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Abstract
In this paper, we study the b-class shallow water equation. We take different bifurcation 
parameters to consider solitary wave solutions as well as their persistence under singular 
Kuramoto–Sivashinsky perturbation. We apply phase portrait analysis and the method of 
geometric singular perturbation theory.

Keywords  Solitary wave · Kuramoto–Sivashinsky Perturbation · B-class equation · 
Bifurcation

Introduction

In this paper, we study the following nonlinear partial differential equation

where b and k are arbitrary real constants with momentum density m = u − uxx . This equa-
tion was derived by Degasperis, Holm and Hone [7, 8] , called the b-class equation. Among 
all cases, b = 2 and b = 3 are two special ones. When b = 2 , (1) was reduced to the familiar 
Camassa-Holm (CH) shallow-water equation [2]

When b = 3 , (1) was reduced to the Degasperis-Procesi(DP) shallow-water equation [9]

The above two cases exhaust the integrable candidates for b-equation (1), which was 
shown in [7]. The CH equation was first derived as an abstract bi-Hamiltonian equation 
with infinitely many conservation laws, and later re-derived by Camassa and Holm in [2] 
from physical principles. It admits solutions that exist indefinitely in time [5]. Also [3], it 
has peakon(peaked soliton) of the form u(x, t) = ce−|x−ct| when k → 0 . The DP equation, 

(1)mt + 2kux + bmux + umx = 0, x ∈ ℝ, t > 0,

(2)mt + 2kux + 2mux + umx = 0, m = u − uxx.

(3)mt + 2kux + 3mux + umx = 0, m = u − uxx.

 *	 Zhang Qian 
	 qian_z@hust.edu.cn

1	 School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, 
Hubei 430074, People’s Republic of China

http://orcid.org/0000-0003-3493-2060
http://crossmark.crossref.org/dialog/?doi=10.1007/s12591-021-00587-3&domain=pdf


588	 Differential Equations and Dynamical Systems (April 2024) 32(2):587–606

1 3

like the CH equation, has a Lax pair, a bi-Hamiltonian structure, and an infinite number of 
conservation laws [7, 22]. While it was discovered solely for its mathematical properties, 
later has been rigorously derived as a model for the propagation of shallow water waves. It 
also owns asymptotic accuracy as the CH equation [6, 9]. The DP and CH equations fea-
ture strong nonlinear effects, making them better suited to model nonlinear phenomena like 
wave breaking and solutions with singularities.

With respect to equation (1), Holm and Staley [13] studied the numerical solutions for 
different b. Guo and Liu [1] studied the periodic cuspons and the single soliton of this 
equation. Escher and Seiler [17] explored the relationships between equation (1) and Euler 
equations. Vitanov et al. [24] found some traveling wave solutions to this equation.

In this paper, we will focus on the fundmental bifurcation phenomena of b-equation (1) 
when the constant b and k are taken as the bifurcation parameters seperately. In the 1990s, 
Zhengrong Liu and Jibin Li [15, 19, 20] applied the qualitative theory of differential equa-
tions and the bifurcation theory of dynamical systems to the study of nonlinear waves. The 
core idea of this method is to transform the differential equation into a plane Hamiltonian 
system by traveling wave transformation, and then use the relevant knowledge of qualita-
tive theory to get the bifurcation phase diagram of this Hamiltonian system, and finally 
calculate the corresponding traveling wave solutions. According to the bifurcation phase 
diagram, it can also visually see the limit form of the traveling wave solutions and the 
gradual change process.

During the process of studying the above articles, I realized an interesting phenomenon, 
which led to the following thoughts. As is known [4], the KdV-KS equation is derived as 
a model for wave motions, which involves a balance between dispersion, dissipation and 
nonlinearity for long waves. When � is small, KdV pulse and cnoidal wave solutions persist 
[23]. It happens that there is a similar case, according to Du’s work [10, 14]: when b = 2 , 
there is a homoclinic orbit persists under singular Kuramoto–Sivashinsky perturbation. We 
will therefore discuss whether this fact still holds for other bs in the b-family equation (1) 
with methods of the geometric singular perturbation theory.

The paper is structured as follows: in “The Discussion of Bifurcation Parameter b” sec-
tion, I will discuss the bifurcation phenomena when the constant b is taken as a bifurcation 
parameter; in “The Discussion of Bifurcation Parameter k” section, then discuss the bifur-
cation phenomena about k parameter and additionally the H1 norm convergence among 
those solitons. In “Geometric Theory of Singular Pertubation” section, I will provide the 
introduction about geometric singular perturbation theory; and in “Persistence of Solitary 
Wave Under Kuramoto–Sivashinsky Perturbation” section, I will study the existence of 
solitary wave solutions for b-equation when there exists small KS perturbation.

Bifurcation of B‑Equation

At first, let’s introduce some definitions and lemmas.

Definition 2.1  A traveling wave solution u(t, x) = �(x − ct) =∶ �(�) of the equation(1) is 
called a solitary wave if lim

�→±∞
�(�) = 0 . Here c > 0 is the wave speed.

Definition 2.2  The profile of a wave function is called pulse if its derivatives are continu-
ous. Usually, such pulses are above the water surface. If they lie below the water surface, 
they will be called anti-pulses.
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Definition 2.3  [12] Usually, the profile of a wave function is called peakon if there is a 
continuous point whose left and right derivatives are finite and have different signs.

Definition 2.4  [21] The so called “pseudo-peakon” means that the wave profile looks like 
peakon, but the solution still has continuous first order derivative.

Definition 2.5  [21] If the left and right derivatives of the profile of a wave function are 
positive and negative infinities, then the wave profile is called cuspon.

Lemma 2.1  (The rapid-jump property of the derivative near the singular straight line) [16] 
Suppose that in a left (or right) neighborhood of a singular straight line there exists a 
family of periodic orbits. Then, along a segment of every orbit near the straight line, the 
derivative of the wave function jumps down rapidly on a very short time interval.

Lemma 2.2  (Existence of finite time interval of solution with respect to wave variable in 
the positive or negative direction) [16] For a singular nonlinear traveling wave system of 
the first class with possible change of the wave variable, if an orbit transversely intersects 
with a singular straight line at a point or it approaches a singular straight line, but the 
derivative tends to infinity, then it only takes a finite time interval to make moved point of 
the orbit arrive on the singular straight line.

The Discussion of Bifurcation Parameter b

In this section, we treat the constant b of b-equation(1) as a bifurcation parameter. Assume 
that c > 0 and k > 0 first. The aim of this part is to investigate the classification of solitary 
waves vanishing at infinity of the b-equation(1) under different parametric ranges of b.

Changing the (x,  t) coordinates into the traveling frame (�, t) , where � = x − ct , the 
equation(1) under traveling frame admits the following steady state equation:

where � = d

d�
 . Integrate once,

where the integration constant is taken to be 0 such that �,�′ and �′′ vanish at � → ±∞ . 
The above is equivalent to the following system of first-order equations

This system is degenerate at the vertical line � = c : the orbits of this system can only touch 
the line at most at two points B1,2 = (c,±

√
4kc−2c2+(1+b)c2

b−1
) (which fail when b = 1).Then 

study the following (partially equivalent) system by a simple transformation:

(4)(2k − c)�� + (1 + b)��� − b����� + c���� − ����� = 0,

(5)(2k − c)� +
(1 + b)

2
�2 −

b − 1

2
��2 + c��� − ���� = 0,

(6)

⎧
⎪⎨⎪⎩

�� = � ,

(c − �)� � = (c − 2k)� −
1 + b

2
�2 −

1 − b

2
�2.
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where ̇ = d

(c−𝜙)d𝜉
 . It is easy to find that systems (6) and (7) have same orbits on the left side 

of the vertical line � = c with the same direction, and have same orbits on the right side of 
the line with opposite directions. By caculation, the integral factor for the b-equation (1) is 
(c − �)b−2 and the system(7) can be transformed into the following equality

Now, figure out the first integrals for different bs as

whose total differential dHb(�,�) = 0 , which indicates that any orbit of system (7) lies 
on some level curve of function Hb(�,�) . Moreover, we have known (�,�) → (0, 0) as 
� → ±∞ . Therefore, we only consider the level curve of function Hb(�,�) which passes 
the point O(0, 0).

Also, from the above representations, we can easily find that there are three special 
points b = −1, 0, 1. This inspired the following classifications:

•	 b > 1

In this case,

and the system possesses two equilibrium points O(0,  0) and A( 2c−4k
1+b

, 0) at the left side 
of the line � = c , whose eigenvalues are decided by the equalities �2 = (c − 2k)c and 
�2 =

(c−2k)(c−4k−bc)

1+b
 separately. When c > 2k > 0 , the equilibrium point O(0, 0) is a saddle 

point and the point A( 2c−4k
1+b

, 0) , which lies at the right side of O(0,  0) and the left side 
of � = c , is a center point, these provide the possibility of the existence of the solitary 
waves. When 0 < c < 2k , inversely, the equilibrium point O(0, 0) is a center point while 
A(

2c−4k

1+b
, 0) is a saddle point and lies at the left side of O(0, 0), which makes the existence 

of the homoclinic orbit to O(0, 0) impossible. Therefore, we will add hypothesis c > 2k > 0 
in the following to make the paper more concise.

Then, we set Hb(�,�) = Hb(0, 0) =
−2kcb

b(b−1)
 , i.e.,

(7)

⎧
⎪⎨⎪⎩

𝜙̇ = (c − 𝜙)𝜓 ,

𝜓̇ = (c − 2k)𝜙 −
1 + b

2
𝜙2 −

1 − b

2
𝜓2,

(8)
(
(c − 2k)� −

1 + b

2
�2 −

1 − b

2
�2

)
(c − �)b−2d� = (c − �)b−1�d� .

(9)

Hb(�,�) =

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2k ln �c − �� +
�
−
1

2
c2 + 2ck +

1

2
�2 +

1

2
c� −

1

2
�2

�
(c − �)−1, b = 0

1

2

�
−�2 − 4k� − 4ck ln �c − �� + �2 − c2

�
, b = 1

�
(2k − c)� − ck +

1

2
c2 +

1

2
�2

�
(c − �)−2, b = −1

�
−
1

2
�2 −

2k

b
� −

2ck

b(b − 1)
+

1

2
�2

�
(c − �)b−1, b ≠ −1, 0, 1

(10)Hb(�,�) =

(
−
1

2
�2 −

2k

b
� −

2ck

b(b − 1)
+

1

2
�2

)
(c − �)b−1,
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In order to figure out what (11) looks like, we let

Because of the inequality Hb(c, ⋅) ≠ Hb(0, 0) , we only need to analyze 𝜙 < c . Then we get

where f ���(𝜙) < 0 . Thus, f ��(�) is a monotonically decreasing function. By calculation, 
f ��(𝜙)|𝜙=0 = −

4k

c
+ 2 > 0 , f ��(�)|�→c− → −∞ . Thus, f �(�) is a function that increases 

first and then decreases, with the turning point between 0 and c. Again, we calculate 
f �(�)|�=0 = 0 and f �(�)|�→c− → −∞ . Thus, f (�) is a function that decreases first and 
then increases and then decreases again, the turning points are 0 and some value which is 
between 0 and c. At last, I figure out f (�)|�=0 = 0 and f (�)|�→c− → −∞ . Hence, the fig-
ure of f (�) is clear, which can be seen in Fig. 1(a). Then, I come to the conclusion, when 
c > 2k > 0 , there exists the unique pulse Γb , which lies on the left side of the vertical line 
� = c and to the right of the orgin. See Fig. 1(b).

•	 b = 1

At this time,

Just like the first case, the system possesses two equilibrium points O(0,  0) (sad-
dle) and A(c − 2k, 0) (center) at the left side of the line � = c when c > 2k > 0 . 

(11)�2 =
−4kcb

b(b − 1)
(c − �)1−b + �2 +

4k

b
� +

4ck

b(b − 1)
.

(12)f (�) ≜ −4kcb

b(b − 1)
(c − �)1−b + �2 +

4k

b
� +

4ck

b(b − 1)
.

(13)
f �(�) =

−4kcb

b
(c − �)−b + 2� +

4k

b
,

f ��(�) = −4kcb(c − �)−b−1 + 2,

f ���(�) = −4(b + 1)kcb(c − �)−b−2,

(14)H1(�,�) =
1

2
(−�2 − 4k� − 4ck ln |c − �| + �2 − c2).

Fig. 1   b > 1
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We can similarly detect the existence of the unique pulse Γ1 from the relationship 
H1(�,�) = H1(0, 0) = −

1

2
c2 − 2ck ln c.

∙ 0 < b < 1

Something different happens. At this time, the point O(0, 0) is still a saddle point and the 
eigenvalue of A( 2c−4k

1+b
, 0) is still decided by the equality �2 = (c−2k)(c−4k−bc)

1+b
 . When b > 1 −

4k

c
 , 

we still have 𝜆2 < 0 . While when b ≤ 1 −
4k

c
 , we can find that �2 ≥ 0 , which shows that the 

point A is a center point. More than that, along with the type of eigenvalue changes, the loca-
tion of the point A moves from the left side of the line � = c to its right side.

Hence, when b ∈ (0, 1) ∩ (1 −
4k

c
,+∞) , just like what we do before, we can detect the 

existence of the homoclinic orbit Γb by setting Hb(�,�) = Hb(0, 0) =
−2kcb

b(b−1)
 . However, when 

b ∈ (0, 1) ∩ (−∞, 1 −
4k

c
] , we calculate

along with

It is easy to find that the figure starts from O(0, 0) will never touch the line � = c , accord-
ing to Definition 2.4 and Lemma 2.2, we can claim that the system possesses a pseudo-
peakon at the left side of the line � = c and at this time there exists no pulse. See Fig. 2.

•	 b = 0

In this case,

The equilibrium point O(0, 0) is still a saddle point, but A(2c − 4k, 0) has two possibilities. 
When 2k < c < 4k , A stays at the left side of the line � = c , it is still a center point and thus 

Hb(0, 0) =
−2kcb

b(b − 1)
, Hb

(
c,±

√
c2 +

4ck

b − 1

)
= 0, Hb(c, ⋅) = ∞,

f (𝜙)|𝜙=0 = 0, f (𝜙)|𝜙→c− → c2 +
4ck

b − 1
> 0, f �(𝜙)|𝜙→c− → −∞.

(15)H0(�,�) = 2k ln |c − �| + (−
1

2
c2 + 2ck +

1

2
�2 +

1

2
c� −

1

2
�2)(c − �)−1.

Fig. 2   b ∈ (0, 1) ∩ (−∞, 1 −
4k

c
)
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similarly surrounded by a homoclinic orbit. When c > 4k , A lies at the right side of the line 
� = c , we can detect the existence of the pseudo-peakon Γ0 by the same method.

∙ − 1 < b < 0

Just like the third case, b = 1 −
4k

c
 is the only special point. When b ∈ (1 −

4k

c
,+∞) ∩ (−1, 0) , 

the system possesses a unique pulse; when b ∈ (−∞, 1 −
4k

c
] ∩ (−1, 0) , the system possesses a 

pseudo-peakon at the left side of the line � = c.

•	 b = − 1

At this time,

The system possesses only one equilibrium point O(0, 0) , which is a saddle point. Simi-
larly, we set

then we have

Obviously, according to Definition 2.3 and Lemma 2.2, there exists a peakon Γ−1 . See 
Fig. 3.

•	 b < − 1

At this time, this system possesses two equilibrium points O(0, 0) (saddle) and A( 2c−4k
1+b

, 0) 
(center). However, the point A( 2c−4k

1+b
, 0) moves to the left side of the origin, slightly differ-

ent from the first case. By the analysis of f (�) and it’s derivations, we find that f (�) is a 

(16)H−1(�,�) = ((2k − c)� − ck +
1

2
c2 +

1

2
�2)(c − �)−2.

(17)H−1(�,�) = H−1(0, 0) =
1

2
−

k

c
,

(18)�2 =
c − 2k

c
�2.

Fig. 3   b = −1
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function that increases first and then decreases and then increases again, the turning points 
are 0 and some value which is smaller than 0. Moreover,

and

Hence, the figure of f (�) can be seen in Fig. 4(a). At this time, there exists an anti-pulse Γb 
at the left side of origin.

We summarize as the following theorem

Theorem 2.1  When c > 2k > 0 , there exist two bifurcation points b = 1 −
4k

c
 and b = −1 

for b-equation (1). For b > 1 −
4k

c
 , the orbit Γb which passes through the origin is a pulse; 

for −1 < b ≤ 1 −
4k

c
 , the orbit Γb breaks to be a pseudo-peakon; for b = −1 , the orbit Γ0 is 

a peakon; for b < −1 , the orbit Γb contains an anti-pulse. When 0 < c < 2k , there exists no 
solitary wave solution.

For the sake of visual representation, we take k = 0.2 , c = 1 as an example. See Fig. 5.

The Discussion of Bifurcation Parameter k

In this section, we treat the constant k of b-equation (1) as a bifurcation parameter. According 
to Theorem 2.1, we assume c > 2k , b > 1 −

4k

c
 and we assume c > 0 still.

Under these assumptions, the equilibrium point O(0, 0) is always a saddle point. From (9), 
there are

f (𝜙)|𝜙=0 = 0, f (𝜙)|𝜙=c = c2 +
4ck

b − 1
> 0, f (𝜙)|𝜙→−∞ → −∞,

f �(𝜙)|𝜙=c = 2c +
4k

b
> 0.

(19)Hb(O) = Hb(0, 0) =
−2kcb

b(b − 1)
, b ≠ −1, 0, 1

Fig. 4   b < −1
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When b ≠ −1, 0, 1 , the values of the above two expressions are equal at k = 0 . Moreover,

According to Definition 2.3 and Lemma 2.2, the system (7) possesses a peaked soliton.
For the remaining b: When b = −1 , the system (7) possesses a peaked soliton by Theo-

rem 2.1; When b = 0 , similarly, we get

so the orbit Γb is a peakon; When b = 1 , there exist no equilibrium points B1,2 , but we still 
have

(20)Hb(B1,2) = Hb

(
c,±

√
4kc − 2c2 + (1 + b)c2

b − 1

)
= 0, b ≠ −1, 0, 1.

(21)Hb(B1,2)|k=0 = Hb(c,±c) = Hb(�,±�)|k=0 = 0 = Hb(0, 0)|k=0.

H0(B1,2)|k=0 = H0(c,±c) = H0(�,±�)|k=0 = 0 = H0(0, 0)|k=0,

Fig. 5   Numerical simulations of Γ
b
(blue line) which goes through O(0, 0) and orbits(red line) around Γ

b
 

when k = 0.2 , c = 1
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it also indicates the existence of the peakon.
Summarize these, we come to the conclusion:
When k = 0 , ∀b > 1 −

4k

c
 , there exists a peakon for equation (1). When k ≠ 0 : if the 

value of k is positive, it is the situation which we have discussed in Chapter 2.1; when 
the value of k is negative, by similar analysis as in Chapter 2.1, we find that f (�) is a 
function that decreases first and then increases, whose turning point is 0. Moreover,

According to Definition 2.5 and Lemma 2.2, there exists a cuspon for equation (1).
So, we get the following theorem:

Theorem 2.2  When c > 0 , c > 2k , b > 1 −
4k

c
 , there exists one bifurcation point k = 0 for 

b-equation(1). When k is positive, Γb is a pulse; when k = 0 , Γb is a peakon; when k is 
negative, Γb contains a cuspon.

(22)H1(�,±�)|k=0 = −
1

2
c2 = H1(0, 0)|k=0,

(23)f (�)|�=0 = 0, f (�)|�→c− → +∞, f (�)|�→−∞ → +∞, f �(�)|�→c− → +∞.

Fig. 6   Solutions when c > 2k , c > 0 , b > 1 −
4k

c

Fig. 7   b = 2
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The corresponding situations can be seen in Fig. 6. For the sake of visual representa-
tion, we take b = 2, 3 as the representative examples, which are depicted in Figs. 7 and 
8.

Actually, the corresponding soliton converges to the peakon in H1 norm when k → 0 . To 
see it, first, we review (11)

Then, because of the property of Γb , we get rid of the positive situation to have

When k = 0 , the corresponding ODE is �� = −� and the corresponding peaked soliton is 
𝜙̂ = Ce−|x−ct| . When k ≠ 0 , we come back to the original system(7)

which can be transformed into the first order equation

Let

�2 =
−4kcb

b(b − 1)
(c − �)1−b + �2 +

4k

b
� +

4ck

b(b − 1)
.

(24)� = −

√
−4kcb

b(b − 1)
(c − �)1−b�−2 + 1 +

4k

b
�−1 +

4ck

b(b − 1)
�−2�.

⎧
⎪⎨⎪⎩

�� = (c − �)� ,

� � = (c − 2k)� −
1 + b

2
�2 −

1 − b

2
�2,

(25)d�

d�
=

(c − 2k)� −
1+b

2
�2 −

1−b

2
�2

(c − �)�
.

(26)g(�,� , k) ≜ (c − 2k)� −
1+b

2
�2 −

1−b

2
�2

(c − �)�
,

Fig. 8   b = 3
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then we can find by observation that when (�,� , k) ∈ (0, c) ×ℝ ⧵ {0} ×ℝ , g(�,� , k) is 
continuous and satisfies local Lipschitz conditions about � uniformly. Hence, according to 
the continuity theorem of solution on parameters, we get

i.e.,

Put (24) into (25), we have

Similarly, according to the continuity theorem of solution on parameters, we get

Combine with the results we have already known, it is apparently 0 < 𝜙 < c , so we just 
need to figure out what it looks like when � = 0 . Now, (�,�) = (0, 0) is a saddle point of 
the system (7), we can depict the property of solutions at (0, 0) by linearizations at (0, 0)

This system (28) has solutions

where C1,2(c, k) are functions about c and k. Review our initial conditions, C1,2 need to 
satisfy

Hence, ∀c, k satisfy Theorem 2.2,

In conclusion,

|𝜓(𝜙; c, k, b) − 𝜓(𝜙; c, 0, b)| < 𝜖, k → 0,

|||𝜙
� − 𝜙̂�||| < 𝜖, k → 0.

(27)
d�

d�
= −

√
−4kcb

b(b − 1)
(c − �)

1−b�−2 + 1 +
4k

b
�−1 +

4ck

b(b − 1)
�−2�.

|||𝜙(𝜉) − 𝜙̂(𝜉)
||| < 𝜖, k → 0, (𝜙, 𝜉) ∈ (0, c) ×ℝ

(28)
{

�� = c� ,

� � = (c − 2k)�.

(29)�(�) = C1(c, k)e
√
c2−2ck� + C2(c, k)e

−
√
c2−2ck� ,

�C1(c, k)e
√
c2−2ck𝜉� < 𝜀, 𝜉 → +∞,

�C2(c, k)e
−
√
c2−2ck𝜉� < 𝜀, 𝜉 → −∞.

∃M1 > 0, ∀𝜉 > M1, C1(c, k)e
√
c2−2ck𝜉

→ 0;

∃M2 < 0, ∀𝜉 < M2, C2(c, k)e
−
√
c2−2ck𝜉

→ 0.
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So, we claim

Corollary 2.1  For b > 1 −
4k

c
 fixed, the solitons of equation(1) converge to the peakons in 

H1 norm when k → 0.

The Existence of Solitary Wave Solutions for B‑Class Kuramoto–
Sivashinsky Equation

In this section, we discuss the persistence of solitary wave solutions for b-class equation 
under Kuramoto–Sivashinsky perturbation. First, we recall some basic theories of geomet-
ric singular perturbation, which serve as our main tool to study the persistence of solitary 
wave solutions.

Geometric Theory of Singular Pertubation

Consider the system

where � = d

dt
 , � ∈ Rl , � ∈ Rm , � ∈ Rn and � is a real parameter, f, g, h are C∞ on the set 

V × I where V ∈ Rl+m+n and I is an open interval, containing 0.
System (31) can be reformulated with a change of time-scale as

where ̇ = d

d𝜏
 and � = �t . The time scale given by � is said to be slow whereas that for t is 

fast. Thus we call (31) the fast system and (32) the slow system. As long as � ≠ 0 , the two 
systems are equivalent. Each of the scalings is naturally associated with a limit as � → 0 . 
These two limits are respectively given by

(30)

lim
k→0

‖𝜙 − 𝜙̂‖H1 = lim
k→0∫

+∞

−∞

�𝜙 − 𝜙̂�2 + �D(𝜙 − 𝜙̂)�2d𝜉

= lim
k→0∫

M2

−∞

�𝜙 − 𝜙̂�2 + �D(𝜙 − 𝜙̂)�2d𝜉 + lim
k→0∫

M1

M2

�𝜙 − 𝜙̂�2 + �D(𝜙 − 𝜙̂)�2d𝜉

+ lim
k→0∫

+∞

M1

�𝜙 − 𝜙̂�2 + �D(𝜙 − 𝜙̂)�2d𝜉
= 0.

(31)

⎧⎪⎨⎪⎩

�� = f (�,� , �, �),

� � = g(�,� , �, �),

�� = �h(�,� , �, �),

(32)

⎧
⎪⎨⎪⎩

𝜀𝜙̇ = f (𝜙,𝜓 , 𝜈, 𝜀),

𝜀𝜓̇ = g(𝜙,𝜓 , 𝜈, 𝜀),

𝜈̇ = h(𝜙,𝜓 , 𝜈, 𝜀),
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and

The former is called the layer problem and the letter is called the reduced system.

Definition 3.1  [11] A manifold M0 on which f (�,� , �, 0) = 0 , g(�,� , �, 0) = 0 is called a 
critical manifold. A critical manifold M0 is said to be normally hyperbolic if the lineariza-
tion of the system (33) at each point in M0 has exactly n eigenvalues on the imaginary axis 
R(�) = 0.

Definition 3.2  [11] A set of M is locally invariant under the flow of (31) if it has neighbor-
hood V so that no trajectory can leave M without also leaving V. In other words, it is locally 
invariant if for all (�,�) ∈ M , (𝜙,𝜓) ⋅ [0, t] ⊂ M , and similarly with [0, t] replaced by [t, 0] 
when t < 0 , where (�,�) ⋅ t denotes the application of a flow after time t to the initial con-
dition (�,�).

Fenichel [11] established the following geometric theory of singular perturbation.

Lemma 3.1  Let M0 be a compact, normally hyperbolic critical manifold, then for suffi-
ciently small positive � and any 0 < r < +∞.

∙ there exists a manifold M� , which is locally invariant under the flow of (31) and Cr in 
�,� , �, �.

∙ M� possesses locally invariant stable and unstable manifold Ws(M�) and Wu(M�) lying 
within O(�) and being Cr diffeomorphic to the stable and unstable manifold Ws(M0) and 
Wu(M0) of the critical manifold M0.

∙ the dynamics on M� is a regular perturbation of that generated by system (34).

Persistence of Solitary Wave Under Kuramoto–Sivashinsky Perturbation

It is proved recently in [14] that for Camassa-Holm equation ( b = 2 ), there is a unique per-
sistent solitary wave under singular Kuramoto–Sivashinsky perturbation. We want to see 
whether this fact still remains true for other bs in the b-class equation.

To figure out, first, we consider the following equation with k > 0:

(33)

⎧
⎪⎨⎪⎩

�� = f (�,� , �, 0),

� � = g(�,� , �, 0),

�� = 0,

(34)

⎧
⎪⎨⎪⎩

0 = f (𝜙,𝜓 , 𝜈, 0),

0 = g(𝜙,𝜓 , 𝜈, 0),

𝜈̇ = h(𝜙,𝜓 , 𝜈, 0).

(35)ut − uxxt + 2kux + (b + 1)uux + �(uxx + uxxxx) = buxuxx + uuxxx.
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By the same method used in Chapter 2, we get the corresponding solitary wave ODE

Integrate once to yield

which is equivalent to the following slow system of first-order equations

With s = �

�
 and ̇ = d

ds
 , the corresponding fast system is

Setting � = 0 , we get the critical manifold to be

Now, M0 consists of equilibrium points of (39) for � = 0 . The linearization is given by

Therefore, the critical manifold M0 is normally hyperbolic with one stable normal direc-
tion. Consequently, it follows from Definition 3.1 that, for 𝜖 > 0 sufficiently small, there 
exists a two dimensional locally invariant manifold M� lying O(�) close to M0 in the C1 
topology, and given by

from which it follows that the flow on M� satisfies the following equation

which is seen to be a regular perturbation of (6) with � = 0 . Then, we calculate the pertur-
bation term. Since M� is locally invariant, we differential the equation

(36)c���� − (c − 2k)�� + (b + 1)��� − b����� − ����� + �(��� + �(4)) = 0.

(37)(c − �)��� + (2k − c)� +
1 + b

2
�2 −

b − 1

2
��2 + �(�� + ����) = 0,

(38)

⎧⎪⎨⎪⎩

�� = � ,

� � = �,

��� = −(c − �)� + (c − 2k)� −
1 + b

2
�2 +

b − 1

2
�2 − �� .

(39)

⎧⎪⎨⎪⎩

𝜙̇ = 𝜖𝜓 ,

𝜓̇ = 𝜖𝜈

𝜈̇ = −(c − 𝜙)𝜈 + (c − 2k)𝜙 −
1 + b

2
𝜙2 +

b − 1

2
𝜓2 − 𝜖𝜓 .

M0 =

{
(�,� , �) ∶ (c − �)� = (c − 2k)� −

1 + b

2
�2 +

b − 1

2
�2

}
.

(40)
⎛⎜⎜⎝

0 0 0

0 0 0

c − 2k + � − (1 + b)� (b − 1)� � − c

⎞⎟⎟⎠
.

(41)M� =

{
(�,� , �) ∶ (c − �)� = (c − 2k)� −

1 + b

2
�2 +

b − 1

2
�2 + �g(�,� , �)

}
,

(42)

⎧⎪⎨⎪⎩

�� = � ,

(c − �)� � = (c − 2k)� −
1 + b

2
�2 +

b − 1

2
�2 + �g(�,� , �),
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with respect to � to get

We substitute the expressions for �′,� ′, �′ from (39) and also the expression for � given by 
(43) into (44), and, after cancelling the O(1) terms, we get

Therefore, restricted to the slow manifold M� , (42) is

Within a small neighborhood of the unperturbed homoclinic orbits Γ , c − � is always posi-
tive. So (45) is equivalent to

where ̇ = d

(c−𝜙)d𝜉
 . Moreover, we have already known the first integral

where b ≠ −1, 0, 1 . In order to study the homoclinic orbit Γb which goes through the origin, 
we set Hb(�,�) = Hb(0, 0) and calculate the intersection points on the �−axis.

Our aim is to seek homoclinic orbits for (46) with small � , which depends on the value of 
c. From the original equations, one can see that O(0, 0) remains a critical point and must lie 
on M� . We thus look for orbits homoclinic to O(0, 0). The critical point O(0, 0) can be con-
structed as a surface of critical points, parameterized by c, � . This in turn spawns an unstable 
manifold Wu and stable manifold Ws , which meet at � = 0.

Hence, in the set { � = 0 }, we parameterize Wu and Ws[18] as � = h−(c, �) and 
� = h+(c, �) . We define

(43)(c − �)� = (c − 2k)� −
1 + b

2
�2 +

b − 1

2
�2 + �g(�,� , �)

(44)(c − 2k)�� + ��� + (� − c)�� − (1 + b)��� + (b − 1)�� � + O(�) = 0.

(45)
g(�,� , �) = −

�

(c − �)2

(
−b2 + b + 4

2
�2

+
b2 − b

2
�2 + (2 − 2b)k� + 2c2 − 2ck − 4c�

)
+ O(�).

(46)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�� = � ,

(c − �)� � = (c − 2k)� −
1 + b

2
�2 +

b − 1

2
�2

−
��

(c − �)2

�
−b2 + b + 4

2
�2 +

b2 − b

2
�2 + (2 − 2b)k� + 2c2 − 2ck − 4c�

�

+ O(�2).

(47)

⎧⎪⎪⎨⎪⎪⎩

𝜙̇ = (c − 𝜙)𝜓 ,

𝜓̇ = (c − 2k)𝜙 −
1 + b

2
𝜙2 +

b − 1

2
𝜓2

−
𝜀𝜓

(c − 𝜙)2

�
−b2 + b + 4

2
𝜙2 +

b2 − b

2
𝜓2 + (2 − 2b)k𝜙 + 2c2 − 2ck − 4c𝜙

�
+ O(𝜖2),

Hb(�,�) =

(
−
1

2
�2 −

2k

b
� −

2ck

b(b − 1)
+

1

2
�2

)
(c − �)b−1,

d(c, �) = h−(c, �) − h+(c, �)
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and observe that zeroes of d render homoclinic orbits. Since there are homoclinic orbits 
independently of c when � = 0 , we have d(c, 0) = 0 , and thus that d(c, 𝜖) = 𝜖d̃(c, 𝜖) . The 
Melnikov function is here given by

It is a simple application of the Implicit Function Theorem to see that there is a curve of 
homoclinic orbits given by c = c(�) for � small, if there exists a c, at which

Then we can calculate this Melnikov function

where d𝜁 =
d𝜙

(c−𝜙)b−1𝜓
 . We always consider the case c > 2k > 0 in this section.

Since it is difficult to calculate the fractional order equations and equations with log-
arithmic terms, we can not get the display expression of the intersection between the �
-axis and the unperturbed homoclinic. We can only deal with two situations: b = 2, 3 , 
which have explicit solutions.

•	 b = 2

It is the case: Camassa-Holm equation. We consider the following equation:

According to Li and Du’s work [14], the corresponding Melnikov integral is given by

where d� =
d�

(c−�)�
 , �,� are evaluated on the unperturbed homoclinic Γ2 which satisfies

By calculation, when 2k < c <
2k

−19+
√
385

 , the function M(c) is concave; when c > 2k

−19+
√
385

 , 
the function M(c) is strictly uniformly convex. Also, we have

(48)d̃(c, 0) = M(c) =

(
𝜕h−

𝜕𝜖
−

𝜕h+

𝜕𝜖

)
|𝜖=0.

M(c) = 0,M�(c) ≠ 0.

(49)

M(c)

= ∫
+∞

−∞

|||||||

(c − 𝜙)b−1𝜓 0

(c − 𝜙)b−2
(
(c − 2k)𝜙 −

1+b

2
𝜙2 +

b−1

2
𝜓2

)
−

𝜓

(c−𝜙)4−b

(
−b2+b+4

2
𝜙2 +

b2−b

2
𝜓2 + 2c2

+(2 − 2b)k𝜙 − 2ck − 4c𝜙)

|||||||
d𝜁

= ∫
+∞

−∞

−(c − 𝜙)2b−5𝜓2

(
−b2 + b + 4

2
𝜙2 +

b2 − b

2
𝜓2 + (2 − 2b)k𝜙 + 2c2 − 2ck − 4c𝜙

)
d𝜁 ,

(50)ut − uxxt + 2kux + 3uux + �(uxx + uxxxx) = 2uxuxx + uuxxx.

M(c) = ∫
+∞

−∞

|||||
(c − �)� 0

(c − 2k)� −
3

2
�2 +

1

2
�2 −

�

(c−�)2
(�2 + �2 − 2k� + 2c2 − 2ck − 4c�)

|||||
d�

= ∫
+∞

−∞

−(c − �)−1�2(�2 + �2 − 2k� + 2c2 − 2ck − 4c�)d� ,

(51)(� − c)�2 − �3 − (2k − c)�2 = 0.

M(2k) =
d

dc
M(2k) = 0,

M → −∞, as c → +∞,
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which indicates there is a unique simple zero of the function M(c) somewhere larger than 
2k

−19+
√
385

 , which is depicted in Fig.9(a). Therefore, by Implicit Function Theorem, for each 
fixed 2k > 0 , there is a unique persistent homoclinic orbit for 0 < 𝜀 ≤ 1.

•	 b = 3

It is the case: Degasperis-Procesi equation. We consider the following equation with 
k > 0:

By calculation, we get the critical manifold to be

and the two dimensional locally invariant manifold M̃𝜖 , which lies O(�) close to M̃0 in the 
C1 topology, is given by

Also, we calculate g̃ to be

Then, the DP-KS equation’s Melnikov function can be represented as

where d� =
d�

(c−�)2�
 . For further calculation, we set

(52)ut − uxxt + 2kux + 4uux + �(uxx + uxxxx) = 3uxuxx + uuxxx.

M̃0 = {(𝜙,𝜓 , 𝜈) ∶ (c − 𝜙)𝜈 = (c − 2k)𝜙 − 2𝜙2 + 𝜓2},

(53)M̃𝜖 = {(𝜙,𝜓 , 𝜈) ∶ (c − 𝜙)𝜈 = (c − 2k)𝜙 − 2𝜙2 + 𝜓2 + 𝜖g̃(𝜙,𝜓 , 𝜖)}.

(54)g̃(𝜙,𝜓 , 𝜈) = −
𝜓

(c − 𝜙)2
(−𝜙2 + 3𝜓2 − 4k𝜙 + 2c2 − 2ck − 4c𝜙) + O(𝜖).

M(c) = ∫
+∞

−∞

|||||
(c − �)2� 0

(c − �)((c − 2k)� − 2�2 + �2) −
�

c−�
(−�2 + 3�2 − 4k� + 2c2 − 2ck − 4c�)

|||||
d�

= ∫
+∞

−∞

−(c − �)�2(−�2 + 3�2 − 4k� + 2c2 − 2ck − 4c�)d� ,

(55)H3(�,�) =
1

2
�4 +

2k − 3c

3
�3 −

2ck − c2

2
�2 −

(c − �)2

2
�2 +

c3k

3
= H3(0, 0)

Fig. 9   Numerical simulations of Melnikov function M(c)
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to find the intersection on the �−axis to be (�∗, 0) = (
−2k+3c−

√
4k2+6ck

3
, 0) . Changing vari-

able � = c − � , we get

This is the calculation about the original functions of rational polynomials, we get the final 
result to be

which is described by numerical simulation in Fig. 9(b).
It explicitly shows that there is a unique simple zero of the function M(c). We get there-

fore from the Implicit Function Theorem that for each fixed k > 0 , there is a unique persis-
tent homoclinic orbit for 0 < 𝜖 ≤ 1 . This proves the following theorem:

Theorem 3.1  For any k > 0 . For sufficiently small 𝜖 > 0 , there is a unique solitary wave to 
Degasperis-Procesi Kuramoto–Sivashinsky equation (52).

Compare these two representative graphs, we can draw the conjecture due to their 
similarities.

Conjecture 3.1  For any fixed k > 0 . For sufficiently small 𝜖 > 0 , there is a unique solitary 
wave to b-class Kuramoto–Sivashinsky equation when b ∈ [2, 3].

(56)

M(c) = −2∫
�∗

0

(c − �)2�2(−�2 + 3�2 − 4k� + 2c2 − 2ck − 4c�)
d�

(c − �)2�

= −2∫
�∗

0

�

(c − �)4

√
�2 +

4k − 6c

3
�2 + c2 − 2ck(2(c − �)4 − 2c3k)d�

= 2∫
c−�∗

c

c − �

�4

√
�2 −

4k

3
� −

2ck

3
(2�4 − 2c3k)d�.

(57)

M(c) =8c3k

�
−432c3k2 − 3968k5 − 2592k3c2 − 5184k4c −

1024k6

c�
12ck + 8k2 + 4k

√
4k2 + 6ck

�3

−

�
1600k4 + 432k2c2 + 1536k3c +

512k5

c

�√
6ck + 4k2

�
12ck + 8k2 + 4k

√
4k2 + 6ck

�3

−

−8c5 +
736k2c3

27
−

256k3c2

27
+

�
8c4 +

32ck3

27
+ 8kc3 −

416c2k2

27

�√
c2 − 2ck

�
2c2 −

4ck

3
− 2c

√
c2 − 2ck

�3

− (1 +
2k

3c
)

�
2ck

3

�−
1

2

�
arctan

��
2ck

3

�−
1

2 2k +
√
4k2 + 6ck

3

�

− arctan
��2ck

3

�−
1

2
�
c −

√
c2 − 2ck

���

+ 2

�
c −

2k

3

��
4k2

9
+

2ck

3

�
ln

3c − 2k + 3
√
c2 − 2ck√

4k2 + 6ck

−

�
2c2

3
+

8k2

9

�√
c2 − 2ck,
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