

E
=
{

(X, Y , Z) ∈ ℝ
3 ∶ Z − X2 − Y2 ≤ 0

}

,

R
1

H
=
{

(X, Y , Z) ∈ ℝ
3 ∶ Z − X2 + Y2 ≥ 0

}

;

R
2

H
=
{

(X, Y , Z) ∈ ℝ
3 ∶ Z − X2 + Y2 ≤ 0

}

,

(1)ẋ = −y, ẏ = x, ż = 0.

H1(x, y, z) = x2 + y2, H2(x, y, z) = z.
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Theorem 1 is proved in Sect. 3.

Preliminaries

The linear differential systems considered in each piece R1

E
,R

2

E
,R

1

H
 and R2

H
 are linear 

differential centers (1) after applying a general affine transformation. More precisely, we 
shall use the next result.

Lemma 1 Doing a rescaling of the independent variable after the affine change of vari-
ables given by

where ai, bi, ci ∈ ℝ for i = 1, 2, 3, 4 and

system (1) becomes

x = a1X + a2Y + a3Z + a4, y = b1X + b2Y + b3Z + b4 and z = c1X + c2Y + c3Z + c4,

(a2b3 − a3b2)c1 + (a3b1 − a1b3)c2 + (a1b2 − a2b1)c3 ≠ 0,

Fig. 1  The three crossing periodic orbits Si , i = 1, 2, 3 of the discontinuous piecewise differential system 
formed by the linear systems (26) and (27)
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Moreover, two linearly independent first integrals of the differential system (2) are

In general, studying crossing periodic orbits of discontinuous piecewise differential 
systems is a very difficult problem. And a useful tool that allows studying these 
periodic orbits is to verify if the differential systems that compose the piecewise 

(2)

Ẋ =((a1a3 + b1b3)c2 − (a1a2 + b1b2)c3)X + ((a2a3 + b2b3)c2 − (a2
2
+ b2

2
)c3)Y

+ ((a2
3
+ b2

3
)c2 − (a2a3 + b2b3)c3)Z + (a3a4 + b3b4)c2 − (a2a4 + b2b4)c3,

Ẏ =(−(a1a3 + b1b3)c1 + (a2
1
+ b2

1
)c3)X + (−(a2a3 + b2b3)c1 + (a1a2 + b1b2)c3)Y

+ (−(a2
3
+ b2

3
)c1 + (a1a3 + b1b3)c3)Z − (a3a4 + b3b4)c1 + (a1a4 + b1b4)c3,

Ż =((a1a2 + b1b2)c1 − (a2
1
+ b2

1
)c2)X + ((a2

2
+ b2

2
)c1 − (a1a2 + b1b2)c2)Y

+ ((a2a3 + b2b3)c1 − (a1a3 + b1b3)c2)Z + (a2a4 + b2b4)c1 − (a1a4 + b1b4)c2.

(3)
F1(X, Y , Z) = (a1X + a2Y + a3Z + a4)

2 + (b1X + b2Y + b3Z + b4)
2,

F2(X, Y , Z) = c1X + c2Y + c3Z + c4.

Fig. 2  The three crossing periodic orbits Si , i = 1, 2, 3 of the discontinuous piecewise differential system 
formed by the linear systems (29) and (30)
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differential system are completely integrable. We recall that a differential system in ℝ3 
is  completely integrable if it has two first integrals linearly independent because then 
we can describe an orbit that passes through a given point p as the intersection of all 
level surfaces to which the point p belongs. It is known that linear differential systems 
are always completely integrable.

Therefore in order to study crossing periodic orbits of a piecewise differential system 
in ℝ3 formed by two linear differential systems, which intersect the discontinuity 
surface in the points p0 and p1 , these points must belong to the intersection of the 
same level surfaces to both differential systems, this is, they must satisfy the following 
closing equations

where Fi(x1, x2, x3) and Gi(x1, x2, x3) for i = 1, 2 , are the linearly independent first integrals 
of the systems that compose the discontinuous piecewise differential system. This tool has 
been used in the papers [9, 10]. We use the same technique in the proof of Theorem 1.

(4)

F1(p0) = F1(p1),

F2(p0) = F2(p1),

G1(p0) = G1(p1),

G2(p0) = G2(p1),

Fig. 3  One crossing limit cycle intersecting P
E



Differential Equations and Dynamical Systems 

1 3

Proof of Theorem 1

Proof of statement (i) We have two cases, first when the discontinuity surface is an ellip-
tic paraboloid (PE) and second when the discontinuity surface is a hyperbolic paraboloid 
(PH) . Here we only provide all the details of the proof of statement (i) considering that the 
discontinuity surface is PE , because the proof considering the paraboloid PH is completely 
analogous.

By Lemma 1, we consider the discontinuous piecewise differential systems such that 
in the region R1

E
 is considered the linear differential center (2), which has the two linearly 

independent first integrals (3) and in the region R2

E
 we consider the linear differential 

center

Where �i, �i, �i ∈ ℝ for i = 1, 2, 3, 4 and

(5)

Ẋ =((𝛼1𝛼3 + 𝛽1𝛽3)𝛾2 − (𝛼1𝛼2 + 𝛽1𝛽2)𝛾3)X + ((𝛼2𝛼3 + 𝛽2𝛽3)𝛾2 − (𝛼2

2
+ 𝛽2

2
)𝛾3)Y

+ ((𝛼2

3
+ 𝛽2

3
)𝛾2 − (𝛼2𝛼3 + 𝛽2𝛽3)𝛾3)Z + (𝛼3𝛼4 + 𝛽3𝛽4)𝛾2 − (𝛼2𝛼4 + 𝛽2𝛽4)𝛾3,

Ẏ =(−(𝛼1𝛼3 + 𝛽1𝛽3)𝛾1 + (𝛼2

1
+ 𝛽2

1
)𝛾3)X + (−(𝛼2𝛼3 + 𝛽2𝛽3)𝛾1 + (𝛼1𝛼2 + 𝛽1𝛽2)𝛾3)Y

+ ((−𝛼2

3
+ 𝛽2

3
)𝛾1 + (𝛼1𝛼3 + 𝛽1𝛽3)𝛾3)Z − (𝛼3𝛼4 + 𝛽3𝛽4)𝛾1 + (𝛼1𝛼4 + 𝛽1𝛽4)𝛾3,

Ż =((𝛼1𝛼2 + 𝛽1𝛽2)𝛾1 − (𝛼2

1
+ 𝛽2

1
)𝛾2)X + ((𝛼2

2
+ 𝛽2

2
)𝛾1 − (𝛼1𝛼2 + 𝛽1𝛽2)𝛾2)Y

+ ((𝛼2𝛼3 + 𝛽2𝛽3)𝛾1 − (𝛼1𝛼3 + 𝛽1𝛽3)𝛾2)Z + (𝛼2𝛼4 + 𝛽2𝛽4)𝛾1 − (𝛼1𝛼4 + 𝛽1𝛽4)𝛾2.

Fig. 4  One crossing limit cycle intersecting P
H
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This system has the two linearly independent first integrals

In order to have a crossing periodic orbit that intersects the discontinuity surface PE in two 
points p0 = (X0, Y0, Z0) and p1 = (X1, Y1, Z1) , using (4) we obtain that these points must 
satisfy the following equivalent system

We study two cases: c3�3 ≠ 0 and c3�3 = 0.
Case 1: c3�3 ≠ 0 . Setting E1 = �3e2 − c3e4 , we obtain

We have two subcases: c3�1 − c1�3 = 0 , or c3�1 − c1�3 ≠ 0.
Subcase 1.1: c3�1 − c1�3 = 0.
We have E1 = (c3�2 − c2�3)(Y0 − Y1) = 0 . We have two subcases: c3�2 − c2�3 ≠ 0 , or 

c3�2 − c2�3 = 0.
Subcase 1.1.1: c3�2 − c2�3 ≠ 0 . From E1 we obtain that

Then equations e1 , e3 and e4 in system (6) reduce to

(�2�3 − �3�2)�1 + (�3�1 − �1�3)�2 + (�1�2 − �2�1)�3 ≠ 0.

G1(X, Y , Z) = (�1X + �2Y + �3Z + �4)
2 + (�1X + �2Y + �3Z + �4)

2,

G2(X,Y , Z) = �1X + �2Y + �3Z + �4.

(6)

e1 ∶ (a4 + a1X0 + a2Y0 + a3Z0)
2 + (b4 + b1X0 + b2Y0 + b3Z0)

2

− (a4 + a1X1 + a2Y1 + a3Z1)
2 − (b4 + b1X1 + b2Y1 + b3Z1)

2 = 0,

e2 ∶ c1X0 − c1X1 + c2Y0 − c2Y1 + c3Z0 − c3Z1 = 0,

e3 ∶ (X0�1 + Y0�2 + Z0�3 + �4)
2 + (X0�1 + Y0�2 + Z0�3 + �4)

2

− (X1�1 + Y1�2 + Z1�3 + �4)
2 − (X1�1 + Y1�2 + Z1�3 + �4)

2 = 0,

e4 ∶ X0�1 − X1�1 + Y0�2 − Y1�2 + Z0�3 − Z1�3 = 0,

Z0 − X2

0
− Y2

0
= 0,

Z1 − X2

1
− Y2

1
= 0.

(7)E1 = (c3�1 − c1�3)(X1 − X0) − (c3�2 − c2�3)(Y1 − Y0).

(8)Y1 = Y0.

e1 ∶(X0 − X1)
(

2a1a4 + 2b1b4 + (a2
1
+ 2a3a4 + b2

1
+ 2b3b4)X0 + 2(a1a3 + b1b3)X

2

0

+ (a2
3
+ b2

3
)X3

0
+ (a2

1
+ 2a3a4 + b2

1
+ 2b3b4)X1 + 2(a1a3 + b1b3)X0X1

+ (a2
3
+ b2

3
)X2

0
X1 + 2(a1a3 + b1b3)X

2

1
+ (a2

3
+ b2

3
)X0X

2

1
+ (a2

3
b2
3
)X3

1

+ 2(a1a2 + b1b2)Y0 + 2(a2a3 + b2b3)X0Y0 + 2(a2a3 + b2b3)X1Y0 + 2(a1a3

+ b1b3)Y
2

0
+ 2(a2

3
+ b2

3
)X0Y

2

0
+ 2(a2

3
+ b2

3
)X1Y

2

0

)

,

e3 ∶(X0 − X1)
(

(X0 + X1)�
2

1
+ 2Y0�1�2 + 2(X2

0
+ X0X1 + X2

1
+ Y2

0
)�1�3

+ 2(X0 + X1)Y0�2�3 + X3

0
�2

3
+ X2

0
X1�

2

3
+ X0X

2

1
�2

3
+ X3

1
�2

3
+ 2X0Y

2

0
�2

3

+ 2X1Y
2

0
�2

3
+ 2�1�4 + 2(X0 + X1)�3�4 + (X0 + X1)�

2

1
+ 2Y0�1�2 + 2X2

0
�1�3

+ 2(X0X1 + X2

1
+ Y2

0
)�1�3 + 2X0Y0�2�3 + 2X1Y0�2�3 + X3

0
�2
3
+ X2

0
X1�

2

3

+ X0X
2

1
�2
3
+ X3

1
�2
3
+ 2X0Y

2

0
�2
3
+ 2X1Y

2

0
�2
3
+ 2�1�4 + 2X0�3�4 + 2X1�3�4

)

,

e4 ∶(X0 − X1)(�1 + X0�3 + X1�3).
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We observe that we can consider X0 ≠ X1 , because if X0 = X1 from (8), we would have that 
p0 = p1 , and consequently we would not have limit cycles. From equation e4 we get

Now we introduce X1 into e1 and e3 and we obtain

Analyzing equation e1 we have two subcases: �1(−a23�1 − b2
3
�1 + a1a3�3 + b1b3�3) ≠ 0 , or 

�1(−a
2

3
�1 − b2

3
�1 + a1a3�3 + b1b3�3) = 0.

Subcase 1.1.1.1: �1(−a23�1 − b2
3
�1 + a1a3�3 + b1b3�3) ≠ 0. From equation e1 we can iso-

late the variable X0 and we get

We observe that

Consider X−
0
 . From (9) we have X−

1
= (−�1 − X−

0
�3)∕�3 and from equation e3 in (10), we 

obtain

Using this and also (8), we have that

(9)X1 =
−�1 − X0�3

�3
.

(10)

e1 ∶ − ((a2
3
+ b2

3
)�3

1
) + 2(a1a3 + b1b3)�

2

1
�3 − (a2

1
+ 2a3a4 + b2

1
+ 2b3b4)�1�

2

3
+ 2(a1a4

+ b1b4)�
3

3
+ 2�3X0�1(−a

2

3
�1 − b2

3
�1 + a1a3�3 + b1b3�3) + 2Y0(−a2a3�1�

2

3

− b2b3�1�
2

3
+ a1a2�

3

3
+ b1b2�

3

3
) + 2�2

3
X2

0
(−a2

3
�1 − b2

3
�1 + a1a3�3 + b1b3�3)

+ 2�2
3
Y2

0
(−a2

3
�1 − b2

3
�1 + a1a3�3 + b1b3�3),

e3 ∶ − ((�2

3
+ �2

3
)�3

1
) + 2(�1�3 + �1�3)�

2

1
�3 − (�2

1
+ 2�3�4 + �2

1
+ 2�3�4)�1�

2

3

+ 2(�1�4 + �1�4)�
3

3
+ 2�1�3X0(−�

2

3
�1 − �2

3
�1 + �1�3�3 + �1�3�3)

+ 2Y0(−�2�3�1�
2

3
− �2�3�1�

2

3
+ �1�2�

3

3
+ �1�2�

3

3
) + 2�2

3
X2

0
(−�2

3
�1 − �2

3
�1

+ �1�3�
2

3
+ �1�3�

2

3
) + 2�2

3
Y2

0
(−�2

3
�1 − �2

3
�1 + �1�3�

2

3
+ �1�3�

2

3
).

X±
0
=

1

4(−a2
3
�1 − b2

3
�1 + a1a3�3 + b1b3�3)

�

2(a2
3
+ b2

3
)�2

1
�3 − 2(a1a3 + b1b3)�1�

2

3

±
√
�

− 2(a2
3
+ b2

3
)�2

1
�3 + 2a1a3�1�

2

3
+ 2b1b3�1�

2

3
)2 − 4(−2a2

3
�1�

2

3
− 2b2

3
�1�

2

3

+ 2(a1a3 + b1b3)�
3

3
)(−(a2

3
+ b2

3
)�3

1
+ 2(a1a3 + b1b3)�

2

1
�3 − (a2

1
+ 2a3a4)�1�

2

3

+ (−b2
1
− 2b3b4 − 2a2a3Y0 − 2b2b3Y0 − 2a2

3
Y2

0
− 2b2

3
Y2

0
)�1�

2

3
+ 2(a1a4

+ 2b1b4 + 2a1a2Y0 + 2b1b2Y0 + 2a1a3Y
2

0
+ 2b1b3Y

2

0
)�3

3
)
�

�

.

(11)X+
0
+ X−

0
= −

�1

�3
.

Y−
0
=
(

(�3((a
2

1
+ b2

1
)�1 − 2(a1a4 + b1b4)�3) + 2(a3a4 + b3b4)�1�3)((�

2

3
+ �2

3
)�1

− (�1�3 + �1�3)�3) + (a2
3
�1 + b2

3
�1)((�1�3 + �1�3)�

2

1
− (�2

1
+ 2�3�4 + �2

1

+ 2�3�4)�1�3 + 2(�1�4 + �1�4)�
2

3
) + (a1a3 + b1b3)(−((�

2

3
+ �2

3
)�3

1
) + (�2

1

+ 2�3�4 + �2
1
+ 2�3�4)�1�

2

3
− 2(�1�4 + �1�4)�

3

3
)
)

∕
(

2�3((a
2

3
�1 + b2

3
�1 − a3a1�3

− b3b1�3)(�2�3�1 + �2�3�1 − �1�2�3 − �1�2�3) + ((a1a2 + b1b2)�3 − a3a2�1

− b3b2�1)((�
2

3
+ �2

3
)�1 − (�1�3 + �1�3)�3))

)

.
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is a solution of system (6).
Now if we consider X+

0
 , by (9) we have X+

1
= (−�1 − X+

0
�3)∕�3 and by equation e3 we get 

Y+
0

 , which satisfies that

Moreover by (9) and (11) we have that

From the above conditions and by (8), the second solution is given by

That is, the second solution provides the same periodic orbit than the solution (12). There-
fore in this case we have proved that it is possible to have at most one limit cycle intersect-
ing the paraboloid PE in two different points p0 and p1.

Subcase 1.1.1.2: �1(−a
2

3
�1 − b2

3
�1 + a1a3�3 + b1b3�3) = 0. We have 

three subcases: �1 = 0 and −2a2
3
�1 − 2b2

3
�1 + 2a1a3�3 + 2b1b3�3 ≠ 0 , 

or �1 ≠ 0 and −2a2
3
�1 − 2b2

3
�1 + 2a1a3�3 + 2b1b3�3 = 0 , or �1 = 0 and 

−2a2
3
�1 − 2b2

3
�1 + 2a1a3�3 + 2b1b3�3 = 0.

Subcase 1.1.1.2.1: �1 = 0 and −a2
3
�1 − b2

3
�1 + a1a3�3 + b1b3�3 ≠ 0 . When �1 = 0 , from 

e1 in (10) we obtain

If we consider X−
0
 , from (9) and e3 we obtain X−

1
 and Y−

0
 , respectively. Similarly to Subcase 

1.1.1.1, if we consider X+
0
 we get X+

1
 and Y+

0
 . But then we have that

So we only have one solution of system (6) and therefore at most one limit cycle.
Subcase 1.1.1.2.2: �1 ≠ 0 and −a2

3
�1 − b2

3
�1 + a1a3�3 + b1b3�3 = 0 . If a2

3
+ b2

3
≠ 0 , from 

−a2
3
�1 − b2

3
�1 + a1a3�3 + b1b3�3 = 0 we get

Substituting into equation e1 , we get

(12)(X−
0
, Y−

0
, Z−

0
,X−

1
, Y−

0
, Z−

1
)

Y+
0
= Y−

0
.

X+
1
= −

�1

�3
− X+

0
= X−

0
and X−

1
= −

�1

�3
− X−

0
= X+

0
.

(X+
0
, Y+

0
, Z+

0
,X+

1
, Y+

0
, Z+

1
) = (X−

1
, Y−

0
, Z−

1
,X−

0
, Y−

0
, Z−

0
).

X±
0
= ±

�

−a1a4 − b1b4 − a1a2Y0 − b1b2Y0 − a1a3Y
2

0
− b1b3Y

2

0

√

a1a3 + b1b3

.

X−
0
= X+

1
, X−

1
= X+

0
, and Y−

0
= Y+

0
.

�1 =
(a1a3 + b1b3)�3

a2
3
+ b2

3

.

e1 ∶
�3
3
(a3b1 − a1b3)

(a2
3
+ b2

3
)

( (a1a3 + b1b3)(a1b3 − a3b1)

(a2
3
+ b2

3
)

+ 2(a3b4 − a4b3) + 2(a3b2 − a2b3)Y0

)

.
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If a1b3 − a3b1 = 0 we have that e1 ≡ 0 and equation e3 = 0 has two unknowns X0 and Y0 . 
Then if there are solutions for this equation, we would have a continuum of solutions that 
would generate a continuum of crossing periodic solutions, and so we would not have limit 
cycles.

If a1b3 − a3b1 ≠ 0 and a3b2 − a2b3 = 0 then equation e1 = 0 only provides conditions 
for the parameters ai, bi for i = 1, 3, 4 , and moreover to solve system (6) it is equivalent to 
solve equation e3 = 0 which has two unknowns X0 and Y0 . As before, we cannot have limit 
cycles.

If a1b3 − a3b1 ≠ 0 and a3b2 − a2b3 ≠ 0 , then we have

Substituting Y0 into equation e3 we obtain X±
0
 . Similarly to the above case, if we consider 

X−
0
 , using (9) we obtain X−

1
 and then we have the solution (X−

0
, Y0, Z

−
0
,X−

1
, Y0, Z

−
1
) . 

Considering X+
0
 we get X+

1
 , but we have that

Then the second solution provides the same periodic orbit as the first one. Therefore in 
this case we only have one solution for system (6), and hence at most one limit cycle 
intersecting the paraboloid PE in two points.

If a2
3
+ b2

3
= 0 , equation e1 in (10) becomes

If a1a2 + b1b2 = 0 , equation e1 = 0 provides conditions for the parameters a1, a4, b1, b4 , 
�1, �3 , and similarly to the above case, equation e3 = 0 has two unknowns X0 and Y0 and as 
before, we cannot have limit cycles.

Considering that a1a2 + b1b2 ≠ 0 , from e1 we get

Substituting it in equation e3 we obtain X±
0
 , and similarly to the above cases, the two 

possible solutions generate the same periodic orbit, and so we have at most one limit cycle.
Subcase 1.1.1.2.3: �1 = 0 and −a2

3
�1 − b2

3
�1 + a1a3�3 + b1b3�3 = 0. This condition is 

equivalent to �1 = 0 and

From (13) we obtain that when a3 ≠ 0 then a1 = −b1b3∕a3 . In this case equation e1 
becomes

If b1 = 0 then e1 ≡ 0 and as in the above case, equation e3 = 0 has two unknowns X0 and 
Y0 , and if there are solutions for this equation, we would have a continuum of crossing 
periodic orbits and so we do not have limit cycles.

Y0 =
(a1a3 + b1b3)(a3b1 − a1b3) + 2(a4b3 − a3b4)(a

2

3
+ b2

3
)

2(a3b2 − a2b3)(a
3

3
+ b2

3
)

.

X−
0
= X+

1
, X−

1
= X+

0
.

e1 ∶ 2�3
3
(a1a2 + b1b2)Y0 + �2

3
(2�3(a1a4 + b1b4) − (a2

1
+ b2

1
)�1).

Y0 =
a2
1
�1 + b2

1
�1 − 2a1a4�3 − 2b1b4�3

2(a1a2 + b1b2)�3
.

(13)a1a3 + b1b3 = 0.

e1 ∶
2b1�

3

3

a3

(

(a3b4 − a4b3) + (a3b2 − a2b3)Y0

)

.
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If b1 ≠ 0 and a3b2 − a3b3 = 0 , equation e1 = 0 provides conditions for the parameters 
a3, a4, b3 and b4 , and again e3 = 0 has two unknowns X0 and Y0 , and so we cannot have 
limit cycles.

If b1 ≠ 0 and a3b2 − a3b3 ≠ 0 then from equation e1 , we get 
Y0 = (a4b3 − a3b4)∕(a3b2 − a2b3) . In this case, substituting it in equation e3 we obtain X±

0
 , 

and as in the above cases the two possible solutions generate only one periodic orbit and 
then we have at most one limit cycle.

When a3 = 0 , from the condition (13) we obtain three possibilities, namely either b1 = 0 
and b3 ≠ 0 , or b1 ≠ 0 and b3 = 0 , or b1 = 0 = b3 . In all cases, we obtain the expression 
for Y0 by equation e1 in (10) and substituting it in equation e3 we obtain X±

0
 . These points 

satisfy X+
0
= X−

1
 and X−

0
= X+

1
 , that is, the two possible solutions (X±

0
, Y0, Z

±
0
,X±

1
, Y0, Z

±
1
) 

generate the same periodic orbit. Therefore we can have at most one crossing limit cycle.
Subcase 1.1.2: c3�2 − c2�3 = 0 . In this case, we have that equations e2 and e4 in (6) 

satisfy,

this is, system (6) reduces to system which has three polynomial equations and four 
unknowns X0,X1, Y0, Y1 , if there are solutions for this system, then it would have a 
continuum of solutions that produce a continuum of crossing periodic solutions, then we 
cannot have crossing limit cycles.

Subcase 1.2: c3�1 − c1�3 ≠ 0 . From (7) we get

Substituting this expression of X0 into system (6), we obtain that equations e1, e3 and e4, 
have as common factor Y1 − Y0 , and we observed that this factor can be eliminated because 
if Y1 = Y0 , by (14) we would have that p0 = p1 , and consequently we would not have limit 
cycles.

The expression for equation e4 is

Then we have two subcases, either c3�2 − c2�3 = 0 , or c3�2 − c2�3 ≠ 0.

Subcase 1.2.1: c3�2 − c2�3 = 0 . We obtain that c2 = c3�2∕�3. Moreover by (14), we get 
that

And from (15) we obtain

Substituting these expressions into equations e1 and e3 , we have

e2 =
c3

�3
e4,

(14)X0 =
(c3�1 − c1�3)X1 − (c3�2 − c2�3)(Y1 − Y0)

c3�1 − c1�3
.

(15)

e4 ∶ − (c2�1 − c1�2)(c3�1 − c1�3) + 2X1(c3�2 − c2�3)(c3�1 − c1�3) + Y0(−c
2

3
(�2

1
+ �2

2
)

+ 2c3(c1�1 + c2�2)�3 − (c2
1
+ c2

2
)�2

3
) − Y1((c3(�1 − �2) + (c2 − c1)�3)(c3(�1 + �2)

− (c1 + c2)�3)).

(16)X0 = X1.

(17)Y0 = −Y1 −
�2

�3
.
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By equation e1 we can have two subcases: (a2
3
+ b2

3
)�2 − (a2a3 + b2b3)�3 = 0 , or 

(a2
3
+ b2

3
)�2 − (a2a3 + b2b3)�3 ≠ 0.

Subcase 1.2.1.1: (a2
3
+ b2

3
)�2 − (a2a3 + b2b3)�3 = 0 . If we consider a2

3
+ b2

3
≠ 0 , by 

(a2
3
+ b2

3
)�2 − (a2a3 + b2b3)�3 = 0 , we obtain

Hence from e1 we get

Now we introduce X1 into e3 and we obtain two options for Y1 , namely Y+
1

 and Y−
1

 , which 
satisfy

Then we have two real solutions, namely S± = (X±
0
, Y±

0
, Z±

0
,X±

1
, Y±

1
, Z±

1
) , but from (16), we 

have that X±
0
= X±

1
 . Moreover from equation (17) we obtain two options for Y0 , this is,

Then by equations (19), (20) and (21), we have that

Then the solution

generates the same periodic orbit than the solution S+ . Therefore we have proved that it is 
possible to have at most one real solution of system (6) and so at most one limit cycle that 
intersects the paraboloid PE in two points.

(18)

e1 = (a2
3
+ b2

3
)�3

2
− 2(a2a3 + b2b3)�

2

2
�3 + (a2

2
+ 2a3a4 + b2

2
+ 2b3b4)�2�

2

3
− 2(a2a4

+ b2b4)�
3

3
+ 2�2�3Y1((a

2

3
+ b2

3
)�2 − (a2a3 + b2b3)�3) + 2�2

3
X1(a1a3�2

+ b1b3�2 − a1a2�3 − b1b2�3) + 2�2
3
X2

1
((a2

3
+ b2

3
)�2 − (a2a3 + b2b3)�3)

+ 2�2
3
Y2

1
((a2

3
+ b2

3
)�2 − (a2a3 + b2b3)�3),

e3 = (�2

3
+ �2

3
)�3

2
− 2(�2�3 + �2�3)�

2

2
�3 + (�2

2
+ 2�3�4 + �2

2
+ 2�3�4)�2�

2

3

− 2(�2�4 + �2�4)�
3

3
+ 2�2�3Y1((�

2

3
+ �2

3
)�2 − (�2�3 + �2�3)�3) + 2�2

3
X1

(�1�3�2 + �1�3�2 − �1�2�3 − �1�2�3) + 2�2
3
X2

1
((�2

3
+ �2

3
)�2 − (�2�3

+ �2�3)�3) + 2�2
3
Y2

1
((�2

3
+ �2

3
)�2 − (�2�3 + �2�3)�3).

(19)�2 =
(a2a3 + b2b3)�3

a2
3
+ b2

3

.

X1 = −
2(a3b1 − a1b3)(a3b2 − a2b3)�

2

3

a2
3
+ b2

3

.

(20)Y+
1
+ Y−

1
= −

a2a3 + b2b3

a2
3
+ b2

3

.

(21)Y±
0
= −Y±

1
−

�2

�3
.

Y+
0
= −Y+

1
−

�2

�3
= Y−

1
+

a2a3 + b2b3

a2
3
+ b2

3

−
�2

�3
= Y−

1
,

Y−
0
= −Y−

1
−

�2

�3
= Y+

1
+

a2a3 + b2b3

a2
3
+ b2

3

−
�2

�3
= Y+

1
.

S− = (X−
0
, Y−

0
, Z−

0
,X−

1
, Y−

1
, Z−

1
) =(X0, Y

−
0
, Z−

0
,X0, Y

−
1
, Z−

1
)

=(X0, Y
+
1
, Z+

1
,X0, Y

+
0
, Z+

0
),
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If a2
3
+ b2

3
= 0 , we can find the expression for X1 from equation e1 and substituting 

in equation e3 we get two options for Y1 , namely Y±
1

 . Moreover these points satisfy that 
Y+
1
+ Y−

1
= −�2∕�3 and similarly to the above case, we obtain that Y+

0
= Y−

1
 and Y−

0
= Y+

1
 

and so the two possible solutions S± = (X±
0
, Y±

0
, Z±

0
,X±

1
, Y±

1
, Z±

1
) generate the same periodic 

orbit. In short, we can have at most one limit cycle.
Subcase 1.2.1.2: (a2

3
+ b2

3
)�2 − (a2a3 + b2b3)�3 ≠ 0 . By equation e1 in (18) we obtain

Moreover we observe that

Then we have two reals solution, namely S± = (X±
0
, Y±

0
, Z±

0
,X±

1
, Y±

1
, Z±

1
) . Substituting Y±

1
 in 

equation e3 in (18) we get expressions for X±
1
 . From (17) we have Y±

0
= −Y±

1
− �2∕�3 . More 

precisely from (17) and (22) we have that

Then for conditions above and by (16) the solution 
S− = (X0, Y

−
0
, Z−

0
,X0, Y

−
1
, Z−

1
) = (X0, Y

+
1
, Z+

1
,X0, Y

+
0
, Z+

0
) , generates the same periodic orbit 

than the solution S+ . Therefore we only have one real solution of system (6), and so at most 
one limit cycle.

Subcase 1.2.2: c3�2 − c2�3 ≠ 0. From equation e4 in (15) we get

Then substituting this expression into equations e1 and e3 , they become

Where the expressions of the coefficients ki for i = 0, 1, 2, 3 are

Y±
1
=

−1

2�2
3
((a2

3
+ b2

3
)�2 − (a2a3 + b2b3)�3)

�

�2�3((a
2

3
+ b2

3
)�2 − (a2a3 + b2b3)�3)

±
√
�

− �2
3
((a2

3
+ b2

3
)�2 − (a2a3 + b2b3)�3)((a

2

3
+ b2

3
)�3

2
− 3(a2a3 + b2b3)�

2

2
�3

+ 2(a2
2
+ b2

2
+ 2a2

3
X2

1
+ 2a3(a4 + a1X1) + 2b3(b4 + X1(b1 + b3X1)))�2�

2

3

− 4(a2(a4 + X1(a1 + a3X1)) + b2(b4 + X1(b1 + b3X1)))�
3

3
)
�

�

.

(22)Y+
1
+ Y−

1
= −

�2

�3
.

Y+
0
= − Y+

1
−

�2

�3
= Y−

1
,

Y−
0
= − Y−

1
−

�2

�3
= Y+

1
.

X1 =
1

2(c3�1 − c1�3)(c3�2 − c2�3)

(

(c2�1 − c1�2)(c3�1 − c1�3) + Y1(c3(�1 − �2)

+ (c2 − c1)�3)(c3(�1 + �2) − (c1 + c2)�3) + Y0(c
2

3
(�2

1
+ �2

2
) − 2c3(c1�1

+ c2�2)�3 + (c2
1
+ c2

2
)�2

3
)
)

.

e1 ∶k0 + k1(Y0 + Y1) + k2(Y
2

0
+ Y2

1
) + k3Y0Y1,

e3 ∶�0 + �1(Y0 + Y1) + �2(Y
2

0
+ Y2

1
) + �3Y0Y1.
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The expressions of �i for i = 0, 1, 2, 3 are equals, only interchanging aj by �j and bj by �j for 
j = 1, 2, 3, 4.

We know that if (Y0, Y1) is a solution of the system e1 = 0 , e3 = 0 , the point Y0 must 
be a root of the resultant of e1 and e3 with respect to the variable Y1 . We denote such 
a resultant as R(Y0) . Moreover the point Y1 must be a root of the resultant of e1 and e3 
with respect to the variable Y0 , which we denote it as R(Y1) . In this case, it is possible to 
verify that by interchanging the variable Y0 by Y1 , the expressions of the resultants R(Y0) 
and R(Y1) are the same. Moreover in this case the resultants are polynomials of degree 
2. Then we would have at most two reals solutions Y0 , Y1 for system e1 = 0 = e3 , and 
consequently two real solutions Si = (Xi

0
, Yi

0
, Zi

0
,Xi

1
, Yi

1
, Zi

1
) for system (6). But we can 

observe that if (X0, Y0, Z0,X1, Y1, Z1) is a solution of system (6) then (X1, Y1, Z1,X0, Y0, Z0) 
is also a solution, and this last solution generates the same periodic orbit than the first one. 
Therefore we can conclude that system (6) has at most one real solution and consequently 
the discontinuous piecewise differential system formed by the linear differential systems 
(2) and (5) has at most one limit cycle.

We do not give the explicit expressions of the polynomials R(Y0) and R(Y1) because their 
expressions are huge. These resultants can be computed immediately using an algebraic 
manipulator, such as Mathematica or Maple.

Case 2: c3�3 = 0 . We have three subcases: c3 = �3 = 0 , or c3 = 0 and �3 ≠ 0 , or c3 ≠ 0 
and �3 = 0.

k0 =(c3�1 − c1�3)
2(a2

3
(c2�1 − c1�2)

3 + b2
3
(c2�1 − c1�2)

3 + 2(c3�2 − c2�3)(−a1a2(c2�1

− c1�2)(c3�1 − c1�3) − b1b2(c2�1 − c1�2)(c3�1 − c1�3) − 2(a2a4 + b2b4)(c3�1

− c1�3)(c3�2 − c2�3) + 2a1a4(c3�2 − c2�3)
2 + 2b1b4(c3�2 − c2�3)

2 − a2
1
(c2�1

− c1�2)(−c3�2 + c2�3) − b2
1
(c2�1 − c1�2)(−c3�2 + c2�3)) − a3(c2�1 − c1�2)

(a2(c2�1 − c1�2)(c3�1 − c1�3) + (−c3�2 + c2�3)(3a1c2�1 − 3a1c1�2 + 4a4c3�2

− 4a4c2�3)) − b3(c2�1 − c1�2)(b2(c2�1 − c1�2)(c3�1 − c1�3) + (−c3�2 + c2�3)

(3b1c2�1 − 3b1c1�2 + 4b4c3�2 − 4b4c2�3))),

k1 = − 2(c3�1 − c1�3)
2(−a2

3
(c2�1 − c1�2)

2(c3�1 − c1�3) − b2
3
(c2�1 − c1�2)

2(c3�1

− c1�3) − a3(c2�1 − c1�2)(2a1(c3�1 − c1�3)(c3�2 − c2�3) − a2(c3(�1 − �2)

+ (−c1 + c2)�3)(c3(�1 + �2) − (c1 + c2)�3)) − (c3�2 − c2�3)(a
2

1
(c3�1 − c1�3)

(c3�2 − c2�3) + b2
1
(c3�1 − c1�3)(c3�2 − c2�3) − (a2

2
+ b2

2
)(c3�1 − c1�3)(c3�2

− c2�3) − b1b2(c3�1 − c3�2 − c1�3 + c2�3)(c3(�1 + �2) − (c1 + c2)�3) − a1a2(c3

(�1 − �2) + (−c1 + c2)�3)(c3(�1 + �2) − (c1 + c2)�3)) − b3(c2�1 − c1�2)(2b1

(c3�1 − c1�3)(c3�2 − c2�3) − b2(c3(�1 − �2) + (−c1 + c2)�3)(c3(�1 + �2)

− (c1 + c2)�3))),

k2 =(c
2

3
(�2

1
+ �2

2
) − 2c3(c1�1 + c2�2)�3 + (c2

1
+ c2

2
)�2

3
)2(a2

3
(c2�1 − c1�2) + a3(−a2c3�1

+ a1c3�2 + a2c1�3 − a1c2�3) + b3(b3c2�1 − b2c3�1 − b3c1�2 + b1c3�2 + b2c1�3

− b1c2�3)),

k3 =2(c3(�1 − �2) + (−c1 + c2)�3)(c3(�1 + �2) − (c1 + c2)�3)(c
2

3
(�2

1
+ �2

2
) − 2c3(c1�1

+ c2�2)�3 + (c2
1
+ c2

2
)�2

3
)(a2

3
(c2�1 − c1�2) + a3(−a2c3�1 + a1c3�2 + a2c1�3

− a1c2�3) + b3(b3c2�1 − b2c3�1 − b3c1�2 + b1c3�2 + b2c1�3 − b1c2�3)).
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Subcase 2.1: c3 = �3 = 0 . Equation e2 in system (6) becomes

then we have two subcases c2 ≠ 0 , or c2 = 0.
Subcase 2.1.1: c2 ≠ 0 . From (23), we get

Then equation e4 in system (6) reduces to

First, we assume that c2�1 − c1�2 ≠ 0 . Then from e4 we get X0 = X1 , and from (24) we get 
Y0 = Y1 . So we have that p0 = p1 and we do not have limit cycles.

Second we consider that c2�1 − c1�2 = 0 , that is, �1 = c1�2∕c2 . Then e4 ≡ 0 , and 
equation e1 becomes

Moreover, the expression for equation e3 are the same, changing (a1, a2, a3, a4, b1, b2, b3, b4) 
by (�1, �2, �3, �4, �1, �2, �3, �4) . This means that we must solve system e1 = 0 = e3 , which 
has two polynomial equations and three unknowns X0,X1, Y0 . Hence, if there are solutions 
for this system, then it would have a continuum of solutions that produce a continuum of 
crossing periodic solutions and therefore we cannot have crossing limit cycles.

Subcase 2.1.2: c2 = 0 . Equation (23) becomes

First, we consider that c1 ≠ 0 . Then we have that X0 = X1 and equation e4 in system (6) 
reduces to

We observe that we can consider Y0 ≠ Y1 , because if Y0 = Y1 we have that p0 = p1 and we 
do not have limit cycles. Hence �2 = 0 and equation

Moreover the expression for equation e3 is the same changing ai by �i and bi by �i , 
respectively, for i = 1, 2, 3, 4 . Then similar arguments used for Subcase 2.1.1 show that if 
system e1 = 0 = e3 has real solutions then it has a continuum of solutions and therefore we 
do not have limit cycles.

(23)e2 ∶ c1(X0 − X1) + c2(Y0 − Y1).

(24)Y1 =
c1(X0 − X1) + c2Y0

c2
.

e4 ∶
(X0 − X1)(c2�1 − c1�2)

c2
.

e1 ∶(a4 + a1X0 + a2Y0 + a3(X
2

0
+ Y2

0
))2 + (b4 + b1X0 + b2Y0 + b3(X

2

0
+ Y2

0
))2

−
(

a4 + a1X1 + a2

(c1(X0 − X1)

c2
+ Y0

)

+ a3

(

X2

1
+

(c1(X0 − X1) + c2Y0)
2

c2
2

))2

−
(

b4 + b1X1 + b2

(c1(X0 − X1)

c2
+ Y0

)

+ b3

(

X2

1
+

(c1(X0 − X1) + c2Y0)
2

c2
2

))2

.

e2 ∶ c1(X0 − X1).

e4 = �2(Y0 − Y1).

e1 ∶(a4 + a1X0 + a2Y0 + a3(X
2

0
+ Y2

0
))2 + (b4 + b1X0 + b2Y0 + b3(X

2

0
+ Y2

0
))2

− (a4 + a1X0x + a2Y1 + a3(X
2

0
+ Y2

1
))2 − (b4 + b1X0 + b2Y1 + b3(X

2

0
+ Y2

1
))2.
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Second, if we consider c1 = 0 , then we have c2 = 0 = c3 . In this case, we 
obtain that the linear differential system (2) considered in the region R1

E
 , becomes 

Ẋ = 0, Ẏ = 0, Ż = 0 and so we cannot have limit cycles.
Subcase 2.2: c3 = 0 and �3 ≠ 0. Equation e2 in system (6) reduces to equation (23). Then 

we have two subcases c2 ≠ 0 , or c2 = 0.
Subcase 2.2.1: c2 ≠ 0 . From equation e2 , we obtain the expression for Y1 given in (24). 

Then equation e4 in system (6) becomes

We can consider X0 ≠ X1 , because if X0 = X1 , from equation (24), we get Y0 = Y1 and then 
p0 = p1 implying that we cannot have limit cycles. So, considering X0 ≠ X1 in e4 (25), we 
get

Substituting Y1 and X1 in equations e1 and e3 of system (6), we have

and the expressions of the coefficients �i for i = 0, 1, 2, 3, 4, 5, 6 are

(25)e4 ∶
(X0 − X1)(c

2

1
(X1 − X0)�3 + c2

2
(�1 + (X0 + X1)�3) − c1c2(�2 + 2Y0�3))

c2
2

.

X1 =
−c2

2
�1 + c1c2�2 + c2

1
X0�3 − c2

2
X0�3 + 2c1c2Y0�3

(c2
1
+ c2

2
)�3

.

e1 =
1

(c2
1
+ c2

2
)2�2

3

(

�0(c
2

1
+ c2

2
)�3

(

X3

0
−

c1

c2
Y3

0
+ Y2

0
X0 −

c1

c2
Y0X

2

0

)

− 2�1Y
2

0

+ 2�2X
2

0
+ �3X0Y0 −

2

�3
�4X0 −

2

�3
�5Y0 −

(c2�1 − c1�2)

�3
�6

)

,

e3 =
1

(c2
1
+ c2

2
)2�2

3

(

�0(c
2

1
+ c2

2
)�3

(

X3

0
−

c1

c2
Y3

0
+ Y2

0
X0 −

c1

c2
Y0X

2

0

)

− 2�1Y
2

0

+ 2�2X
2

0
+ �3X0Y0 −

2

�3
�4X0 −

2

�3
�5Y0 −

(c2�1 − c1�2)

�3
�6

)

,
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Moreover the expressions of �i for i = 0, 1, 2, 3, 4, 5, 6 are equal, only interchanging aj by 
�j and bj by �j , respectively, for j = 1, 2, 3, 4 . We know that if (X0, Y0) is a solution of the 
system e1 = 0 , e3 = 0 , the point X0 must be a root of the resultant of e1 and e3 with respect 
to the variable Y0 , that we denote it by R(X0) . Moreover the point Y0 must be a root of the 
resultant of e1 and e3 with respect to the variable X0 , which we denote by R(Y0) . In this 
case, it is possible to verify that R(Y0) = R(X0) = 0 . Therefore we cannot have limit cycles.

Subcase 2.2.2: c2 = 0 . Equation e2 given in (23) reduces to

First if we consider that c1 ≠ 0 , then X0 = X1 and equation e4 in (6) becomes

We observe that we can consider Y0 ≠ Y1 , because if Y0 = Y1 we obtain that p0 = p1 and we 
cannot have limit cycles. Then from e4 , we get Y0 = −(�2 − Y1�3)∕�3 , and substituting them 
in equations e1 and e3 we obtain two polynomials of degree 4 whose resultants are zero. 
Therefore we cannot have limit cycles.

Second, we consider that c1 = 0 . But then since c2 = c3 = 0 , we obtain that the linear 
differential system (2) considered in the region R1

E
 becomes Ẋ = 0, Ẏ = 0, Ż = 0, and 

so we cannot have limit cycles.
Subcase 2.3: c3 ≠ 0 and �3 = 0 . The proof in this case is analogous to the Subcase 2.2  

 ◻

�0 = − 4(a23 + b23)c2(c2�1 − c1�2) + 4c2(−a2a3c1 − b2b3c1 + a1a3c2 + b1b3c2)�3,

�1 =(a23 + b23)(3c
2
1 + c22)(c2�1 − c1�2)2 − (a2a3c1(−3c21 + c22) + b2b3c1(c22 − 3c21)

+ (a1a3 + b1b3)c2(5c21 + c22))(c2�1 − c1�2)�3 + 2c1c2(−((a1a2 + b1b2)c21)

+ (a21 − a22 + b21 − b22)c1c2 + (a1a2 + b1b2)c22)�
2
3 ,

�2 = − ((a23 + b23)(c
2
1 + 3c22)(c2�1 − c1�2)2) + ((a1a3 + b1b3)c2(c21 − 3c22) + a2a3c1(c21

+ 5c22) + b2b3c1(c21 + 5c22))(−c2�1 + c1�2)�3 + 2c1c2(−((a1a2 + b1b2)c21) + (a21
− a22 + b21 − b22)c1c2 + (a1a2 + b1b2)c22)�

2
3 ,

�3 =(8(a23 + b23)c1c2(c2�1 − c1�2)2 − 4(a1a3c1(c21 − 3c22) + b1b3c1(c21 − 3c22) − (a2a3
+ b2b3)c2(−3c21 + c22))(−c2�1 + c1�2)�3 + 4(c1 − c2)(c1 + c2)((a1a2 + b1b2)c21
+ (a22 − a21 − b21 + b22)c1c2 − (a1a2 + b1b2)c22)�

2
3 ,

�4 =2(a23 + b23)c2(c2�1 − c1�2)3 + ((a1a3 + b1b3)c21 + 4(a2a3 + b2b3)c1c2 − 3(a1a3
+ b1b3)c22)(c2�1 − c1�2)2�3 + ((a1a2 + b1b2)c31 − (a21 − 2a22 − 2a3a4 + b21 − 2(b22
+ b3b4))c21c2 − 3(a1a2 + b1b2)c1c22 + (a21 + 2a3a4 + b21 + 2b3b4)c32)(c2�1 − c1�2)�23
− 2c2(−a2a4c1 − b2b4c1 + a1a4c2 + b1b4c2)(c21 + c22)�

3
3 ,

�5 =2(a23 + b23)c1(−c2�1 + c1�2)3 + �3(4(a1a3 + b1b3)c1c2 − 3(a2a3 + b2b3)c21 + (a2a3
+ b2b3)c22)(c2�1 − c1�2)2 + ((a22 + 2a3a4 + b22 + 2b3b4)c31 − 3(a1a2 + b1b2)c21c2
+ (2a21 − a22 + 2a3a4 + 2b21 − b22 + 2b3b4)c1c22 + (a1a2 + b1b2)c32)(c1�2 − c2�1)�23
− 2c1(a2a4c1 + b2b4c1 − (a1a4 + b1b4)c2)(c21 + c22)�

3
3 ,

�6 =(a23 + b23)(c2�1 − c1�2)3 + 2(a2a3c1 + b2b3c1 − (a1a3 + b1b3)c2)(c2�1 − c1�2)2

�3 + ((a22 + 2a3a4 + b22 + 2b3b4)c21 − 2(a1a2 + b1b2)c1c2 + (a21 + 2a3a4 + b21
+ 2b3b4)c22)(c2�1 − c1�2)�23 + 2(a2a4c1 + b2b4c1 − (a1a4 + b1b4)c2)(c21 + c22)�

3
3 .

e2 = c1(X0 − X1).

e4 = (Y0 − Y1)(�2 + (Y0 + Y1)�3).
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Proof of statement (ii) If the discontinuity surface is PE it is sufficient to consider the dis-
continuous piecewise linear differential system formed by a linear differential center (1) 
in the region R1

E
 and an arbitrary linear differential center (5) in the region R2

E
 . We have 

that this discontinuous piecewise differential system has no crossing periodic orbits. If the 
discontinuity surface is PH we consider the linear differential systems (2) and (5) in R1

H
 

and R2

H
 , respectively, considering c3 = 0 = �3 , c2 ≠ 0 , and c2�1 − c1�2 ≠ 0 , as in the proof 

of Subcase 2.1.1 in a statement (i). In this case, we obtain that the unique real solution 
for system (4) is (X0, Y0, Z0,X0, Y0, Z0) for X0, Y0, Z0 ∈ ℝ , which do not generates crossing 
periodic orbits.

Proof of statement (iii) First, we provide a discontinuous piecewise differential system that 
has a continuum of crossing periodic orbits when the discontinuity surface is PE . For this 
we consider in the region R1

E
 the linear differential system

and in the region R2

E
 the linear differential system

Considering Z0 = X2

0
+ Y2

0
 and Z1 = X2

1
+ Y2

1
 we get that system (6) is equivalent to

We observe that the points p0,1 = (±X0, Y0, Z0) for X0, Y0, Z0 ∈ ℝ are solutions of system 
(28). Therefore, the discontinuous piecewise linear differential system formed by the 
differential systems (26) and (27) has a continuum of crossing periodic solutions, which 
intersect the paraboloid PE at the two points p0 and p1 . See the three crossing periodic 
solutions Si = (pi

0
, pi

1
) for i = 1, 2, 3 , of this continuum of crossing periodic solutions in 

Fig. 1, where

Now we consider that the discontinuity surface is PH and we provide a discontinuous 
piecewise differential system that has a continuum of crossing periodic orbits. In the region 
R

1

H
 we consider the linear differential system

and in the region R2

H
 the linear differential system

(26)Ẋ = −
15

8
(−1 + 2Y + 4Z), Ẏ = −

X

20
, Ż =

X

10
,

(27)Ẋ =
319(15Y + 16(Z − 15))

19200
, Ẏ =

29

4
X, Ż = −

87

4
X.

(28)

e1 ∶
1

20
(X2

0
− X2

1
)(−49 + 100X2

0
+ 100X2

1
+ 100Y1 + 200Y2

1
),

e2 ∶ − X2

0
+ X2

1
− 2Y0 − Y2

0
+ 2Y1 + Y2

1
,

e3 ∶
29(X2

0
− X2

1
)(210 + 8X2

0
+ 8X2

1
+ 15Y1 + 16Y2

1
)

1800
,

e4 ∶ (X2

0
− X2

1
).

S1 =
(

− 1,
1

2
,
5

4
, 1,

1

2
,
5

4

)

, S2 =
(

−
6

5
,
7

10
,
193

100
,
6

5
,
7

10
,
193

100

)

,

S3 =
(

−
4

5
,
3

10
,
73

100
,
4

5
,
3

10
,
73

100

)

.

(29)Ẋ = −
15

8
(−1 + 2Y + 4Z), Ẏ = −

X

20
, Ż =

X

10
,
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Considering Z0 = X2

0
− Y2

0
 and Z1 = X2

1
− Y2

1
 we get that system (4) is equivalent to

We observe that the points p0,1 = (±X0, Y0, Z0) for X0, Y0, Z0 ∈ ℝ are solutions of system 
(31). Then, the discontinuous piecewise linear differential system formed by the differential 
systems (29) and (30) has a continuum of crossing periodic solutions, which intersect 
the paraboloid PH at the two points p0 and p1 . See the three crossing periodic solutions 
Si = (pi

0
, pi

1
) for i = 1, 2, 3 , of this continuum of crossing periodic solutions in Fig. 2, where

Proof of statement (iv) We provide two examples of discontinuous piecewise differential 
systems separated by either PE or PH and which have one crossing limit cycle. With these 
examples we can conclude that the upper bound found is reached.

First, we provide a discontinuous piecewise differential system whose discontinuity 
surface is PE and that has one crossing limit cycle. In the region R1

E
 we consider the linear 

differential system

and in the region R2

E
 the linear differential system

(30)Ẋ =
1073(15Y + 16(Z − 15))

38400
, Ẏ = −

29

8
X, Ż = −

87

4
X.

(31)

e1 ∶
1

20
(X2

0
− X2

1
)(−49 + 100X2

0
+ 100X2

1
+ 100Y1 − 200Y2

1
),

e2 ∶ − X2

0
+ X2

1
− 2Y0 + 2Y1 + Y2

0
− Y2

1
,

e3 ∶
29(X2

0
− X2

1
)(210 + 8X2

0
+ 8X2

1
+ 15Y1 − 16Y2

1
)

1800
,

e4 ∶
−(X2

0
− X2

1
)

2
.

S1 =
(

1,
1

2
,
3

4
,−1,

1

2
,
3

4

)

, S2 =
(

6

5
,
7

10
,
19

20
,−

6

5
,
7

10
,
19

20

)

,

S3 =
(

7

5
,
9

10
,
23

20
,−

7

5
,
9

10
,
23

20

)

.

Ẋ =
5(−77131 + 7

√

146892247)X − 16(1040 + 5385Y + 1818Z)

1200
,

Ẏ =
1

14400

�

(307751207 − 25325
√

146892247)X − 16(74045 − 5
√

146892247

+ 15(−9748 +
√

146892247)Y + 9(−62959 + 5
√

146892247)Z)
�

,

Ż =
1

28800

�

(154454086 − 12715
√

146892247)X − 40(14185 −
√

146892247

+ 3(−10825 +
√

146892247)Y + 9(−12713 +
√

146892247)Z)
�

,
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With these linear differential systems, system (6) has only one real solution which generates 
one limit cycle that intersects the paraboloid PE in two different points p0 = (X0, Y0, Z0) 
and p1 = (X1, Y1, Z1) , namely

See this crossing limit cycle in Fig. 3.
Now we provide a discontinuous piecewise differential system whose discontinuity 

surface is PH and that has one crossing limit cycle. We consider in the region R1

H
 the linear 

differential system

and in the region R2

H
 the linear differential system

With these linear differential systems, system (4) has only one real solution which 
generates one crossing limit cycle that intersects the paraboloid PH in two different points 
p0 = (X0, Y0, Z0) and p1 = (X1, Y1, Z1) , namely

Ẋ =
(−984749 + 1676

√

291071)X − 16(−9790 + 17066Y + 17485Z)

8000
,

Ẏ =
1

32000

�

(2953428 − 5327
√

291071)X − 16(5990 − 10
√

291071 + (−7996

+ 14
√

291071)Y + (−8660 + 15
√

291071)Z)
�

,

Ż =
1

128000

�

(319954973 − 576992
√

291071)X − 16(656710 − 1080
√

291071

+ (−880634 + 1512
√

291071)Y + (−952765 + 1620
√

291071)Z)
�

.

p0 =
(

1,
1

4
,
17

16

)

and p1 =
(

−
17

16
,
1

4
,
305

256

)

.

Ẋ =
5(−67051 + 7

√

112701463)X − 16(1040 + 5385Y + 1818Z)

1200
,

Ẏ =
1

14400

�

(239166023 − 22445
√

112701463)X − 16(66845 − 5
√

112701463

+ 15(−8308 +
√

112701463)Y + 9(−55759 + 5
√

112701463)Z)
�

,

Ż =
1

28800

�

(120085894 − 11275
√

112701463)X − 40(12745 −
√

112701463

+ 3(−9385 +
√

112701463)Y + 9(−11273 +
√

112701463)Z)
�

,

Ẋ =
(−783629 + 1676

√

166911)X − 16(−9790 + 17066Y + 17485Z)

8000
,

Ẏ =
1

32000

�

11(170468 − 397
√

166911)X + 32(3158 − 7
√

166911)Y

− 80(958 − 2
√

166911 + (−1372 + 3
√

166911)Z)
�

,

Ż =
1

128000

�

(203299613 − 473312
√

166911)X − 16(527110 − 1080
√

166911

+ (−699194 + 1512
√

166911)Y + (−758365 + 1620
√

166911)Z)
�

.
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See this crossing limit cycle in Fig. 4.
This completes the proof of Theorem 1.

Conclusions

In Theorem 1 we have solved the extension of the 16th Hilbert problem to the discontinuous 
piecewise linear differential systems formed by linear centers and separated by a paraboloid 
(elliptic or hyperbolic) restricted to the crossing limit cycles which intersect the quadric in 
two points. We recall that this problem was studied intensively in the plane but this is not 
the case for piecewise differential systems in higher dimensions.
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