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Abstract
The dynamics of CoVid-19 disease becomes a concern in this paper. Initially, the positivity 
and boundedness are established to ensure that the number of susceptible, infected, quar-
antined, and recovered individuals are always positive in the population and the population 
numbers are always bounded. The equilibrium points of disease-free and endemic are then 
determined for uncontrolled dynamical system. Based on the equilibrium points, we can 
provide the basic reproduction number to ensure that infectious disease can transmit or not 
in the population. The infection has ability to transmit in the population if R0 > 1 and vice 
versa. The local stability is established through the Jacobian matrix at the disease-free and 
endemic equilibrium points. The appropriate Lyapunov function is initially introduced to 
provide the global stability of dynamical system. Moreover, the sensitivity analysis is used 
to determine the dominant parameters for each state variable (most positive or negative). 
The least square technique is used to compare the numerical results using the fourth-order 
Runge–Kutta and actual data of CoVid-19 disease in Semarang, Indonesia. Moreover, 
Continuous Time Markov Chain (CTMC) gives the same patterns between the determin-
istic and stochastic results. Because vaccination and social distancing have a significant 
impact on the profile of susceptible, infected, quarantined, and recovered classes, then we 
introduce a mathematical model of CoVid-19 with two time-dependent controls (u1, u2)(t) . 
It follows from the results obtained, the implementation of control gives the number of 
infected, quarantined, and recovered individuals decreased, and the number of susceptible 
individuals increased. The neural network approach also gives the significant estimations 
based on the root mean square error by using the training function of Levenberg-Marquadt.

Keywords Basic reproduction number · Optimal control · Vaccination · Social distancing · 
Least square technique · CoVid-19 disease · Continuous time markov chain · Neural 
network · Levenberg–Marquadt

Mathematics Subject Classification 35A01 · 35B40

 * Mohammad Ghani 
 mohammad.ghani2013@gmail.com

1 Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya 60115, 
Indonesia

2 Department of Mathematics, Universitas Islam Negeri Walisongo, Semarang 50185, Indonesia
3 Department of Chemical Engineering, Politeknik Negeri Malang, Malang 65141, Indonesia

http://crossmark.crossref.org/dialog/?doi=10.1007/s12591-023-00667-6&domain=pdf
http://orcid.org/0000-0003-3085-8668


 Differential Equations and Dynamical Systems

1 3

Introduction

Covid-19 originated from a coronavirus that has been endemic since 2019. Coronaviruses can 
spread through the air and can cause fever and shortness of breath. In Indonesia, Covid-19 
spread for the first time on March 2, 2020 [25]. The Covid-19 epidemic has not yet ended. In 
data sourced from covid.19.go.id there are 14,657 active cases of covid-19 in Indonesia. The 
Ministry of Health has appealed to the public to actively use masks again to prevent a poten-
tial spike in Covid-19 cases. The increase in Covid-19 was due to a new variant of Covid-19 
that entered Indonesia, namely the Arcturus variant. This variant causes fever, cough, muscle 
aches, and also conjunctivitis. In January 2023, the Arcturus variant was discovered for the 
first time in India. To form Arcturus, two or more sublineages underwent homologous recom-
bination [34]. Sourced from the Ministry of Health, cases of the Arcturus variant of Covid-
19 increased in mid-April 2023 in Indonesia. Predicting the spread of disease outbreaks can 
be studied through applied mathematics. The SI (Susceptible-Infection) simple mathematical 
model is applied to Covid-19’s spread. The SI model involves the Bernoulli Verhulst model 
to derive an identification parameter approach [24]. Predicting the number of population 
requiring medical treatment can use the SIR model with Susceptible-Infection-Recovered 
during Covid-19’s spread pandemic [3]. By combining the Lyapunov method and the LaSalle 
invariant principle, the Covid-19 model with SIR considers the effect of room availability at 
the hospital and reduces the spread of Covid-19 [7]. Using the classic Kermack-McKendrick 
model, this study examines the spread of Covid-19. Additionally, the SIR model was applied 
to the first wave of Covid-19 spreading in Malaysia. This study shows that control in the form 
of awareness of cleanliness and social distancing can reduce the transmission of Covid-19 
[9]. With appropriate restrictions and strong policies, the SIR model of Covid-19’s spread can 
be controlled in all communities based on the data recorded and the data from the modeling 
approach [23]. The SIR model for individuals I and R depends on the parameters of the level 
of interaction and the intensity of the patient’s recovery [33]. The Convex event rate at SIR 
was solved numerically using the Non-Standard Finite Difference (NSFD) method [45]. In 
a short-term comparison of the Covid-19 spread model to the SIR, Verhulst, and Gompertz 
models, the SIR is found to be more useful [26]. The spread of Covid-19 in the SIR model 
based on the influence of the health system shows local stability when the reproductive num-
ber is less than one [4].

A model for predicting Covid-19’s spread in the short and long-term was based on four 
compartments, namely SIRD (susceptible-infection-recovered-decreased) [12]. The SIRD 
model is a nonlinear differential equation used to predict Covid-19 infection in the short term 
[36]. A model called SIRD (susceptible-infection-recover-dead) was implemented in Indone-
sia to estimate the Covid-19’s spread in the long term [37]. When the SIRD is used to predict 
Covid-19’s spread with sex and age filters, it shows that the younger population is more likely 
to infect the older population [13]. Covid-19 is an epidemic that can occur in any country, 
according to the SIRD model, with a reproduction number ranging from 1.0011 to 2.7936 
[6]. In the case of Covid-19, there are exposed individuals, namely individuals who are not 
necessarily positive but experience symptoms of Covid-19. The addition of the exposed sub-
population to the SEIR model shows the need for control to reduce the impact of Covid-19 
[30]. The SEIR considering vaccination and isolation for the Covid-19 case shows an increase 
in the recovered population in Indonesia [8]. The Adaptive SIRV Model ( A − SIRV ) is time-
dependent for estimating the spread of the Covid-19 outbreak using the Variational Imbedding 
method [35]. Vaccination against Covid-19 is not only done once. Research on mathematical 
models with the first and second vaccinations was conducted by Sepulveda et al. The study 
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describes the behavior of Covid-19 after the initial vaccination [43]. The SVIR (susceptible-
vaccine-infection-removed) mathematical model assumes that susceptible individuals will be 
vaccinated. This study uses the ordinary least squares in the SVIR model [40]. Vaccine allo-
cation based on the highest spread of Covid-19 can increase the benefits of the vaccination 
program in Indonesia [28]. Even though they have implemented vaccinations, it is undeni-
able that susceptible individuals can be re-exposed to Covid-19. One of the efforts to prevent 
the spread is to implement quarantine for individuals exposed to Covid-19. A SIQR model is 
a Covid-19 model that consists of four compartments: susceptible, infection, quarantine, and 
recovery [38]. The SIQR model is suitable for areas that have implemented quarantine rules. 
According to research on the SIQR model, large noise can cause the disease to disappear expo-
nentially, establishing sufficient conditions for a unique stationary distribution to exist [15]. 
The SIQR model with the Atangana-Beleanu-Caputo (ABC) fractional fractal derivative was 
applied in the spread of Covid-19 conducted by Adnan et al. This research shows that quaran-
tine is able to control the spread of Covid-19 [1]. The nonstandard finite difference (NSFD) 
numerical solution applied to the SIQR model of the spread of Covid-19 provides a positive 
and convergent solution towards stability [2]. With the new Arcturus Covid-19 variant enter-
ing Indonesia, it is necessary to provide preventive measures in the form of quarantine. It is 
of interest to researchers to see how Covid-19 spreads concerning quarantine, which reduces 
the risk of individuals contracting the infection. In this study, a model of Covid-19 spread is 
presented with strategic control of social restrictions, observing both local and global stability 
of disease-free and endemic areas. The other studies of the latest progress in this research field 
can be referred to [10, 11, 17–20, 31, 39, 44].

Other parts of this paper are organized as follows. Section 1 provides the introduction of 
this study. The model formulation and also the theorems of positivity, boundedness, existence, 
and uniqueness are given in Section 2. Section 3 presents equilibria points, basic reproduc-
tion number, local stability, and global stability at the equilibria points. Due to the effective-
ness of control for our dynamical system, the optimal control is introduced in Section 4. Sec-
tion 5 gives the numerical results and discussion consisting of sensitivity analysis, simulation 
of SIQR model, best fit parameters using least square technique, comparison results between 
deterministic and stochastic SIQR models using continuous time markov chain, simulation of 
SIQR model with optimal control, and also the estimation results by using neural network, 
where the training function of Levenberg-Marquardt and activation function of Tangent Sig-
moid are employed for the best model of neural network. Finally, the conclusions of this study 
are established in Section 6.

Mathematical Model

We firstly consider the following SIQR model on CoVid-19 disease without a control strategy

(2.1)

dS

dt
= Λ − ��SI − �S,

dI

dt
= ��SI − (r + � + � + d)I,

dQ

dt
= �I − (� + d + �)Q,

dR

dt
= rI + �Q − �R,
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where the notations and values in system (2.1) are shown in Table 1 and the state variables 
S, I, Q, R respectively represent the susceptible, infected, quarantined, and recovered sub 
populations. The dynamical system (2.1) is a modification of mathematical model intro-
duced by Crokidakis [21, 22], by introducing the lockdown � and isolation rate � . Moreo-
ver, we validate our system (2.1) by comparing the numerical results using fourth-order 
Runge–Kutta and actual data of CoVid-19 in Semarang, Indonesia. Due to the effective-
ness of control implementation for our model of dynamical system, then we also introduce 
two controls including the vaccination and social distancing.

Remark 1 In epidemiology, the main concern is to reduce the number of infected individ-
uals. Based on the previous studies in [21, 22], then our contributions of this paper are 
to introduce the lockdown � ( � ∈ (0, 1] , there is no lockdown when � = 1 , and full lock-
down is when � = 0 ) and isolation rate � , where these two strategies are effective enough 
to reduce the transmission number of CoVid-19. Moreover, the time-dependent optimal 
controls of vaccination u1 and social distancing u2 are also provided to degrade the CoVid-
19 transmission in the population.

Theorem 1 Let the initial conditions of system (2.1) (S,  I, Q, R)(0) be positive, then the 
solutions (S, I, Q, R)(t) of system (2.1) are also positive for every t > 0.

Proof For first state variable of (2.1), one has

where H(t) = ��I(t) + � . Multiplying the above result by the term

Then one can obtain

implying that

By taking the integration with respect to t, one has

where S(0) ≥ 0 for all t > 0.
The other state variables are solved by the similar ways for (I,Q,R)(0) ≥ 0 . Therefore, 

the solutions of system (2.1) are (I,Q,R)(t) > 0 for every t > 0 .   ◻

(2.2)
dS

dt
= Λ − H(t)S(t),

exp

(
∫

t

0

H(�)d�

)
.

dS

dt
⋅ exp

(
∫

t

0

H(�)d�

)
= (Λ − H(t)S(t)) ⋅ exp

(
∫

t

0

H(�)d�

)
,

d

dt

(
S(t) ⋅ exp

(
∫

t

0

H(�)d�

))
= Λ ⋅ exp

(
∫

t

0

H(�)d�

)
.

(2.3)S(t) =

(
S(0) + � Λ ⋅ exp

(
�

t

0

H(�)d�

)
dz

)
⋅ exp

(
−�

t

0

H(�)d�

)
≥ 0,



Differential Equations and Dynamical Systems 

1 3

Theorem  2 Let (S,  I,  Q,  R) be the solution of system (2.1) with the initial conditions 
(S, I, Q, R)(0). Then, (S, I, Q, R)(t) are bounded in a region Ω.

Proof Let N(t) be total population of system (2.1) stated as N(t) = (S + I + Q + R)(t) . 
Then, derivative in t, one has

At disease-free d(I + Q) = 0

Due to S + I + Q + R = N,

Applying the integration for both sides, then one has

Hence

Therefore, the bounded region of system (2.1) where it has biological and epidemiological 
meaningful can be stated as follows

  ◻

The existence and uniqueness of the solution of system (2.1) can be provided through 
the maximality condition which is stated in the following theorem.

Theorem 3 Let Cj, C
∗
j
 be the constant for j = 1, 2, 3, 4 such that

for all (M, t) ∈ ℝ × (0,T).

dN

dt
=

d(S + I + Q + R)

dt

= Λ − �(S + I + Q + R)(t) − d(I + Q).

(2.4)
dN

dt

= Λ − �(S + I + Q + R)(t).

dN

dt
≤ Λ − �N(t),

�
N(t)

N(0)

dN

Λ − �N
≤ �

t

0

dt,

N(t) ≤ N(0)e−�t +
Λ

�

(
1 − e−�t

)

lim
t→∞

supN(t) ≤ Λ

�
.

Ω =

{
(S, I,Q,R)(t) ∈ ℝ ∶ 0 ≤ N(t) ≤ Λ

�

}
.

(2.5)
|Fj(Mj, t) − Fj(M

∗
j
, t)|2 ≤ Cj|Mj −M∗

j
|2,

|Fj(Mj, t)|2 ≤ C
∗
j
(1 + |Mj|2), or |Fj(Mj, t)|2 ≤ C

∗
j
|Mj|2,
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Proof We firstly give the notation of Fj,Mj , and M∗
j
 for all state variables S,  I,  Q,  R as 

follows

It follows from (2.6) and first inequality of (2.5) for first state variable, one has

where C1 = 2
�
�2�2‖I‖2

∞
+ �2

�
 . Similarly for |F2(I, t) − F2(I

∗, t)|2 ≤ C2|I − I∗|2 , 
|F3(Q, t) − F3(Q

∗, t)|2 ≤ C3|Q − Q∗|2 , |F4(R, t) − F4(R
∗, t)|2 ≤ C4|R − R∗|2 , then one has

where C2 = 2
�
�2�2‖S‖2

∞
+ (r2 + �2 + �2 + d2)

�
 , C3 = 2(�2 + d2 + �2) , and C4 = 2�2 . 

Based on the results of (2.7)–(2.10), one proves the first inequality of (2.5). To prove the 
second inequality of (2.5), one has first state variable as follows

(2.6)

F1(S, I,Q,R, t) ∶=
dS

dt
= Λ − ��SI − �S,

F2(S, I,Q,R, t) ∶=
dI

dt
= ��SI − (r + � + � + d)I,

F3(S, I,Q,R, t) ∶=
dQ

dt
= �I − (� + d + �)Q,

F4(S, I,Q,R, t) ∶=
dR

dt
= rI + �Q − �R,

(M1,M2,M3,M4) ∶= (S, I,Q,R),

(M∗
1
,M∗

2
,M∗

3
,M∗

4
) ∶= (S∗, I∗,Q∗,R∗).

(2.7)

|F1(S, t) − F1(S
∗, t)|2 = | − ��(S − S∗)I − �(S − S∗)|2

≤ 2|��I + �|2|S − S∗|2

≤ 2

(
�2�2 sup

0≤t≤�
|I|2 + �2

)
|S − S∗|2

≤ C1|S − S∗|2,

(2.8)

|F2(I, t) − F2(I
∗, t)|2 = |��S − (r + � + � + d)(I − I∗)|2

≤ 2|��S − (r + � + � + d)|2|I − I∗|2

≤ 2

(
�2�2 sup

0≤t≤�
|S|2 + (r2 + �2 + �2 + d2)

)
|I − I∗|2

≤ C2|I − I∗|2,

(2.9)

|F3(Q, t) − F3(Q
∗, t)|2 = | − (� + d + �)(Q − Q∗)|2

≤ 2(�2 + d2 + �2)|Q − Q∗|2
≤ C3|I − I∗|2,

(2.10)

|F4(R, t) − F4(R
∗, t)|2 = | − �(R − R∗)|2

≤ 2�2|R − R∗|2
≤ C4|R − R∗|2,
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which implies 𝛽
2𝛿2‖I‖2

∞
+𝜇2

Λ2
< 1 , where C∗

1
= Λ2 . Similarly, for second state variable, we have

where C∗
2
= �2�2‖S‖2

∞
+ (r2 + �2 + �2 + d2) . For third state variables, one provides

which implies 𝜑
2+d2+𝜇2

𝜖2‖I‖2
∞

< 1 , where C∗
3
= �2‖I‖2

∞
 . Finally, the fourth state variable gives

which implies 𝜇2

r2‖I‖2
∞
+𝜑2‖Q‖2

∞

< 1 , where C∗
4
= r

2‖I‖2
∞
+ �2‖Q‖2

∞
 . Employing the following 

maximality condition

Then the second conditions of (2.5) can be provided.   ◻

Stability Analysis

Equilibria and the Basic Reproduction Number

This section provides the equilibria points and reproduction number R0 . In epidemiol-
ogy, the basic reproduction number R0 of an infection can be thought of as the number 
of cases produced by one case, on average during its infectious period, in an uninfected 

(2.11)

�F1(S, t)�2 = �Λ − ��SI − �S�2

≤ 2Λ2 + 2

�
�2�2 sup

0≤t≤�
�I�2 + �2

�
�S�2

≤ 2Λ2 + 2
�
�2�2‖I‖2

∞
+ �2

��S�2
≤ C

∗
1
(1 + �S�2),

(2.12)

|F2(I, t)|2 = |��SI − (r + � + � + d)I|2

≤ 2

(
�2�2 sup

0≤t≤�
|S|2 + (r2 + �2 + �2 + d2)

)
|I|2

≤ C
∗
2
|I|2,

(2.13)

�F3(Q, t)�2 = ��I − (� + d + �)Q�2
≤ 2�2 sup

0≤t≤�
�I�2 + 2(�2 + d2 + �2)�Q�2

≤ 2‖I‖2
∞
+ 2(�2 + d2 + �2)�Q�2

≤ C
∗
3
(1 + �Q�2),

(2.14)

�F4(R, t)�2 = �rI + �Q − �R�2
≤ 2r2 sup

0≤t≤�
�I�2 + 2�2 sup

0≤t≤�
�Q�2 + 2�2�R�2

≤ 2r2‖I‖2
∞
+ 2�2‖Q‖2

∞
+ 2�2�R�2

≤ C
∗
4
(1 + �R�2),

Max

�
𝛽2𝛿2‖I‖2

∞
+ 𝜇2

Λ2
,
𝜑2 + d2 + 𝜇2

𝜖2‖I‖2
∞

,
𝜇2

r2‖I‖2
∞
+ 𝜑2‖Q‖2

∞

�
< 1.
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population [27]. This basic reproduction number is helpful to ensure that infectious dis-
ease can transmit or not in the population. If R0 < 1 the infection will stop in the long 
term. Moreover, if R0 > 1 the infection has the ability to transmit in the population. In 
general, if the R0 value is greater, then the control of epidemic is more difficult.

Theorem 4 In system (2.1), there is a disease-free equilibrium when the basic reproduction 
number R0 < 1 , i.e.,

Moreover, there is an endemic disease equilibrium when the basic reproduction number 
R0 > 1 , i.e.,

where

Proof By considering the derivatives in the left-hand side of system (2.1) equal to zero and 
I = 0 , then one has a disease-free equilibrium E0 . Moreover, applying I ≠ 0 , we can get an 
endemic disease equilibrium E∗ .   ◻

The next generation matrix is then used to get the basic reproduction number R0 of 
(2.1). By linearizing around the disease-free equilibrium ( E0 ), one has

where F  is the transmission matrix of new infected individuals, and V is the transition 
matrix of individual displacements between groups of individuals. Then, the next genera-
tion matrix can be expressed as

Therefore, based on the dominant eigenvalues of next generation matrix, one has the basic 
reproduction number

(3.1)E0 = (S0, I0,Q0,R0) =

(
Λ

�
, 0, 0, 0

)
.

(3.2)E∗ = (S∗, I∗,Q∗,R∗),

S∗ =
r + � + � + d

��
, I∗ =

Λ

r + � + � + d
−

�

��
,

Q∗ =
�

� + d + �
I∗, R∗ =

r

�
I∗ +

�

�
Q∗.

(
I

Q

)

t

=

(
��SI − (r + � + � + d)I

�I − (� + d + �)Q

)

=

[(
��S 0

0 0

)
−

(
r + � + � + d 0

epsilon � + d + �

)](
I

Q

)

= (F − V)

(
I

Q

)
,

FV
−1 =

(
Λ��

�(r+�+�+d)
0

0 0

)

(3.3)R0 =
Λ��

�(r + � + � + d)
.
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Local Stability of the Disease‑Free Equilibrium

Theorem 5 The disease-free equilibrium E0 is local asymptotically stable if R0 < 1.

Proof We firstly provide the Jacobian matrix of system (2.1) at the disease-free equilibrium 
E0 as follows

The eigenvalues of (3.4) are easy to obtain by solving the characteristic equation 
|J(E0) − �Id| = 0 , then one has

where

Therefore, �3 is negative. If R0 < 1 , then one has Λ𝛽𝛿 < 𝜇(r + 𝜖 + 𝜇 + d) , implying that

Then

Because all eigenvalues 𝜆i < 0 for i = 1, 2, 3, 4 , we can conclude that the equilibrium E0 is 
local asymptotically stable.   ◻

Figure 1 shows the function of R0 with the independent variables � and � . It is clear 
that R0 increases as infection rate � increases and R0 decreases as isolation rate � increases. 
The most effective to control the CoVid-19 spread is to control reproduction number R0 
less than one. Based on this principle, the strategy of isolation should be advocated, so the 
viruses spread will be decreased.

(3.4)J(E0) =

⎛
⎜⎜⎜⎜⎝

−� −
Λ��

�
0 0

0
Λ��

�
− (r + � + � + d) 0 0

0 � − (� + d + �) 0

0 r � − �

⎞
⎟⎟⎟⎟⎠
.

(3.5)

𝜆1 = −𝜇 < 0, 𝜆2 = −(𝜑 + d + 𝜇) < 0,

𝜆3 =

−

�
Λ𝛽𝛿

𝜇
− (r + 𝜖 + 𝜇 + d)

�
−
√
D

2

𝜆4 =

−

�
Λ𝛽𝛿

𝜇
− (r + 𝜖 + 𝜇 + d)

�
+
√
D

2
,

D =

(
Λ𝛽𝛿

𝜇
− (r + 𝜖 + 𝜇 + d)

)2

− 4𝜇(r + 𝜖 + 𝜇 + d) + 4Λ𝛽𝛿 > 0.

D <

(
Λ𝛽𝛿

𝜇
− (r + 𝜖 + 𝜇 + d)

)2

.

𝜆4 <

−

(
Λ𝛽𝛿

𝜇
− (r + 𝜖 + 𝜇 + d)

)
+

√(
Λ𝛽𝛿

𝜇
− (r + 𝜖 + 𝜇 + d)

)2

2
= 0.



 Differential Equations and Dynamical Systems

1 3

Local Stability of the Endemic Disease Equilibrium

Theorem 6 The endemic disease equilibrium E∗ is local asymptotically stable if R0 > 1.

Proof Similarly, we firstly provide the Jacobian matrix of system (2.1) at the endemic dis-
ease equilibrium E∗ as follows

The eigenvalues of (3.4) are similar ways as in Theorem 5 to obtain by solving the char-
acteristic equation |J(E∗) − �Id| = 0 . We determine the minor values of J(E∗) to get the 
cofactor expansion, then the eigenvalues satisfy the following equation

where

Obviously, 𝜆1 = −𝜇 < 0 , 𝜆2 = −(𝜑 + d + 𝜇) < 0 . Moreover, the eigenvalues �3,4 provide 
the stability criterion. All eigenvalues of the matrix A will be real and negative if

Using the matrix A, one has

(3.6)J(E∗) =

⎛⎜⎜⎜⎝

−��I∗ − � − ��S∗ 0 0

��I∗ ��S∗ − (r + � + � + d) 0 0

0 � − (� + d + �) 0

0 r � − �

⎞⎟⎟⎟⎠
.

(3.7)(−� − �)(−(� + d + �) − �) det(A) = 0,

(3.8)A =

(
−��I∗ − � − ��S∗

��I∗ ��S∗ − (r + � + � + d)

)
.

Tr(A) = 𝜆3 + 𝜆4 < 0, Det(A) = 𝜆3 ⋅ 𝜆4 > 0.

Tr(A) = −
Λ𝛽𝛿

r + 𝜖 + 𝜇 + d
< 0

Det(A) = 𝜇(R0 − 1)(r + 𝜖 + 𝜇 + d).

Fig. 1  Tendency of R0 with infection rate � and isolation rate �
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Based on the above results, all eigenvalues of matrix (3.8) are negative real part if R0 > 1 . 
Thus, the equilibrium E∗ is local asymptotically stable.   ◻

Global Stability of the Disease‑Free Equilibrium

To establish the global stability at the disease-free equilibrium E0 , there are two conditions 
that must be satisfied [16]. Initially, the Eq. (2.1) is divided into two systems as follows

where Y1 = (S,R) provides the number of uninfected individuals and Y2 = (I,Q) provides 
the number of infected individuals. Moreover, P0 = (Y0

1
, 0) denotes the disease-free equilib-

rium of the Eq. (3.9). It follows from Eq. (3.1) and Eq. (3.9), one has P0 = (Y0
1
, 0) = (S0, 0) . 

Then, the following two conditions must be satisfied to guarantee the global asymptotically 
stability.

where

Theorem 7 Let P0 = (Y∗
1
, 0) be disease-free equilibrium of Eq. (3.9). Then the fixed point 

P0 is global asymptotically stable in the interior Ω if R0 < 1 and the conditions (H1) and 
(H2) are satisfied.

Proof Since dY1
dt

= F1(Y1, 0) gives

Then, by conducting the limit t → +∞ , one has

implying that (S,R) → (S0, 0) and Y0
1
 is global asymptotically stable. Since Y1 = (S,R) , 

Y2 = (I,Q) and the assumption S ∼ N at the early phase of epidemic, then one can establish

(3.9)

dY1

dt
= F1(Y1, Y2),

dY2

dt
= F2(Y1, Y2), F2(Y1, 0) = 0,

(H1) If
dY1

dt
= F1(Y1, 0), then Y0

1
is global asymptotically stable,

(H2) If (Y1, Y2) ∈ Ω, then F2(Y1, Y2) = MY2 −K(Y1, Y2) for K(Y1, Y2) ≥ 0,

M =
dF2

dY2
(Y0

1
, 0).

dS

dt
= Λ − �S,

dR

dt
= −�R.

(S,R) →

(
Λ

�
, 0

)
= (Y0

1
, 0),
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It follows from Eq. (2.6) and N = S + I + Q + R then one has 0 ≤ S ≤ N , implying that 
K(Y1, Y2) ≥ 0 . If the matrix M is irreducible and K(Y1, Y2) ≥ 0 then the theorem becomes 
true for R0 < 1 . Hence, the fixed point P0 = (Y∗

1
, 0) is global asymptotically stable in the 

interior Ω .   ◻

Global Stability of the Endemic Disease Equilibrium

Theorem 8 The endemic disease equilibrium E∗ is global asymptotically stable on the inte-
rior Ω if R0 > 1.

Proof Let the Lyapunov function L be defined as

where

Applying (3.10) into the system of (2.1), then one has

Differentiating the above results with respect to t, one further has

Based on (2.4), one gets

Substituting (2.4) and (3.12) into (3.11) gives

F1(Y1, 0) =

(
Λ

�
, 0

)
,

M =

(
��N − (r + � + � + d) 0

� − (� + d + �)

)
,

K(Y1, Y2) =

(
��I(N − S)

0

)
.

(3.10)L(xi) =

N∑
i=1

1

2
(xi − x∗

i
)2,

N = number of state variables (S, I,Q,R),

xi = ith state variable,

x∗
i
= ith state variable for endemic disease equilibrium.

L(S, I,Q,R) =
1

2
[(S − S∗) + (I − I∗) + (Q − Q∗) + (R − R∗)]2.

(3.11)
dL

dt
= [(S − S∗) + (I − I∗) + (Q − Q∗) + (R − R∗)]

d

dt
(S + I + Q + R).

(3.12)N∗ = (S∗ + I∗ + Q∗ + R∗) =
Λ

�
.
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Then dL
dt

 is a Lyapunov function as stated in (3.13), which concludes that the endemic dis-
ease equilibrium E∗ is global asymptotically stable.   ◻

Optimal Control

In this section, the mathematical model of CoVid-19 with the control of vaccination and 
social distancing is formulated. Based on the sensitivity index of lockdown (�) , this parem-
eter gives the significant impact for the basic reproduction number with the sensitivity 
index ΓR0

�
= 100% . The significant impact of lockdown becomes a reason to consider the 

optimal control of this parameter. Moreover, the control of the transmission rate will give a 
good impact of reducing the spread of CoVid-19 in the community. Therefore, we provide 
the control of social distancing (u2) and vaccination (u1) to degrade the CoVid-19 transmis-
sion in the population. The mathematical model of CoVid-19 with the presence of control 
can be stated as follows

The aim of the objective function is to minimize the CoVid-19 transmission by introducing 
two controls of vaccination (u1) and social distancing (u2) , and also to minimize the control 
costs. Therefore, the objective function of system (4.1) is given below

where A1 and A2 are the cost factors with respect to controls u1 and u2 , and T is final time of 
control implementations.

Pontryagin’s maximum principle establishes the necessary conditions that the quadratic 
objective function must satisfy. This principle has the role to convert the system (4.1) and the 
objective functional J  (4.2) into the minimizing pointwise problem known as the Hamiltonian 

(3.13)

dL

dt
=

[
N −

Λ

𝜇

]
[Λ − N𝜇]

=

[
2NΛ − N2𝜇 −

Λ2

𝜇

]

= −
1

𝜇

[
Λ2 − 2NΛ𝜇 + N2𝜇2

]

= −
1

𝜇
[Λ − N𝜇]2 < 0.

(4.1)

dS

dt
= (1 − u1)Λ − (1 − u2)��SI − �S,

dI

dt
= (1 − u2)��SI − (r + � + � + d)I,

dQ

dt
= �I − (� + d + �)Q,

dR

dt
= u1Λ + rI + �Q − �R.

(4.2)J(u1, u2) ∶= min∫
T

0

[
I(t) +

A1

2
u2
1
(t) +

A2

2
u2
2
(t)

]
dt,
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H with respect to controls (u1, u2)(t) for all t ∈ [0, T] . The Hamiltonian referring to the system 
(4.1) and quadratic objective functional (4.2) can be formulated as follows

where �i for i = 1, 2, 3, 4 are the adjoint variables for each state variable S, I, Q, R respec-
tively. Let U be a non-empty control set stated as follows

Then, the optimal control u∗ = (u∗
1
, u∗

2
) is defined as follows

Theorem 9 Let u∗ = (u∗
i
) for i = 1, 2 be an optimal control and S∗, I∗,Q∗,R∗ be the solu-

tions of system (4.1) minimizing J(u∗) over the control set U defined in (4.4), then there 
exists adjoint variables �i for i = 1, 2, 3, 4 satisfying

with transversality conditions �i(T) = 0 , for i = 1, 2, 3, 4 , and

Proof Pontryagin et al. [41] provides the adjoint system and transversality conditions with 
respect to this optimal control. For this purpose, we establish the derivative of Hamiltonian 
function (4.3) with respect to S, I, Q, R as stated as follows

Meanwhile, the optimal control can be provided by finding the optimal solution of

(4.3)

H = I +
A1

2
u2
1
(t) +

A2

2
u2
2
(t) + �1

[
(1 − u1)Λ − (1 − u2)��SI − �

]

+ �2

[
(1 − u2)��SI − (r + � + � + d)I

]
+ �3[�I − (� + d + �)Q]

+ �4

[
u1Λ + �Q − �R

]
,

(4.4)
U ∶=

{
(u1, u2) ∶ ui is Lebesgue measurable, ui ∈ [0, 1] for i = 1, 2, t ∈ [0, T]

}
.

(4.5)J(u∗) ∶= min
{
J(u1, u2) ∶ u1, u2 ∈ U

}
.

(4.6)

d�1

dt
= ��1 + (1 − u2)��I

∗,

d�2

dt
= (1 − u2)(�1 − �2)��S + (r + � + � + d)�2 − ��3 − r�4,

d�3

dt
= �3(� + d + �) − �4�,

d�4

dt
= �4�.

(4.7)u∗ =

⎧⎪⎨⎪⎩

u∗
1
(t) = min

�
max

�
0,

Λ(�1−�4)

A1

�
, u1max

�
,

u∗
2
(t) = min

�
max

�
0,

��SI(�2−�1)

A2

�
, u2max

�
.

⎧⎪⎪⎨⎪⎪⎩

d�1

dt
= −

�H

�S
, �1(T) = 0,

d�2

dt
= −

�H

�I
, �2(T) = 0,

d�3

dt
= −

�H

�Q
, �3(T) = 0,

d�4

dt
= −

�H

�R
, �4(T) = 0.



Differential Equations and Dynamical Systems 

1 3

We further apply the standard ways of bounds on the optimal control as written as follows

where i = 1, 2 and

  ◻

�H

�ui
= 0, for u∗

i
where i = 1, 2.

u∗
i
=

⎧⎪⎨⎪⎩

0 if �∗
i
≤ 0,

�∗
i
if 0 ≤ �∗

i
≤ uimax

,

uimax
if �∗

i
≥ uimax

,

�∗
1
=

Λ(�1 − �4)

A1

,

�∗
2
=

��SI(�2 − �1)

A2

.

Table 1  Parameter values and sensitivity index

Parameter Description Value Sensitivity index

Λ The birth rate 0.01 1
� The transmission rate 0.01 1
� The lockdown 1 1
� The natural death rate 0.00003 −1
r The cure rate related to infected 0.03 −0.4410
� The isolation rate 0.03 −0.4410
d The disease-related death rate 0.008 −0.1176
� The cure rate related to isolation 0.04 –

Fig. 2  PRCC results for R0
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Numerical Results and Discussion

The first-order derivative differential equations of system (2.1) is solved numerically 
using the fourth order Runge-Kutta method. The sensitivity analysis of R0 is then pro-
vided by applying the Partial Rank Correlation Coefficient (PRCC) method. The MAT-
LAB codes are available in GitHub through this link: https:// github. com/ mghan iunair/ 
SIQR- Model- on- CoVid- 19.

Sensitivity Analysis

The effect of each parameters on the endemic treshold is provided in the sensitivity anal-
ysis. This essential method of sensitivity analysis shows the strength of each parameters 
of SIQR model [14]. Moreover, the parameter values are all assumed and presented in 
Table 1. Meanwhile, the sensitivity index of R0 depending differentiably on a parameter � 
can be stated as

From (5.1), the sensitivity indices are calculated and provided in Table 1.
The parameters of birth rate Λ , transmission rate � , and lockdown � achieve the most 

positive sensitivity index with the basic reproduction number ΓR0

Λ
= Γ

R0

�
= Γ

R0

�
= 1 , which 

means that the greater the numbers of births, transmission, and lockdown in a susceptible 
population, the greater the chance of the number of infected individuals if there is direct 
contact. Moreover, the most negative sensitivity index is achieved by the natural death rate 
� with the basic reproduction number ΓR0

� = −1 , which means that 100% of natural death 
rate plays an important role to reduce the transmission of disease. The transmission rate 
� and lockdown � have the positive impact 100% for the basic reproduction number. This 
means that the lockdown have a significant impact on basic reproduction number. Moreo-
ver the isolation rate � and cure rate related to infected r give the same impact of 44.10% to 

(5.1)Γ
R0

� =
�R0

��
×

�

R0

.

Fig. 3  Simulation of SIQR model

https://github.com/mghaniunair/SIQR-Model-on-CoVid-19
https://github.com/mghaniunair/SIQR-Model-on-CoVid-19
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reduce (due to the negative sign as in Table 1) the number of disease transmission. Figure 2 
provides the sensitivity analysis for 7 parameters of basic reproduction number R0 . By 
referring to Eq. (3.3), there is no parameter of cure rate related to isolation � for the basic 
reproduction number, which means that there is no significant impact for sensitivity index.

Fig. 4  Variation of � and deterministic versus stochastic in (S, I, Q, R)(t)
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Simulation of SIQR Model

The numerical simulation of our dynamical system (2.1) is provided in Fig. 3, which gives 
the descriptions that the susceptible class decreases due to the lockdown and at a time 
increases to reach the equilibrium point as the susceptible individuals move to the infected 
class and other individuals die naturally. Moreover, the infected class decreases as the indi-
viduals move from susceptible class to infected class, this may be caused by the isolation 

Fig. 5  Variation of � and deterministic versus stochastic in (S, I, Q, R)(t)
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rate increasing the cure rate related to infected individuals and other impact is caused by 
the natural death. The quarantined class increases from the infected class and at a time 
decreases due to the individuals moving to recovered class to achieve the equilibrium 
point. The recovered class increases from susceptible, infected, and quarantined individu-
als due to the isolation rate, lockdown, and other individuals die naturally. The variables 
S, I, Q, R vary with time (t).

In the susceptible class as in Fig. 4, the decaying rate increases when the variation of 
transmission rate � increases. The susceptible individuals then move to the infected class, 

Fig. 6  Simulation of SIQR(t) model with only optimal control u2(t) , and profile of control u1(t) and u2(t)
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where this class provides the decreased decaying rate while the transmission rate increases 
(it also indicates the contact rate between susceptible and infected individuals). The 
infected class increases when the transmission rate increases and decreases by the indi-
viduals moving to quarantined class and isolation rate increases as in Fig. 4a, b. As shown 
in Fig. 4c, d, the quarantined class gives the similar results of decaying rate as in infected 
class which decrease when the transmission rate increases. The quarantined class will be 
increased when the transmission rate increases and will be decreased due to the individu-
als moving to recovered class and transmission rate decreasing. In this case, the number of 
recovered class will be increased because of individuals movement from quarantined class.

Fig. 7  Simulation of SIQR(t) model with two optimal control u1(t) and u2(t)
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Figure 5a provides that the decaying rate decreases when the variation of isolation rate 
increases. The susceptible individuals then move to the infected class. This infected class 
provides the increased decaying rate while the isolation rate increases as in Fig. 5b. The 
quarantined class will be decreased when the isolation rate increases and the individuals 
move to the quarantined class. Meanwhile, Fig. 5c shows the decreased decaying rate when 
the isolation rate increases which means that the quarantined individuals will be increased 
when isolation rate increases and will be decreased when the individuals move to the 
recovered class and die naturally. The individuals movement from quarantined class can 
affect the recovered individuals increased. For more detailed visualization of infected class, 
Fig. 8 gives the indication that the higher the isolation rate is the smaller the number of 
infection is and otherwise (from the contour, the red color indicates the higher number of 
infection than the other regions).

The simulation of (S,  I, Q, R)(t) model with optimal control (u1, u2)(t) is based on 
the Eqs. (4.1), (4.6) and (4.7) by using the iterative method of fourth order Runge-
Kutta with the assumptions of cost factors A1 = A2 = 1 . As in Fig. 6a–d and Fig. 7a–d, 
there is a profile change for state variable (S,  I,  Q,  R)(t) without or with control 
(u1, u2)(t) or only u2(t) . The susceptible class with control ( (u1, u2)(t) or only u2(t) ) gives 
the higher values than without control which means that the controls of only social 
distancing or the combinations between social distancing and vaccination provide the 
number of susceptible individuals increased. Meanwhile, the infected and quarantined 
classes are more decreased with control ( (u1, u2)(t) or only u2(t) ) than without control. 
The results of infected class give the impact on the quarantined class, which means 
that if the infected individuals are decreased then automatically the quarantined indi-
viduals are also decreased. Moreover, the recovered class is more decreased with con-
trol ( (u1, u2)(t) or only u2(t) ) than without control. This indicates that the vaccination 
and social distancing employed earlier in susceptible class (subject to Eq. (4.1)) give 
the significant impact for the susceptible, and infected classes, which means that the 
controls of vaccination and social distancing are not effective in recovered class. The 
profiles of two controls (u1, u2)(t) and of (S, I, Q, R)(t) with (u1, u2)(t) or only u2(t) are 
provided in Fig.  6e and Fig.  7e respectively. As in Fig.  7e, it gives the results that 
there are significant difference between (u1, u2)(t) and only u2(t) for each state vari-
able (S,  I,  Q,  R)(t). The profile of recovered class with the combination of two con-
trols (u1, u2) is greater than the profile of recovered class only with one control u2 . The 

Fig. 8  Tendency of number of infection with infection rate � and isolation rate �
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profiles of infected and quarantined class provide the same results, those two classes 
with the combination of two controls (u1, u2) are smaller than the ones only with one 
control u2 . Based on these results of infected, quarantined, and recovered classes, the 
susceptible class with the combination of two controls (u1, u2) are smaller than the ones 
only with one control u2.

(a) 09 Apr to 05 Sept 2020 (b) 06 Sept 2020 to 01 Feb 2021

(c) 02 Feb to 01 Sept 2021 (d) 02 Sept to 29 Nov 2021

(e) 30 Nov 2021 to 16 May 2022

Fig. 9  Parameter fitting results of our SIQR model on CoVid-19 disease in Semarang, Indonesia (https:// 
siaga corona. semar angko ta. go. id/ halam an/ covid 19per tahun/ 2020)

Fig. 10  Box-plot for all parameters ( �, �, �,�, r, �, d,� ) with the range (09 Apr to 05 Sept 2020) and (06 
Sept 2020 to 01 Feb 2021)

▸

https://siagacorona.semarangkota.go.id/halaman/covid19pertahun/2020
https://siagacorona.semarangkota.go.id/halaman/covid19pertahun/2020
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(a) 09 Apr to 05 Sept 2020

(b) 06 Sept 2020 to 01 Feb 2021
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(a) 02 Feb to 01 Sept 2021

(b) 02 Sept to 29 Nov 2021

Fig. 11  Box-plot for all parameters ( �, �, �,�, r, �, d,� ) with the range (02 Feb to 01 Sept 2021) and (02 
Sept to 29 Nov 2021)
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30 Nov 2021 to 16 May 2022

Fig. 12  Box-plot for all parameters ( �, �, �,�, r, �, d,� ) with the range (30 Nov 2021 to 16 May 2022)

Table 2  Best fit estimation of parameters for SIQR model and actual data CoVid-19

Parameter Initial Guess Fig. 9a Fig. 9b Fig. 9c Fig. 9d Fig. 9e

Λ 0.07 0.0748 −0.0145 0.0761 −0.1750 −0.0076
� 0.057 0.0847 0.0250 0.0348 0.1968 0.0775
� 0.4 1.1354 2.7125 0.3089 0.0849 2.1788
� 0.0019 0.0240 −0.0327 0.0017 0.0051 −0.0170
r 0.057 −0.0531 0.2299 0.0276 0.0351 0.0581
� 0.03 −0.1449 −0.1449 0.0227 −0.0545 0.1395
d 0.001 −0.0342 0.0066 −0.0026 0.0024 −0.0010
� 0.7 19.4606 6.4821 4.8535 1.5934 0.0826

Table 3  Dynamics of infected 
profiles for time 0, 50, 100, and 
150

Time Fig. 9a Fig. 9b Fig. 9c Fig. 9d Fig. 9e

0 0.0199 0.1963 0.3305 0.9411 0.0028
50 0.0379 0.1896 0.1029 0.1069 0.0158
100 0.3412 0.3228 0.1737 0.0001 0.1460
150 0.1850 0.3329 1.0259 0 0.0020
RMSE 6.17% 9.64% 28.68% 8.77% 14.13%
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Best Fit Parameters of SIQR Model

Now, we validate our dynamical system with the actual data by conducting the classical 
formula of least square technique written as

where M is the number of actual data, Ypred is the numerical result of our dyamical system, 
Ydata is the actual data of CoVid-19 in Semarang, Indonesia, taken from 09 Apr 2020 until 
to 16 May 2022, and N  is the unknown parameters of our dynamical system in (2.1). Ini-
tially, the general form of our dynamical system (2.1) is represented as follows

where Eq. (5.3) is approximated by the iterative method, fourth order Runge–Kutta. More-
over, our goal is to minimize the objective function

The more detailed algorithm of parameter estimation can be addressed in [42] and the 
algorithm of optimization is in [32]. We divide the actual data into five parts: (a) Part 1 
in Fig. 9a, (b) Part 2 in Fig. 9b, (c) Part 3 in Fig. 9c, (d) Part 4 in Fig. 9d, and (e) Part 5 in 
Fig. 9e, where each part has the peak values for number of infection. Moreover, Table 2 
represents the best fit estimation values of parameters between SIQR model and actual data 
of CoVid-19 in Semarang, Indonesia, where the smallest RMSE (6.17%) is achieved in 
Fig. 9a, and the highest RMSE (28.68%) is provided in Fig. 9c as shown in Table 3 indi-
cating the difference for each state (S, I, Q, R) between ODE45 results (based on the fitted 
parameters) and actual data. Moreover, Figs. 10, 11 and 12 provide the distribution of fitted 
parameters with actual data, where the highest number of outlier is shown in Fig. 11b for 

(5.2)RMSE(N) =

M∑
k=1

(Ypred(k) − Ydata(k)),

(5.3)
dY(t)

dt
= F(t,Y,N),

(5.4)
min
N

RMSE(N),

subject to Eq. (5.3).

(a) Without Control versus With Control of Social
Distancing (u2)

(b) Without Control versus With Controls of Vacci-
nation (u1) and Social Distancing (u2)

Fig. 13  Controls for estimation results with the actual data of infected individuals in range 09 Apr to 05 
Sept 2020 (it refers to Fig. 9a)
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the parameter of � . The parameters of �, �, �,� do not provide the outlier and the obtained 
box-plots are mostly asymmetrical for each range.

Moreover, Fig.  4e, f and Fig.  5e, f provide the deterministic and stochastic of SIQR 
model of (2.1). The stochastic process are employed to describe the dynamical system for 
each event [5]. Initially, the dynamical system (2.1) is written as follows

Fig. 14  a, b Estimation of neural network, c, d Performance, and e, f Regression for actual data as in 
Fig. 9a (LHS) and in Fig. 9e (RHS)
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where F is Lipschitz continuous, and X is state space, for X = (S, I,Q,R) , and X(0, x0) = X0 . 
By employing the limit N → +∞ , the sequence of state space XN(0, x0) = X0 and for every 
𝛿 > 0 the stochastic process is closed to the deterministic process as shown as follows

implying that the sequence of state space (XN(t), t ≥ 0) can be approximated by the first 
order ordinary differential equations in Eq. (5.5). We notice that the function F is summa-
tion of a continuous function f(X, L), where f (X, L) ∶ ℝ

4 × ℤ
4
→ ℝ and it is called as the 

process jumps for each event L. It follows from system (2.1), the process jumps are given 
below

(5.5)
d

dt
X(�, x0) = F(X(�, x0)),

Pr

(
sup
t≤𝜏

|XN(t) − X(t, x0)| > 𝜀

)
→ 0, as N → +∞, for every t ≥ 0, and 𝜀 > 0,

f (X, L) =

⎧
⎪⎪⎨⎪⎪⎩

��SI, L = (−1, 1, 0, 0),

rI, L = (0,−1, 0, 1),

�I, L = (0,−1, 1, 0),

�Q, L = (0, 0,−1, 1),

�S, L = (−1, 0, 0, 0).

f (X, L) =

⎧⎪⎨⎪⎩

(� + d)I, L = (0,−1, 0, 0),

(� + d)Q, L = (0, 0,−1, 0),

�R, L = (0, 0, 0,−1),

Λ, L = (1, 0, 0, 0).

Fig. 15  Architecture of neural network consisting of 2 hidden layers, 50 neurons, training function of Lev-
enberg-Marquardt, and activation function of Tangent Sigmoid

Table 4  The root mean square error between least square and neural network for the range of actual data 
from (09 Apr to 05 Sept 2020) and (30 Nov 2021 to 16 May 2022) for time 10, 20, 30, 40, 50, 60, 70, 80, 
90, and 100

09 Apr to 05 Sept 2020 30 Nov 2021 to 16 May 2022

 S I Q R S I Q R

0.000074 0.000001 0.000001 0.000019 0.000210 0.000003 0.000025 0.000006
0.000217 0.000005 0.000005 0.000007 0.000093 0.000003 0.000016 0.000013
0.000055 0.000055 0.000003 0.000067 0.001091 0.000020 0.000011 0.000108
0.000679 0.000087 0.000001 0.000177 0.000794 0.000016 0.000008 0.000026
0.000517 0.000034 0.000004 0.000045 0.000696 0.000054 0.000009 0.000202
0.000145 0.001133 0.000010 0.001991 0.000053 0.000041 0.000009 0.000059
0.002627 0.001608 0.000023 0.003192 0.000426 0.000434 0.000042 0.002241
0.002284 0.000898 0.000011 0.002549 0.002412 0.000433 0.000080 0.003219
0.002706 0.000477 0.000005 0.003498 0.001297 0.000573 0.000062 0.003484
0.001658 0.000249 0.000000 0.002918 0.000416 0.000497 0.000093 0.002752
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As in Figs. 4e, f and 5e, f, we can conclude that the deterministic and stochastic results give 
the same patterns for the profiles of susceptible, infected, quarantined, and recovered indi-
viduals. By referring to Fig. 13, we provide the control profiles for the estimation results 
with the actual data of infected individuals only in range (09 Apr to 05 Sept 2020) as the 
representation of five possible ranges as shown in Fig. 9. It can be seen that after applying 
the controls (only control of social distancing and after that using two controls of vaccina-
tion and social distancing), the infected profiles are more sloping than before applying the 

(a) 09 Apr to 05 Sept 2020 (b) 06 Sept 2020 to 01 Feb 2021

(c) 02 Feb to 01 Sept 2021 (d) 02 Sept to 29 Nov 2021

(e) 30 Nov 2021 to 16 May 2022

Fig. 16  Correlation matrix between two parameters
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controls. If we compare for both figures (Fig. 13a, b), we can conclude that applying two 
controls (vaccination and social distancing) at once is more sloping than only applying one 
control (social distancing). It indicates that applying two controls can effectively reduce the 
number of infected individuals for CoVid-19 disease in Semarang, Indonesia.

Table 5  Numerical values of correlation matrix between two parameters X and Y (Corr(X, Y))

Date Corr(X, Y) Λ � � � r � d �

09 Apr to 05 Sept 2020 Λ 1.00 −0.96 −0.11 −0.25 0.64 0.34 0.06 −0.52
� −0.96 1.00 0.10 0.27 −0.67 −0.37 −0.07 0.63
� −0.11 0.10 1.00 −0.93 0.66 0.88 −0.99 −0.25
� −0.25 0.27 −0.93 1.00 −0.89 −0.99 0.93 0.49
r 0.64 −0.67 0.66 −0.89 1.00 0.94 −0.66 −0.73
� 0.34 −0.37 0.88 −0.99 0.94 1.00 −0.87 −0.61
d 0.06 −0.07 −0.99 0.93 −0.66 −0.87 1.00 0.18
� −0.52 0.63 −0.25 0.49 −0.73 −0.61 0.18 1.00

06 Sept 2020 to 01 Feb 2021 Λ 1.00 −0.92 0.88 0.99 −0.83 0.97 −0.99 0.99
� −0.92 1.00 −0.93 −0.87 0.80 −0.93 0.88 −0.88
� 0.88 −0.93 1.00 0.83 −0.96 0.96 −0.86 0.85
� 0.99 −0.87 0.83 1.00 −0.81 0.94 −1.00 1.00
r −0.83 0.80 −0.96 −0.81 1.00 −0.93 0.83 −0.83
� 0.97 −0.93 0.96 0.94 −0.93 1.00 −0.96 0.96
d −0.99 0.88 −0.86 −1.00 0.83 −0.96 1.00 −1.00
� 0.99 −0.88 0.85 1.00 −0.83 0.96 −1.00 1.00

02 Feb to 01 Sept 2021 Λ 1.00 0.90 −1.00 1.00 −0.99 0.99 −0.99 −1.00
� 0.90 1.00 −0.89 0.88 −0.84 0.83 −0.85 −0.93
� −1.00 −0.89 1.00 −1.00 0.99 −0.99 1.00 1.00
� 1.00 0.88 −1.00 1.00 −1.00 1.00 −1.00 −0.99
r −0.99 −0.84 0.99 −1.00 1.00 −1.00 1.00 0.98
� 0.99 0.83 −0.99 1.00 −1.00 1.00 −1.00 −0.98
d −0.99 −0.85 1.00 −1.00 1.00 −1.00 1.00 0.98
� −1.00 −0.93 1.00 −0.99 0.98 −0.98 0.98 1.00

02 Sept to 29 Nov 2021 Λ 1.00 −0.92 0.92 0.95 −0.98 0.51 0.92 −0.94
� −0.92 1.00 −1.00 −0.95 0.92 −0.21 −1.00 0.99
� 0.92 −1.00 1.00 0.96 −0.92 0.23 1.00 −1.00
� 0.95 −0.95 0.96 1.00 −0.96 0.42 0.96 −0.97
r −0.98 0.92 −0.92 −0.96 1.00 −0.57 −0.92 0.95
� 0.51 −0.21 0.23 0.42 −0.57 1.00 0.23 −0.29
d 0.92 −1.00 1.00 0.96 −0.92 0.23 1.00 −1.00
� −0.94 0.99 −1.00 −0.97 0.95 −0.29 −1.00 1.00

30 Nov 2021 to 16 May 2022 Λ 1.00 −0.83 0.97 0.62 0.73 −0.74 0.78 −0.89
� −0.83 1.00 −0.93 −0.95 −0.99 0.99 −1.00 0.99
� 0.97 −0.93 1.00 0.77 0.86 −0.86 0.89 −0.96
� 0.62 −0.95 0.77 1.00 0.99 −0.98 0.97 −0.91
r 0.73 −0.99 0.86 0.99 1.00 −1.00 1.00 −0.96
� −0.74 0.99 −0.86 −0.98 −1.00 1.00 −1.00 0.97
d 0.78 −1.00 0.89 0.97 1.00 −1.00 1.00 −0.98
� −0.89 0.99 −0.96 −0.91 −0.96 0.97 −0.98 1.00
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Applying the same strategy as in [29] and based on the results of Fig. 9a, e, we pro-
pose the neural network to estimate the infected profile of CoVid-19 in Semarang Indo-
nesia and the results are respectively obtained for the S, I, Q, R profiles, performance and 
regression as shown in Fig. 14. The left hand side (LHS) needs 732 epochs and the right 
hand side (RHS) needs 921 epochs to achieve the optimal conditions. Moreover, the regres-
sion results for both RHS and LHS provide the distribution data which is still on the track 
(for the correlations between training and testing). To achieve these all optimal results, 

(a) 09 Apr to 05 Sept 2020 (b) 06 Sept 2020 to 01 Feb 2021

(c) 02 Feb to 01 Sept 2021 (d) 02 Sept to 29 Nov 2021

(e) 30 Nov 2021 to 16 May 2022

Fig. 17  Performance analytics between two parameters
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the architecture of neural network proposes two hidden layers consisting of 50 neurons 
for each hidden layer. Moreover, we employ Levenberg-Marquadt and Tangent Sigmoid as 
the training and activation functions respectively as in Fig. 15. According to the root mean 
square error for the profile of S, I, Q, R (between least square and neural network), one can 
conclude that the estimation results by using neural network are very significant as shown 
in Table 4.

The correlation between two parameters (based on the actual data of Covid-19 in Sema-
rang, Indonesia from 09 Apr 2020 to 16 May 2022) is represented as the matrix correlation 
as shown in Fig. 16. Positive correlations are displayed in blue and negative correlations 
in red color. Color intensity and the size of the circle are proportional to the correlation 
coefficients. In the right side of the correlogram, the legend color shows the correlation 
coefficients and the corresponding colors. Based on the matrix correlation, the smallest 
correlation size is the correlation between (d and � indicating the small circle) for the range 
(09 Apr to 05 Sept 2020). Meanwhile, two ranges of (06 Sept 2020 to 01 Feb 2021) and 
(02 Feb to 01 Sept 2021) provide the same size circle (indicating the correlation size) for 
almost all correlations among the parameters. If we compare these two matrix correlations 
with the box-plot as in Fig. 12, there is no outlier for two ranges of (06 Sept 2020 to 01 
Feb 2021) and (02 Feb to 01 Sept 2021), where all numerical values of Fig. 16 are shown 
in Table 5 and the performance analytics are in Fig. 17. The distribution of each parameter 
is shown on the diagonal. On the bottom of the diagonal, the bivariate scatter plots with 
a fitted line are displayed. On the top of the diagonal, the value of the correlation plus 
the significance level as stars Each significance level is associated to a symbol, i.e., p-val-
ues(0.001, 0.01, 0.05, 0.1, 1) refer to symbols(“***”, “**”, “*”, “.”, “ ”).

Conclusion

The mathematical model of CoVid-19 with optimal control of vaccination and social dis-
tancing becomes our concern in this paper. The aim of control implementation is to reduce 
the number of infected individuals. Based on the results obtained in the numerical simu-
lation, those two controls give a significant effect on a dynamical system for each vari-
able state. The local stability is established by analyzing the stability characteristic through 
the Jacobian matrix at the disease-free and endemic disease equilibrium points. Moreover, 
the global stability issue is from the appropriate Lyapunov function. The least-square tech-
nique is employed to provide the validation of our dynamical system by comparing the 
numerical results using fourth-order Runge Kutta and actual data of CoVid-19 disease in 
Semarang, Indonesia. As in the results obtained, our model of a dynamical system is good 
enough for the estimation based on the RMSE values. By employing the Continuous Time 
Markov Chain (CTMC), we have the same patterns for the profiles of susceptible, infected, 
quarantined, and recovered individuals between the deterministic and stochastic results. 
Applying two controls (vaccination and social distancing) at once is more effective than 
only applying one control (social distancing) to reduce the number of infected individuals 
for CoVid-19 in Semarang, Indonesia. According to the discussions, it can be seen that the 
infected profile of two controls at once (vaccination and social distancing) is more sloping 
than the infected profile of only one control (social distancing). The neural network tech-
nique also gives the significant estimations based on the root mean square error by using 
the training function of Levenberg-Marquadt and activation function of Tangent Sigmoid 
consisting of two hidden layers and 50 neurons for each hidden layer.
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Appendix: Source Code of Continuous Time Markov Chain

%function
function f = sir_rhs_3(t,y,pars)
f=zeros(4,1);
f(1)=pars(1)-pars(2)*pars(3)*y(1)*y(2)-pars(4)*y(1);
f(2)=pars(2)*pars(3)*y(1)*y(2)-(pars(5)+pars(6)+pars(4)+pars(7))*y(2);
f(3)=pars(6)*y(2)-(pars(8)+pars(7)+pars(4))*y(3);
f(4)=pars(5)*y(2)+pars(8)*y(3)-pars(4)*y(4);
end
%main program
clear all;clc;close all
beta=0.01;
lambda=0.01;
delta=1;
mu=0.00003;
r_param=0.03;
epsilon=0.025;

d=0.008;
psi=0.04;
N=100;
s0=98;
i0=2;
r0=0;
q0=0;
tm=20;
sim=3;
for k=1:sim
t(1)=0;
i(1)=i0;
s(1)=s0;
q(1)=q0;
r(1)=r0;
j=1;
while i(j)>0 & t(j)<tm
u1=rand(); % uniform random number
u2=rand(); % uniform random number
a1=beta*delta*s(j)*i(j);
a2=r_param*i(j);
a3=epsilon*i(j);
a4=psi*q(j);
a5=mu*s(j);
a6=(mu+d)*i(j);
a7=(mu+d)*q(j);
a8=mu*r(j);
a9=lambda;
den=a1+a2+a3+a4+a5+a6+a7+a8;
t(j+1)=-log(u1)/den+t(j) % Time to next event
e1=a1/den;
e2=e1+a2/den;
e3=e2+a3/den;
e4=e3+a4/den;
e5=a4+a5/den;
e6=e5+a6/den;
e7=e6+a7/den;
e8=e7+a8/den;
e9=e8+a9/den;
if (u2<=e1)
s(j+1)=s(j)-1;
i(j+1)=i(j)+1;
q(j+1)=q(j);

r(j+1)=r(j);
elseif (u2>e1 & u2<=e2)
s(j+1)=s(j);



 Differential Equations and Dynamical Systems

1 3

Acknowledgements The authors would like to thank the reviewers for their valuable comments and sugges-
tions which helped to improve the paper. There are no funders to report for this submission.

i(j+1)=i(j)-1;
q(j+1)=q(j);
r(j+1)=r(j)+1;
elseif (u2>e2 & u2<=e3)
s(j+1)=s(j);
i(j+1)=i(j)-1;
q(j+1)=q(j)+1;
r(j+1)=r(j);
elseif (u2>e3 & u2<=e4)
s(j+1)=s(j);
i(j+1)=i(j);
q(j+1)=q(j)-1;
r(j+1)=r(j)+1;
elseif (u2>e4 & u2<=e5)
s(j+1)=s(j)-1;
i(j+1)=i(j);
q(j+1)=q(j);
r(j+1)=r(j);
elseif (u2>e5 & u2<=e6)
s(j+1)=s(j);
i(j+1)=i(j)-1;
q(j+1)=q(j);
r(j+1)=r(j);
elseif (u2>e6 & u2<=e7)
s(j+1)=s(j);
i(j+1)=i(j);
q(j+1)=q(j)-1;
r(j+1)=r(j);
elseif (u2>e7 & u2<=e8)
s(j+1)=s(j);
i(j+1)=i(j);
q(j+1)=q(j);
r(j+1)=r(j)-1;
else
s(j+1)=s(j)+1;
i(j+1)=i(j);
q(j+1)=q(j);
r(j+1)=r(j);
end
j=j+1;
end
plot(t,s,’b-’,t,i,’r-’,t,q,’g-’,t,r,’k-’,’LineWidth’,1)
hold on
end
%%
tF=20;
t = linspace(0, tF, 2001)+.1;
y0=[s0;i0;q0;r0];
% Run ODE
[t,y] = ode45(@sir_rhs_3,t,y0,[],[lambda,beta,delta,mu,r_param,epsilon,d,psi,N]);
plot(t,y(:,1),’b-’,t,y(:,2),’r-’,t,y(:,3),’g-’,t,y(:,4),’k-’,’LineWidth’,2.4)
h=legend(’S (\epsilon-0.5%)’,’I (\epsilon-0.5%)’,’Q (\epsilon-0.5%)’,’R (\epsilon-0.5%)’);
set(h,’FontSize’,14);
ylabel(’(S,I,Q,R)(t)’,’FontSize’,14)
xlabel(’Time’,’FontSize’,14)
xlim([0 20])
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