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Abstract
In this paper, we investigate a differential game problem of multiple number of pursuers 
and a single evader with motions governed by a certain system of first-order differential 
equations. The problem is formulated in the Hilbert space �2, with control functions of 
players subject to integral constraints. Avoidance of contact is guaranteed if the geometric 
position of the evader and that of any of the pursuers fails to coincide for all time t. On the 
other hand, pursuit is said to be completed if the geometric position of at least one of the 
pursuers coincides with that of the evader. We obtain sufficient conditions that guarantees 
avoidance of contact and construct evader’s strategy. Moreover, we prove completion of 
pursuit subject to some sufficient conditions. Finally, we demonstrate our results with some 
illustrative examples.
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Introduction

In the mid twentieth century, the need for solving conflict problems brought forth an 
area of research in mathematics known as Differential game. It was pioneered by Isaacs 
[27]. Thereafter, fundamental results have been obtained and published in books such as 
Berkovitz [8], Friedman [14], Krasovskii and Subbotin [29, 30], Lewis [33], Petrosyan 
[39] and Pontryagin [40].

Evasion differential game problem is a class of differential game problem that 
involves finding sufficient conditions for avoidance of contacts of one (or more) 
dynamic object(s) from many other objects. This class of game problem amongst others 
has received attention from researchers and many results were obtained (see, e.g. [4, 6, 
15, 34, 41, 42] and some references therein).

Pontryagin and Mischenko in [41], studied problem of evasion in linear differential 
game and obtained interesting results for the case of finite dimensional state spaces on 
an infinite time interval with geometric constraints. Azimov [6] and Mezentsev [34] 
investigated and extended this result to the case of integral constraints. Thereafter, Gam-
krelidze and Kharatashvili [15] developed a new method of solving quasilinear evasion 
differential game problems.

Among the works dedicated to differential games of several players, equation of 
motions described by

integral or geometric constraints on players control parameters, where a(t) is a scalar func-
tion defined on some intervals, were investigated in [1–3, 9, 12, 13, 16, 20–25, 28, 31, 35, 
43, 44].

Alias et. al [3] investigated evasion differential game problem of countably many 
pursuers and countably many evaders in the Hilbert space �2 with a(t) = 1 and integral 
constraints imposed on players control functions. They proved that evasion is possible 
under the assumption that the total resource of evaders exceeds (or equals) that of the 
pursuers and initial positions of all the evaders are not limit points for initial positions 
of the pursuers.

In [22] and [23], pursuit-evasion differential game described by (1) was studied in 
the Hilbert space �2 with geometric and integral constraints on control functions of 
the players respectively, where a(t) = � − t, and � is the duration of the game. In both 
papers, sufficient conditions for completion of pursuit as well as value of the game were 
obtained.

Ibragimov and Satimov [25] considered differential game problem of many pursuers 
and many evaders described by (1) on a nonempty convex subset of ℝn where all players 
are confined within the convex set. In the paper, a(t) is a scalar measurable function satis-
fying some conditions and the control functions of players are subjected to integral con-
straints. It was proven that pursuit can be completed if the total resources of the pursuers is 
greater than that of the evaders.

The work in [43] deals with the case when all players are endowed with equal dynamic 
capabilities with geometric constraints, where a(t) = 1 . The pursuit problem was solved 
with the assumption that the evader’s initial position must lie in the convex hull of that of 
the pursuers, otherwise evasion is possible. The results in [43] was later adopted in devel-
oping an efficient method of resolving functions for a linear group pursuit problem in [44].

(1)
{

ẋj(t) = a(t)uj(t), xj(0) = x0
j
, j = 1, 2,…

ẏ(t) = a(t)v(t), y(0) = y0,
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Reducing control problems for parabolic and hyperbolic partial differential equations to 
infinite system of differential equations

by using decomposition method based on Fourier expansion was proposed by 
Chernous’ ko [11], where zk, �k ∈ ℝ

1, �k, k = 1, 2,… are control parameters, 
𝜆k, 0 < 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆k ≤ ⋯ → ∞ are generalized eigenvalues of the elliptic operator

The concept has been applied in studying differential game problems for systems described 
by parabolic equations but reduced to the system (2) in Ibragimov [18, 19], Ichikawa [26], 
Osipov [36], Satimov and Tukhtasinov [45].

Ibragimov [18] adopted the proposed decomposition method [11] in solving an optimal 
pursuit problem described by (2) with integral constraints on controls of players. A detailed 
analysis and solution of the problem is presented in explicit form.

Ibragimov and Risman [21] considered pursuit and evasion differential game described 
by (2) in a certain Hilbert space they introduced as �2

r
 with integral constraints on control 

functions of the players, where the space

with inner product and norm defined by

respectively, for a given fixed number r and monotonically increasing sequence of positive 
numbers {�k}k∈ℕ . The evasion problem was studied on some disjoint subset (octants) of 
�
2
r
 and solved with the assumption that the total resources of the pursuers is less than the 

evader’s while the pursuit problem was solved in contrary to this assumption.
There are several other techniques of analyzing pursuit-evasion scenarios involving 

multiple pursuers and one evader proposed in the literature, for example; situations involv-
ing attackers, defenders and one evader are analyzed via the linear quadratic differential 
game approach in [10, 37], scenarios where the multiple pursuers and evader are restricted 
within a bounded domain are investigated and analyzed via the geometric approach based 
on dynamic Voronoi diagram in [7, 17, 46].

Motivated by the results in [21], we study the same problem for a differential game 
described by (1) in the Hilbert space �2 (coinciding with �

2
r
and r = 0) ; which amounts to 

solving the pursuit version of the problem in [3] and evasion version of the problem con-
sidered in [25]. More precisely, we investigate a differential game problem of avoidance 
of contacts (evasion) and completion of pursuit described by (1), but reduced to (2) in the 
Hilbert space �2 . With all players control parameters subject to integral constraint, we will 
show that if the total energy resources of the pursuers is less than that of the evader, then 
avoidance of contact is guaranteed. Furthermore, we obtain sufficient condition for com-
pletion of pursuit. It should be noted that in this work, a scalar non-negative function a(t) is 

(2)żk(t) + 𝜆kzk = 𝜔k, k = 1, 2,…

Az = −

n∑
i,j=1

�

�xi

(
aij(x)

�z

�xj

)
.

�
2
r
∶=

{
𝛼 = (𝛼1, 𝛼2,…) ∶

∞∑
k=1

𝜆r
k
𝛼2
k
< ∞

}
,

⟨�, �⟩r =
∞�
k=1

�r
k
�k�k, ����� =

�
∞�
k=1

�r
k
�2
k

�1∕2
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introduced into the equation of motion of the players (similar to the problem considered in 
Ibragimov and Satimov [25] in a finite dimensional space but in this paper, we will adopt 
a different solution concept with a mild condition on a(t)). Also, the case considered in [3, 
21] is a special case, where a(t) = 1.

This paper is organized as follows. Statement of the problem, notations and some basic 
definitions are given in Sect. 2. Section 3 constitutes the main results of this paper. It com-
prises three subsections, that is, Sects. 3.1, 3.2 and 3.3. In the first two subsections, we pro-
vide sufficient conditions for avoidance of contacts (Theorem 1) and completion of pursuit 
(Theorem  2), respectively. In addition to Sect.  3.1, we include an interesting subsection 
where estimation of distances between the evader and the pursuers is obtained. We illus-
trate our results with some examples in Sect. 3.3. Section 4 concludes the paper.

Statement of the Problem

Consider the Hilbert space

whose inner product and norm are respectively defined by

Let the motions of countably many pursuers Pj , j = 1, 2,… and an evader E be described 
by the equations

where xj(t), x0j , uj(t), y(t), y
0 , v(t) ∈ �2 ; uj(t) = (uj1(t), uj2(t),…) and v(t) = (v1(t), v2(t),…) 

are control parameters of the pursuer Pj and evader E respectively. Without any loss of 
generality we assume that the scalar measurable function a(t) ≥ 0 is not identically equal to 
zero on any interval t1 < t < t2 with t1 ≥ 0 , and moreover a(t) is such that for each n = 1, 2, 
the integral

 Suppose that uj(⋅), v(⋅) ∈ L2(t0, T; 𝓁2) , where T > 0 is the termination instant of the game 
(not necessarily fixed with respect to pursuit problem).

Definition 1  A function uj(⋅) = (uj1(⋅), uj2(⋅),…) with Borel measurable coordinates 
ujk(⋅), k = 1, 2,… , satisfying the inequality

�2 =

{
𝛼 = (𝛼1, 𝛼2,…) ∶

∞∑
k=1

𝛼2
k
< ∞

}
,

⟨�, �⟩ =
∞�
k=1

�k�k, ����� =
�

∞�
k=1

�2
k

�1∕2

, �, � ∈ �2.

(3)
{

Pj ∶ ẋj(t) = a(t)uj(t), xj(t0) = x0
j
,

E ∶ ẏ(t) = a(t)v(t), y(t0) = y0, x0
j
≠ y0,

∫
t2

t1

an(t)dt → ∞ as t2 → ∞.



929Differential Equations and Dynamical Systems (October 2023) 31(4):925–943	

1 3

where �j, j = 1, 2,… are given positive numbers, is called admissible control of the jth 
pursuer.

Definition 2  A function v(⋅) = (v1(⋅), v2(⋅),…) with Borel measurable coordinates vk(⋅), 
satisfying the inequality

where � is a given positive number, is called admissible control of the evader.

Remark 1  Note that the players dynamics (3) together with the integral constraints (4) (or 
(5)) allows the pursuer Pj (evader E, respectively) to move arbitrary far from its initial posi-
tion. That is, if the control resource constraint constant is �j , then applying a constant con-
trol uj with the magnitude ‖uj‖ ≡ �j∕

√
T  during a time interval with length T, the pursuer 

Pj spends its control resource totally and moves for distance �j
√
T . Thus, the distance can 

be made arbitrary large.

Whenever the players’ admissible controls uj(⋅) and v(⋅) are chosen, the corresponding 
motions of the jth pursuer and evader (solutions of equation (3)) are given by

respectively.

Definition 3  Suppose that

A function z(t) = (z1(t), z2(t),…), t0 ≤ t ≤ T , is called the solution of the system of 
equations

if: 

(1)	 each coordinate zk(t) is absolutely continuous function and almost everywhere on [t0, T] 
satisfies (7);

(2)	 z(⋅) ∈ C(t0, T ∶ 𝓁2) where C(t0, T ∶ �2) is the space of continuous functions 
z(t) = (z1(t), z2(t),…), t0 ≤ t ≤ T  with values in �2.

(4)�
T

t0

∥ uj(t) ∥
2dt ≤ �j

2, ‖uj(t)‖ =

�
∞�
k=1

u2
jk
(t)

�1∕2

,

(5)�
T

t0

∥ v(t) ∥2dt ≤ �2, ‖v(t)‖ =

�
∞�
k=1

v2
k
(t)

�1∕2

,

(6)

xj(t) = (xj1(t), xj2(t),…), xjk(t) = x0
jk
(t) + ∫

t

t0

a(s)ujk(s)ds,

y(t) = (y1(t), y2(t),…), yk(t) = y0
k
(t) + ∫

t

t0

a(s)vk(s)ds,

w(⋅) = (w1(⋅),w2(⋅),…) ∈ L2(t0, T ∶ 𝓁2), (z
0
1
, z0

2
,…) ∈ 𝓁2.

(7)żk = a(t)wk(t), zk(t0) = z0
k
, k = 1, 2,… ,
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Definition 4  A function

is called strategy of the evader if for any admissible controls of the pursuers uj(⋅) the evad-
er’s control v(t) = V(u1(t), u2(t),…), [t0, T], is admissible and system (3) has a unique 
solution after substitution of the players’ controls into it.

Definition 5  Avoidance of contact is said to be guaranteed in the game described by (3)-
(5) with initial positions {x0

1
, x0

2
,… , x0

m
,… , y0}, x0

j
, y0 ∈ �2 , if there exists a strategy V of 

the evader such that for all admissible controls of the pursuers uj(⋅), j = 1, 2,… , the rela-
tion xj(t) ≠ y(t) holds, for all t ∈ [t0, T].

Before stating the research problem, let introduce a dummy variable zj(t) = y(t) − xj(t) 
so that the players dynamics (3) reduces to

Therefore, the system (3) is represented by the infinite system of differential equations of 
the form

where wj(t) = (wj1(t),wj2(t),…), z0
j
= (z0

j1
, z0

j2
,…) ≠ 0, wji = vi − uji, z

0
ji
= y0

i
− x0

ji
, i, j = 1, 2,… . 

By this notation, the solution to the system (8) becomes

with zj(t) satisfying the conditions in Definition (3), uj(t) and v(t) satisfying (1) and (5), 
respectively, for all j = 1, 2,… . We also denote that

Remark 2  In view of the properties of the function a(⋅) , it is worth noting that the integral 
An(t0, t) > 0 if t > t0 and An(t0, t) < 0 if t < t0 for n = 1, 2.

Remark 3  The problem of finding sufficient conditions for completion of pursuit in a 
pursuit problem described by the system (2) often requires conditions on the parameters 
�k, k = 1, 2,… . However, by considering the system (8) with a generalized scalar func-
tion a(⋅) , these conditions have been circumvented, except the condition 𝜌 > 𝜎 . That is, we 
examine the case where

The fact that (10) implies the existence of m > 0, such that

V(u1, u2,…), V ∶ 𝓁2 × 𝓁2 ×⋯ → 𝓁2,

żj(t) = a(t)(v(t) − uj(t)), zj(t0) = y0 − x0
j
.

(8)żj(t) = a(t)wj(t), zj(t0) = z0
j
, j = 1, 2,… ,

(9)zj(t) = (zj1(t), zj2(t),…), zji(t) = z0
ji
+ ∫

t

t0

a(s)wji(s)ds,

An(t0, t) = �
t

t0

an(s)ds; t ≠ t0, n = 1, 2 ; 𝜌2 = 𝛴∞
j=1

𝜌2
j
< ∞.

(10)
∞∑
j=1

𝜌2
j
> 𝜎2.
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motivated the following definitions:

Definition 6  A function uj(t, zj(t), �(t), v(t)), j = {1, 2,… ,m}, uj ∶ [t0, T] × �2 × [0, �2]

×�2 → �2, is called a strategy of the jth pursuer j ∈ {1, 2,… ,m} if there exists a unique 
absolutely continuous vector-function (�(⋅), zj(⋅)), zj(⋅) ∈ C(t0, T ∶ 𝓁2), t ∈ [to, T], satisfy-
ing the system

at uj = uj(t, zj(t), �(t), v(t)) and v = v(t) almost everywhere on [0, T],  where v(t), t0 ≤ t ≤ T , 
is an arbitrary admissible control of the evader. The strategy of the jth pursuer is called 
admissible if each control formed by this strategy is admissible.

To guarantee the existence and uniqueness of the solution to the system (11), we assume 
Lipschitzian (or even linear) dependence of the pursuers’ strategies uj(t, zj(t), �(t), v(t)) on 
the phase coordinate zjk(t), k = 1, 2,….

Note that we have only defined strategies of the first m pursuers, for j > m , we set 
ujk(t) = 0, k = 1, 2,….

Definition 7  Pursuit is said to be completed in the game described by (8) not later than 
time t(z0) ≥ t0 , from the initial positions

if there exists admissible strategies u1 = u1(t, z1, �, v), u2 = u2(t, z2, �, v),… , um = um(t, zm, �, v), 
of pursuers Pj, j = 1, 2,… ,m, such that for any admissible control v = v(t) of 
the evader at some j ∈ {1, 2,… ,m}, the solution zj(t) of the system (8) with 
uj = uj(t, zj, �, v), v = v(t), t0 ≤ t ≤ t(z0) satisfies the equality zj(�) = 0 , for some 
� ∈ [t0, t(z

0)].

Remark 4  In view of Remark 1, we further emphasize here that, if the pursuer Pj has con-
trol resource equal �j , and that of the evader E equal to � , and 𝜌j > 𝜎 , then under discrimi-
nation of the evader (it declares its instantaneous control to the pursuer), the pursuer Pj 
can complete pursuit of the evader E for any of their initial mutual location by the parallel 
approach strategy. The parallel approach strategy (also called �-strategy and characterized 
with the property that straight lines through positions of the pursuer and the evader are par-
allel) is an effective strategy that has been applied in solving simple motion (i.e. a(t) = 1 ) 
pursuit-evasion differential game problems of many pursuers one evader (see e.g. [5, 32, 
38])

m∑
j=1

𝜌2
j
> 𝜎2

(11)
�

𝜎̇(t) = −‖v(t)‖2, 𝜎(t0) = 𝜎2,

żjk(t) = a(t)wk(t), zjk(t0) = z0
jk
, k = 1, 2,…

z0 = {z0
1
, z0

2
,…}, (z0

j
= z0

j1
, z0

j2
,…), z0

j
∈ �2, j = 1, 2,… ,m,
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Research Questions: In the game (3)–(5), find sufficient conditions for 

i	 avoidance of contact,
ii	 completion of pursuit.

Main Results

In this section, we present the main results of the research work.

Avoidance of Contact Problem

The following theorem gives sufficient conditions for avoidance of contact in the game 
described by (8):

Theorem 1  If 𝜎 > 𝜌, then avoidance of contact is guaranteed in the game described by (8), 
for any initial position z0 = {z0

1
, z0

2
,… , z0

m
,…}, z0

j
∈ �2, j = 1, 2,… .

Proof  1. Construction of evader’s Strategy
We first define octants of the space �2 as follows:

where I ⊂ ℕ and J = ℕ ⧵ I. By this definition (12), the intersection of any two distinct 
octants is null. Since the cardinality of the collection of all subsets of any set is greater than 
the cardinality of the set itself, then the cardinality of the set of octants of the space �2 , that 
is |2ℕ| , is greater than |ℕ| . In view of this and the fact that the set of points z0

j
, j = 1, 2,… , 

is countable, then there exists an octant that do not contain the points z0
j
, j = 1, 2,… . Due 

to this fact and without loss of generality, we assume that the points z0
j
, j = 1, 2,… , are not 

contained in the octant defined by:

This implies z0
j
 is a vector in �2, with at least one nonnegative coordinate, for each j ∈ ℕ.

Let the evader use the strategy v(⋅) = (v1(⋅), v2(⋅),…) with

where Ii = {j ∶ z0
jk
< 0, k = 1, 2,… , i − 1; z0

ji
≥ 0}. If l ∈ Ii then z0

l
= (z0

l1
, z0

l2
,… , z0

li
,…) 

has the coordinates z0
lr
< 0, for all r = 1, 2,… , i − 1.

According to the strategy (14) which is similar to the parallel approach method, for each 
coordinate, the evader applies a control which guarantees keeping its distance on this coor-
dinate from all pursuers, which can move towards the evader on this coordinate at the cur-
rent instant, plus some addition. This addition exploits the difference between the control 

(12)X(I, J) =
{
z = (z1, z2,…) ∶ z ∈ �2, zi > 0, i ∈ I, zk < 0, k ∈ J

}
,

(13)X(�,ℕ) =
{
z = (z1, z2,…) ∶ z ∈ �2, zi < 0, i ∈ ℕ

}
.

(14)vi(t) =

⎧⎪⎨⎪⎩

��
j∈Ii

u2
ji
(t) +

a(t)(𝜎2 − 𝜌2)

2iA1(t0, T)

�1∕2

, t0 ≤ t ≤ T

0 , t > T ,
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resource of the evader and the total control resource of the pursuers and allows the evader 
even to increase the distance.

Furthermore, the set 
{
Ir ∶ r = 1, 2,…

}
 is a collection of pairwise disjoint sets. That 

is, Im ∩ In = � , for m ≠ n. We prove this claim by contradiction. Suppose p ∈ Im ∩ In and 
m ≠ n . Without loss of generality, let m < n . We have

The second line in (15) implies that zpm < 0 , this is in contradiction with the first line. 
Hence, the claim follows. That is, Im ∩ In = � , if m ≠ n.

We now show that the evader’s strategy (14) is admissible. That is, it satisfies (5) as 
follows

Thus,

2. Avoidance of Contact
Lastly, we show that avoidance of contact is possible for any given initial positions of 

the players z0 = {z0
1
, z0

2
,… , z0

m
,…}, z0

j
∈ �2, j = 1, 2,…. That is, we show that xj(t) ≠ y(t) 

holds, for all t ∈ [t0, T], j = 1, 2,… . To achieve our goal, it suffice to show zj(t) ≠ 0, for 
all t ∈ [t0, T], j = 1, 2,… . We take an arbitrary point zp(t), p ∈ Ii, where the index i ∈ ℕ is 
chosen in such a way that z0

p
 has coordinates z0

pk
< 0, k = 1, 2, 3,… , i − 1 and zpi ≥ 0 . It is 

also easy to see that

because u2
pi
(s) is among the considered u2

ji
(s).

In view of (9), (14) and (16), we have

(15)
z0
pl
< 0, l = 1, 2, 3,… ,m − 1; zpm ≥ 0

z0
pl
< 0, l = 1, 2, 3,… , n − 1; zpn ≥ 0.

�
T

t0

‖v(s)‖2ds = �
T

t0

∞�
i=1

v2
i
(s)ds

= �
T

t0

∞�
i=1

��
j∈Ii

u2
ji
(s) +

a(s)(�2 − �2)

2iA1(t0, T)

�
ds

≤ �
T

t0

∞�
i=1

�
∞�
j=1

u2
ji
(s) +

a(s)(�2 − �2)

2iA1(t0, T)

�
ds

=

∞�
j=1

�
T

t0

∞�
i=1

u2
ji
(s)ds +

(�2 − �2)

A1(t0, T) �
T

t0

a(s)ds

∞�
i=1

1

2i
.

�
T

t0

‖v(s)‖2ds ≤
∞�
j=1

�2
j
+ �2 − �2 = �2.

(16)
∑
j∈Ii

u2
ji
(s) ≥ u2

pi
(s),
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Thus, zpi(t) > 0 for all t ≥ t0 . Consequently, xpi(t) < yi(t), t0 ≤ t ≤ T . This implies that the 
distance ‖zj(t)‖ ≠ 0 for all j = 1, 2,… , t0 ≤ t ≤ T  . Estimation of this distance is further 
discussed in the subsequent subsection.

3. Estimation of distances between the evader and the pursuers
By virtue of the evader’s strategy (14), we estimate the distance ‖zj(t)‖ of the evader 

from the pursuers Pj, j = 1, 2,… on the time interval [t0, T] as follows:
Since zj(t) ≠ 0 for all j = 1, 2,…, let xji(t) < yi(t) for all i, j = 1, 2,…, t0 ≤ t ≤ T  and 

‖z0
j
‖ denotes the initial distance of the evader from the jth pursuer.
Then, by Cauchy–Schwartz inequality

On the other hand, since ‖zj(t)‖ ≥ �zji(t)� for any fixed j = 1, 2,… and

then

Set

(17)

zpi(t) = z0
pi
+ �

t

t0

a(s)wpi(s)ds

= z0
pi
+ �

t

t0

a(s)(vi(s) − upi(s))ds

≥ �
t

t0

a(s)

⎛⎜⎜⎝

��
j∈Ii

u2
ji
(s) +

a(s)(𝜎2 − 𝜌2)

2iA1(t0, T)

�1∕2

− upi(s)

⎞⎟⎟⎠
ds

≥ �
t

t0

a(s)

��
u2
pi
(s) +

a(s)(𝜎2 − 𝜌2)

2iA1(t0, T)

�1∕2

− upi(s)

�
ds

> �
t

t0

a(s)

��
u2
pi
(s)

�1∕2

− upi(s)

�
ds = 0.

(18)

‖zj(t)‖ =
�����
z0
j
+ �

t

t0

a(s)wj(s)ds
�����

≥ ‖z0
j
‖ −

������
t

t0

a(s)v(s)ds
�����
−
������

t

t0

a(s)uj(s)ds
�����

≥ ‖z0
j
‖ − �

√
A2(t0, T) − �

√
A2(t0, T)

≥ ‖z0
j
‖ − 2�

√
A2(t0, T).

zji(t) = z0
ji
+ �

t

t0

a(s)wji(s)ds = z0
ji
+ �

t

t0

a(s)(vi(s) − uji(s))ds ≥ z0
ji
,

(19)‖zj(t)‖ ≥ �z0
ji
�.

(20)dj =

� �z0
js
�, if‖z0

j
‖ ≤ 2𝜎

√
A2(t0, T),

min{�z0
js
�, ‖z0

j
‖ − 2𝜎

√
A2(t0, T)}, if ‖z0

j
‖ > 2𝜎

√
A2(t0, T),
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for some s = 1, 2,… . Then in view of (18) and (19), we have ‖zj(t)‖ ≥ dj, t0 ≤ t ≤ T . That 
is, the value dj is the smallest distance the evader can preserve from the jth pursuer in the 
time interval [t0, T]. This completes the proof of the theorem. 	�  ◻

Pursuit Problem

Here, we provide a theorem which constitutes sufficient conditions for completion of pur-
suit as well as its proof.

Theorem  2  Suppose that 
∑m

j=1
𝜌2
j
> 𝜎2 and A2(t0, t) → +∞ as t → +∞, then pursuit can 

be completed for the finite time t = t(z0) from any initial positions of players in the game 
described by (8).

Proof  Let �j =
��j

�
 , where � = (�2

1
+…+ �2

m
)1∕2 and

Roughly put, the value Fj(�, t) (which actually depends also on a point zj ) is the square of 
the resource necessary to guide an object with dynamics (3) from the position (�, zj) to the 
position (t, 0). That is, it denotes the amount of control resources to be spent by the jth pur-
suer to capture the evader at any given time instant from some of their initial positions if 
the evader will stay in its place.

For a fixed positive real number � , we claim that the function (21) is endowed with the 
following properties: 

	 (i)	 Fj(𝜏, t), t > 𝜏, is a decreasing function of t;
	 (ii)	 Fj(�, t) → +∞ as t → �+ (that is, t approaches � from the right);
	 (iii)	 Fj(�, t) → 0 as t → +∞.

Property (i) follows directly from the fact that each term of the series Fj(�, t) is a decreas-
ing function for all t > 𝜏 . To prove the second property, recall that zj(⋅) ∈ C(t0, t ∶ 𝓁2) , 
which implies, the series 

∑∞

k=1
z2
jk
(𝜏) < ∞. Then, in view of the fact that A−1

2
(�, t) → +∞ 

as t → �+ , we must have Fj(�, t) → +∞ as t → �+ . Using similar arguments in the proof 
of property (ii) along with hypothesis of the theorem, we have Fj(�, t) → 0 as t → +∞ , i.e., 
property (iii) holds.

Hence, the equation

with 𝜌1 > 𝜎1 , has a unique solution t = �1 . Moreover, since F1(t0, t) < 0 for t < t0 (in view 
of Remark 1), then the root �1 exists only in the semiaxis t > t0 , where �1 is the instant 
when the first pursuer will capture the evader if the evader will spent control resource �1 for 
avoidance from the first pursuer.

(21)Fj(𝜏, t) =

∞∑
k=1

z2
jk
(𝜏)

A2(𝜏, t)
, t > 𝜏, j = 1, 2,… ,m.

F
1∕2

1
(t0, t) = �1 − �1
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1. Construction of the pursuers Strategies
The pursuers strategies we construct here suggest that the pursuers act one after another 

in the order of their enumeration. That is, each pursuer in its turn applies the parallel 
approach control discriminating the evader (it declares its instantaneous control value). 
And the excess of the pursuer’s control resource is spent in such a way that the total 
resource will be exhausted at some preliminarily computed instant if the evader spends 
some prescribed portion of its control resource. If the evader spends more than its planned, 
then the pursuer will spend totally its control resource earlier than the precomputed instant. 
And if the evader will spend not greater than this planned portion, then the evader will be 
caught already by this pursuer without involving the ones with greater numbers.

To construct the pursuers strategies, we introduce the following notations.
In the game described by (8), let
�j, j = 1, 2,… ,m denotes the instant when the evader will spend totally the portion of 

its control resource planned for the jth pursuer. Such a time �j is finite (if it exist) since the 
evader’s control resources is limited. On the other hand, if �j fails to exist, then the evader 
never had the chance to spend all its control resources planned on avoiding the jth pursuer 
(that is, the evader gets caught by the jth pursuer). From the moment the evader gets caught 
by pursuer Pj , its left over control resource eventually becomes time invariant (thus, mak-
ing it reasonable to put �j = ∞ in this case). Also let tj, j = 1, 2,… ,m denotes the mini-
mum time planned by the jth pursuer to complete pursuit. At this same time tj , the pursuer 
Pj expects the evader to have spent its total control resource on avoiding contact from it.

We now define the strategy of the pursuers Pj, j = 1, 2,… ,m as follows.
Set

ujk(t, z1(t), �(t), v(t)) = 0, t0 ≤ t ≤ t1, k = 1, 2,… ; j = 2,… ,m, where time

and �1 is the first time when ∫ �1
t0

‖v(s)‖2ds = �2
1
 which may or may not exists.

Consequently

If such time �1 fails to exists, then we set �1 = +∞.

The case �1 = +∞ yields the inequality 𝜎(t) > 𝜎2 − 𝜎2
1
, for all t ≥ t0 which follows from

Hence, we have

(22)u1k(t, z1(t), 𝜎(t), v(t)) =

⎧⎪⎨⎪⎩

a(t)

A2(t0, 𝜃1)
z1k(t0) + vk(t), t0 ≤ t ≤ t1,

0, t > t1,

t1 =

{
𝜃1, 𝜏1 ≥ 𝜃1,

𝜏1, 𝜏1 < 𝜃1,

�(�1) = �2 − ∫
�1

t0

‖v(s)‖2ds = �2 − �2
1
.

𝜎(t) = 𝜎2 − �
t

t0

‖v(s)‖2ds > 𝜎2 − �
∞

t0

‖v(s)‖2ds = 𝜎2 − 𝜎2
1
, t ≥ t0.

�
�1

t0

‖v(s)‖2ds = �
∞

t0

‖v(s)‖2ds ≤ �2
1
.
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But if �1 ≥ �1, that is, t1 = �1, then we claim pursuit can be completed at time t1. Observe 
that, for this case,

2. Completion of pursuit
To show completion of pursuit, we first establish the admissibility the pursuers strategy 

(22), that is,

where u1(t) = (u11(t),… , u1k(t),…) . Hence, in accordance with Definition (1), we con-
clude that the strategy (22) is admissible for the case �1 ≥ �1 . And if the pursuers adopt the 
strategy (22), then for k = 1, 2,… , we have

This implies that pursuit can be completed in the game (3)–(5) at time t1 = �1 . Thus, if the 
pursuers apply the admissible strategies (22), then either the evader spend the resource of 
control less than or equal to �2

1
 or pursuit will be completed. 	�  ◻

If we assume that pursuit fails to be completed on the time interval [t0, t1], then we 
must have 𝜏1 < 𝜃1 which implies [t0, t1] = [t0, �1].

Using mathematical induction, we define the numbers �j, �j; j = 1, 2,… ,m as 
follows:

Let the number �1, �1, �2, �2,… , �j, �j, (j = 1, 2,…) be defined subject to the following 
conditions 

	 (i)	 Fj(�j−1, t), where �0 = t0, has a unique solution at t = �j;
	 (ii)	 �j is the first instant when ∫ �j

�j−1
‖v(s)‖2ds = �2

j
, for all j ≥ 1 . That is, 

�(�j) = �2 −
∑j

i=2
�2
i
 , such time may exist or not. For the latter case, we let �j = +∞;

	 (iii)	 𝜏k < 𝜃k, k = 1, 2,… , j, and pursuit fails to be completed on [t0, �j]. In particular, 
𝜏k < ∞, k = 1, 2,… , j.

�
�1

t0

‖v(s)‖2ds = �
�1

t0

‖v(s)‖2ds ≤ �2
1
.

(23)

�
�

t1

t0

‖u1(s)‖2ds
� 1

2

=

�
�

�1

t0

‖u1(s)‖2ds
� 1

2

≤
�
�

�1

t0

����
a(s)

A2(t0, �1)
z1(t0)

����
2

ds

� 1

2

+

�
�

�1

t0

‖v(s)‖2ds
� 1

2

≤
�

∞�
k=1

z2
1k
(t0)

A2
2
(t0, �1) �

�1

t0

a2(s)ds

�
+ �1

=

�
∞�
k=1

z2
1k
(t0)

A2(t0, �1)

�
+ �1 = F

1

2

1
(t0, �1) + �1 = �1,

z1k(t1) = z1k(t0) + ∫
�1

t0

a(t)(vk(t) − u1k(t))dt

= z1k(t0) − ∫
�1

t0

a(t)

(
a(t)

A2(t0, �1)
z1k(t0)

)
dt

= z1k(t0) −
z1k(t0)

A2(t0, �1) ∫
�1

t0

a2(t)dt = 0.
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We now define t = �j+1 as a unique solution of the equation

where Fj+1(�j, t) =
∑∞

k=1

z2
j+1,k

(�j)

A2(�j ,�j+1)
∫ t

�j
a2(s)ds.

The strategies of the pursuers for all t ≥ �j, is defined as follows:
Set

uik(t, zj+1(t), �(t), v(t)) = 0, �j ≤ t ≤ tj+1, i = 1, 2,… , j, j + 2,… ,m, where time

and �j+1 is the first time when ∫ �j+1
�j

‖v(s)‖2ds = �2
j+1

 which may or may not exists. 
Consequently

If �j+1 fails to exist, we let �j+1 = +∞ , which yields

For the case �j+1 ≥ �j+1 (that is, tj+1 = �j+1 ), observe that

Admissibility of the pursuers strategy (24) can verified using similar argument in (23). 
That is,

F
1

2

j+1
(�j, t) = �j+1 − �j+1,

(24)uj+1,k(t, zj+1(t), 𝜎(t), v(t)) =

⎧⎪⎨⎪⎩

0, t < 𝜏j,
a(t)

A2(𝜏j, 𝜃j+1)
zj+1,k(𝜏j) + vk(t), 𝜏j ≤ t ≤ tj+1,

0, t > tj+1,

tj+1 =

{
𝜃j+1, 𝜏j+1 ≥ 𝜃j+1,

𝜏j+1, 𝜏j+1 < 𝜃j+1,

�(�j+1) = �2 − ∫
�j+1

�0

‖v(s)‖2ds = �2 − (�2
1
+…+ �2

j+1
).

�
�j+1

�j

‖v(s)‖2ds = �(�j) − �(�j+1) ≤ �2
j+1

.

�
�j+1

�j

‖v(s)‖2ds ≤ �
�j+1

�j

‖v(s)‖2ds ≤ �2
j+1

.

�
�

�j+1

�j

‖uj+1(s)‖2ds
� 1

2

≤
�
�

�j+1

�j

�����
a(s)

A2(�j, �j+1)
zj+1(�j)

�����

2

ds

� 1

2

+

�
�

�j+1

�j

‖v(s)‖2ds
� 1

2

=

�
∞�
k=1

z2
j+1,k

(�j)

A2(�j, �j+1)

� 1

2

+ �j+1

= F
1

2

j
(�j, �j+1) + �j+1 = �j+1.
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In addition, the strategy (24) ensures zj+1(�j+1) = 0 if adopted by the pursuers on the time 
interval [�j, �j+1]. That is, pursuit will be completed at time �j+1 and so on. And if pursuit 
goes on until time �m−1 without completion, then let �m be the unique solution of

where

Since we have �(�m−1) = �2 − (�2
1
+…+ �2

m−1
) = �2

m
, then

Let

uik(t, zm(t), 𝜎(t), v(t)) = 0, t > 𝜏m−1, k = 1, 2,… ; i = 1, 2,… ,m − 1.
Admissibility of the pursuers strategy (25) can easily be verified using similar argument 

in the admissibility of (24). Thus,

It can also be verified that the strategy (25) ensures the equality zm(�m) = 0 if adopted by 
the pursuers on the time interval [�m−1, �m]. That is, pursuit is completed at time �m . Hence, 
the conclusion of the theorem follows.

Remark 5  At first glance, the pursuers strategies (22) and (24) may seem to be independent 
on �(⋅) as stated in Definition 6. But, of course, they do since they are defined by usage of 
instances �j , which depend on �(⋅) . In addition, the question of optimality of the strategies 
(22) is addressed in the recent work of Ahmed et. al. [1] wherein the authors, using the 
pursuers strategies (22) estimated the value of the game described by (8). The game value is 
value of the payoff function at the instant of the termination of the game and when players 
are using their optimal strategies. To estimate this value, the authors [1] not only constructed 
the optimal strategies (22) but also presented the tools (that is, players attainability domain 
and also the strategies of some fictitious pursuers) required to construct (22). In this paper, 
we present a more detailed application of the strategy in showing completion of pursuit and 
moreover, we address evasion problem under the same dynamic equations of players.

Illustrative Examples

Here, we present some examples to illustrate our results.

F1∕2
m

(�m−1, t) = �m − �m,

Fm(�m−1, t) =

∞∑
k=1

z2
mk
(�m−1)

A2(�m−1, �m) ∫
t

�m−1

a2(s)ds.

�
�m

�m−1

‖v(s)‖2ds = �(�m−1) − �(�m) ≤ �(�m−1) = �2
m
.

(25)umk(t, zm(t), 𝜎(t), v(t)) =

⎧⎪⎨⎪⎩

0, t < 𝜏m−1,
a(t)

A2(𝜏m−1, 𝜃m)
zmk(𝜏m−1) + vk(t), 𝜏m−1 ≤ t ≤ 𝜃m,

0, t > 𝜃m,

�
�

�m

�m−1

‖um(t)‖2dt
� 1

2 ≤ �m.
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Example 3.3.1  Consider the motions of countably many pursuers Pj, j ∈ I = {1, 2, 3,…} 
and an evader E in the space �2 governed by the equations

where all the variables are defined as in Sect. 2 with control functions uj(⋅) and v(⋅) satisfy-
ing the inequalities

Given the initial position of the pursuers Pj and evader E as 
x0
j
= (2−1, 2−2, 2−3,… , 2−(i−1), −2−i, −2−(i+1),…) and y0 = (0, 0, 0,…) respectively, where 

the number −2−i is in the (j + 1)th coordinate of point x0
j
 . Let T = 4 , observe that 

A1(0, 4) = (e4� − 1)∕�, � =
�∑∞

j=1
�2
j
=
√
3 and z0

j
= y0 − x0

j
 is not contained in the 

octant X(�,ℕ) defined in (13) for each j ∈ I . Since 𝜌 < 𝜎 = 2 , then by Theorem 1, if the 
evader adopt the admissible strategy v(t) = (v1(t), v2(t),…) where

avoidance of contact from all the pursuers Pj is guaranteed for all t > 0 . That is, for any 
arbitrary point zp(t) = (zp1(t), zp2(t),…), p ∈ Ii, we have

Thus, zpi(t) > 0 for all t ≥ 0 . Consequently, xpi(t) ≠ yi(t), t ≥ 0.

Example 3.3.2  For the pursuit problem, we consider the case of a particular pursuer Ps for 
some s ∈ I and evader E with motions govern by the equations in Example 3.3.1 and initial 
positions

respectively. Let the players control functions be subjected to the integral constraints

{
ẋj(t) = e𝜆t uj(t), xj(0) = x0

j

ẏ(t) = e𝜆t v(t), y(0) = y0, 𝜆 > 0

�
∞

0

∥ uj(t) ∥
2dt ≤ 3∕2j,

�
∞

0

∥ v(t) ∥2dt ≤ 4.

vi(t) =

⎧⎪⎨⎪⎩

��
j∈Ii

u2
ji
(t) +

𝜆(𝜎2 − 𝜌2)e𝜆t

2i(e4𝜆 − 1)

�1∕2

, 0 ≤ t ≤ 4

0 , t > 4,

zpi(t) = z0
pi
+ �

t

0

e𝜆swpi(s))ds

= z0
pi
+ �

t

0

e𝜆s(vi(s) − upi(s))ds

≥ �
t

0

e𝜆s
⎛⎜⎜⎝

��
j∈Ii

u2
ji
(s) +

𝜆(𝜎2 − 𝜌2)e𝜆s

2i(e4𝜆 − 1)

�1∕2

− upi(s)

⎞⎟⎟⎠
ds

> �
t

0

e𝜆s
��

u2
pi
(s)

�1∕2

− upi(s)

�
ds = 0.

xs(0) = (0,− ln 2, 0,−(ln 2)2, 0,…), y(0) = (
√
ln 2, 0,

√
(ln 2)3, 0,…)
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Clearly, the hypothesis of Theorem  2 is satisfied since 𝜌s = ln 4 > ln 2 = 𝜎 
and A2(0, t) = (e2�t − 1)∕2� → ∞ as t → ∞ . Given � = 1∕2 and 
z0
s
= y0 − x0

s
= (

√
ln 2, ln 2,

√
(ln 2)3, (ln 2)2,…) . Then, from the conclusion of Theorem 2, 

the pursuer’s admissible strategy

guarantees completion of pursuit at time ts = 1.9 as follows

Thus, zs(1.9) = 0 . Consequently, xs(1.9) = y(1.9).

Conclusion

We have studied a differential game problem of avoiding contact and completing pursuit 
in the Hilbert space �2 with integral constraints on all players control functions, where the 
scalar function a(t) introduced is such that it is identically non-zero on the interval (t1, t2) . 
By virtue of the players dynamics we considered, the conditions often imposed on the 
parameters �k, k = 1, 2,… in the system of differential Eq.  (2) is redundant. With a mild 
condition on a(t), we have proved that if the total energy resources of the pursuers is less 
than that of the evader, then avoidance of contact is guaranteed through out the game. In 
addition, we estimated the smallest possible distance the evader can preserve from the pur-
suers through out the game. For the pursuit problem, we constructed strategies of the pur-
suers and showed that pursuit can be completed for a finite time t = t(z0) from any initial 
positions z0 of players. The problem studied in this paper with the coefficient a(t) replaced 
by the coefficients aj(t), j = 1, 2,… is an open problem.
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∥ v(t) ∥2dt ≤ (ln 2)2.
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⎧⎪⎨⎪⎩
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0, t > 1.9
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s
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1.9

0

et∕2(v(t) − us(t))dt

= z0
s
−

z0
s

(e1.9 − 1) ∫
1.9

0

etdt = 0.
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