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Abstract
We describe the behaviour of solutions of a scalar Delay Differential Equation (DDE) 
with delay that periodically switches between two constant values. Such an equation arises 
naturally from structured vector populations involved in a range of vector-borne diseases 
spreading in a periodically varying environment. We examine if and how the two different 
time lags and the switching time influence the existence and patterns of periodic solutions. 
We pay particular attention to the patterns involving multi-cycles within the prime period 
of the periodic solutions.
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Introduction

We consider the following scalar differential equation

with a piecewise nonlinear feedback

(1)x�(t) = −dx(t) + f (x(t − �(t)))
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and a temporally varying delay that periodically switches between two values �2 and �1:

Here d, �2 , 𝛽 > 0 ; T > 𝛾 > 0 are given constants. We denote by �max ∶= max(��2, �2) and 
�min ∶= min(��2, �2).

Our study on such a scalar delay differential equation with periodically switching 
delays is motivated by the issue of development diapause [1] in tick population dynam-
ics and its implication for tick-borne disease transmission dynamics. In [2], we proposed 
and examined a mechanistic model for reproduced egg population dynamics, where 
two constant time lags were involved, one stood for the normal development delay and 
another for the diapause development delay. In reality, tick lifecycle is sensitive to the 
environmental conditions such as the temperature and humidity, which are normally 
seasonal but can also be periodically interrupted by other climate cycles such as El Niñ o 
[3, 4]. The seasonal variation of the temperature has been commonly reflected in the 
periodicity of development rates in tick population and tick-borne disease transmission 
dynamics in ordinary differential equation (ODE) models [5–9]. The influence of sea-
sonal variation of temperature on development delays was modelled in the paper [10]. 
Here, for the first time to our best knowledge, we use a delay differential equation with 
periodic switching delay to model the temporally periodic switching from normal to 
diapause development. In our formulation, we have already normalized the system so 
the nonlinearity represents a negative feedback at the normalized equilibrium. Our focus 
here is to see if this format of simplified model can generate complicated patterns of 
oscillations in the vector (tick) population.

Model Overview

We consider model (1) subject to an initial condition

Due to the nonlinearity of f, this initial value problem (IVP) (1) and (3) can be solved itera-
tively by connecting solutions of the linear ODEs

and

along the time sequences when the solution of the ODEs changes their signs.
For the sake of reference, we note that the IVP

f (x) = −sgn(x) =

⎧
⎪⎨⎪⎩

1, if x < 0

0, if x = 0

−1, if x > 0,

(2)𝜏(t) =

{
𝜏2, if mod(t,T) ≥ 𝛾

𝜏1 = 𝛽𝜏2, if mod(t,T) < 𝛾 .

(3)
{

x(t) > 0, t ∈ [−𝜏max, 0]

x(0) = k0 ≥ 0.

y�(t) = −dy(t) + 1

z�(t) = −dz(t) − 1
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admits the unique solution

Note also that the solution of (1) satisfies

from which and using a comparison argument, we obtain that the solution of (1) uniquely 
exists for all t ≥ 0 and it is bounded ( lim supt→∞ |x(t)| ≤ 1∕d).

We also note that due to the symmetry of f, if we let x±(t) be the solutions for (1) with 
the initial conditions

and

then x+(t) = −x−(t) for t ≥ 0.
Note the nature of the negative feedback:

This means that the solution will start decreasing at t = 0 at least until it reaches the x-axis 
faster than the line y = −x as shown below:

These properties, together with non-zero initial conditions, guarantee that the solution x(t) 
of (1) will oscillate around the only equilibrium x = 0 of the model.

Behaviours of Solutions

We start by introducing relevant notations to be used throughout the remaining part of the 
paper.

For a given solution x(t) of (1), we consider the set S containing the non-negative times 
when the solution crosses the x-axis:

We introduce the following notations: 

{
y�(t) = −dy(t) + c

y(t0) = y0,

y(t) = e−d(t−t0)
(
y0 −

c

d

)
+

c

d
.

−dx(t) − 1 ≤ x�(t) ≤ −dx(t) + 1,

{
x+(t) > 0, ∀t ∈ [−𝜏max, 0)

x(0) = k,

{
x−(t) < 0, ∀t ∈ [−𝜏max, 0)

x(0) = −k,

x(t) ≥0, x(t − s) > 0, ∀s ∈ [0, 𝜏max] ⟹ x�(t) < 0,

x(t) ≤0, x(t − s) < 0, ∀s ∈ [0, 𝜏max] ⟹ x�(t) > 0.

x(t) > 0, x(t − 𝜏(t)) > 0 ⟹ x�(t) < f (x(t − 𝜏(t))) = −1,

x(t) < 0, x(t − 𝜏(t)) < 0 ⟹ x�(t) > f (x(t − 𝜏(t))) = 1.

S ∶= {t ≥ 0 | x(t) = 0},



532	 Differential Equations and Dynamical Systems (July 2023) 31(3):529–546

1 3

	 (i)	 t∗
i
 represents the i-th ordered element of S (i.e. the i-th time in which the solution 

intersects with the x-axis).
	 (ii)	 t̂i : for a given t∗

i
 so that x(t∗

i
) = 0 , the IVP of ODE 

 has the solution x(t) = 1

d
(e−d(t−t

∗
i
) − 1) . We define t̂i ∈ (t∗

i
, t∗
i+1

) such that the IVP 

 satisfies x(t∗
i+1

) = 0 . Note that in the case of a single monotonicity change of the 
solution x(t) to ODE (1) in (t∗

i
, t∗
i+1

) , t̂i is the time corresponding to the local maxi-
mum or minimum.

	 (iii)	 t̊i ∶= t̂i − t∗
i
.

	 (iv)	 the cycle and cycle length: we call the restriction of x(t) on [t∗
2i−1

, t∗
2i+1

] the i-th cycle, 
the length of the i-th cycle is denoted by Ti ∶= t∗

2i+1
− t∗

2i−1
.

In order to study how the solution x(t) to (1) starts oscillating around x = 0 , we search for the 
possible values of t∗

i
 and t̊i in a simplified case in which the parameters satisfy three conditions: 

	(C1)	 𝛽 < 1;
	(C2)	 (1 − 𝛽)𝜏2 < min(𝛾 , T − 𝛾);
	(C3)	 𝛽 >

[ln(1+ed𝜏2 )−ln(2)]
d𝜏2

.

(C1) is natural as �min = ��2 and �max = �2 . (C2) is necessary to avoid multiple switchings of 
delay in [t∗

i
+ ��2, t

∗
i
+ �2] and (C3) will be used to guarantee t∗

i
+ 𝜏2 < t∗

i+1
 . Note that (C1) 

and (C2) are satisfied in case 𝜏max − 𝜏min < min(𝛾 , T − 𝛾) and (C3) is satisfied if d�max = d�2 
is sufficiently large. These conditions can be equivalently rewritten in terms of �1 and �2 since 
� = �1∕�2 as: 

	(C1*)	𝜏1 < 𝜏2;
	(C2*)	𝜏1 > 𝜏2 −min(𝛾 , T − 𝛾);
	(C3*)	𝜏1 >

1

d
[ln(1 + ed𝜏2 ) − ln(2)].

In Fig. 1 there is an example of delays that satisfy these three conditions where parameter val-
ues are chosen to be constant: � = 0.6 , �2 = 3 , d = 0.1 , T = 8.6295.

We have shown that the value of function f determines the monotonicity of the solution x(t) 
of (1). In this case, (3) guarantees that f (x(t − �(t))) would be negative and solution will be 
decreasing in [0, t̃1] with

which is equivalent to asking

Therefore t̃1 ∈ [t∗
1
+ 𝛽𝜏2, t

∗
1
+ 𝜏2] . Adopting the method of steps, we note that solving (1) in 

[0, t̃1] is equivalent to solving the following IVP of the ODE

(4)
{

x�(t) = −dx(t) − 1

x(t∗
i
) = 0,

(5)
{

x�(t) = −dx(t) + 1

x(t̂i) =
1

d
(e−d(t̂i−t

∗
i
) − 1),

t̃1 = min{t ∶ f (x(t − 𝜏(t))) ≥ 0},

t̃1 = min{t ∶ x(t − 𝜏(t)) ≤ 0}.
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We know that the unique solution of (6) is given by

It is possible to extract the value of t∗
1
 by considering y−(t∗

1
) = 0 in Eq. (7). Therefore,

We note that t∗
1
 is independent from the parameters T, �2 , � , � and consider t∗

1
= 0 whenever 

k0 = 0.
At this point, we would like to analyse t̂1 ∈ [t∗

1
, t∗
2
] . We know the solution continues 

decreasing after t∗
1
 , it follows directly that

and x(t̂1) < 0.

Lemma 1  If  (1 − 𝛽)𝜏2 < min(𝛾 , T − 𝛾) , then for every  i we have that  �(t) defined in (2) 
cannot change value more than once in  [t∗

i
+ ��2, t

∗
i
+ �2].

Proof  We prove this by way of contradiction. Suppose that �(t) changes value at least twice 
in [t∗

i
+ ��2, t

∗
i
+ �2] and we want to reach a contradiction by using (C2). The length of 

the interval aforementioned is t1 = (1 − �)�2 . We know from (2) that �(t) changes value 

(6)
{

x�(t) = −dx(t) − 1

x(0) = k0.

(7)y−(t) = e−dt
(
k0 +

1

d

)
−

1

d
.

t∗
1
=

1

d
ln(k0d + 1).

x(t) < 0, t ∈ [t∗
1
, t∗
2
],

Fig. 1   This figure shows a �1-�2 plot where the blue section represents the choices of �1 and �2 that satisfy 
(C1–C3), where (1) is the line �2 = �1 of (C1), (2) represents the line �1 = �2 −min(� ,T − �) of (C2) and 
(3) is the solution of �1 =

1

d
[ln(1 + e

d�2 ) − ln(2)] of (C3)
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periodically and alternately after � and T − � . This means that both time intervals above 
have to be smaller than or equal to t1 . In other words,

This completes the proof. 	�  ◻

Lemma 2  If 𝛽 >
[ln(1+ed𝜏2 )−ln(2)]

d𝜏2
 , then for every i we have t∗

i
+ 𝜏2 < t∗

i+1
.

Proof  We prove this statement by induction; first we show that it is true for i = 1 . The basic 
idea is to consider the case in which solution changes monotonicity at the earliest moment 
possible t̂1 = t∗

1
+ 𝛽𝜏2 and impose the condition x(t∗

1
+ 𝜏2) < 0 . Using the method of steps, 

we consider the IVP of ODE (6) in [t∗
1
, t∗
1
+ ��2] and we compute x(t∗

1
+ ��2) by substitut-

ing t̂1 = t∗
1
+ 𝛽𝜏2 , which yields

Then we compute the solution to (5) to obtain

Imposing x(t∗
1
+ 𝜏2) < 0 , we have

By solving the inequality, we have

which is exactly what we need in order for t∗
1
+ 𝜏2 < t∗

2
.

Now let t∗
i
+ 𝜏2 < t∗

i+1
 be true for i. We aim to prove it holds also for i + 1 or in other 

words that

Since t∗
i
+ 𝜏2 < t∗

i+1
 holds, x(t) has the same monotonicity for t in [t∗

i+1
, t∗
i+1

+ ��2) . This 
leads to two possible cases:

Case 1-x(t) is decreasing in the aforementioned interval, therefore

Case 2-x(t) is increasing in the aforementioned interval, therefore

Similarly to i = 1 , we consider the case in which the solution changes monotonicity at the 
earliest moment possible t = t∗

i
+ ��2.

Case 1 : (8) holds if x(t∗
i
+ 𝜏2) < 0 , when the solution increases in [t∗

i
+ ��2, t

∗
i
+ �2] . 

This is analogous as the case for i = 1 . Therefore

min(� , T − �) ≤ (1 − �)�2.

x(t∗
1
+ ��2) =

1

d
(e−d��2 − 1).

x(t) =
1

d

[
e−d(t−(t

∗
1
+��2))

(
e−d��2 − 2

)
+ 1

]
.

x(t∗
1
+ 𝜏2) =

1

d

[
e−d(1−𝛽)𝜏2

(
e−d𝛽𝜏2 − 2

)
+ 1

]
< 0.

𝛽 >

[
ln(1 + ed𝜏2 ) − ln(2)

]
d𝜏2

,

(8)t∗
i+1

+ 𝜏2 < t∗
i+2

.

x(s) < 0, ∀s ∈ [t∗
i+1

, t∗
i+1

+ 𝛽𝜏2).

x(s) > 0, ∀s ∈ [t∗
i+1

, t∗
i+1

+ 𝛽𝜏2).
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Case 2 : (8) holds if x(t∗
i
+ 𝜏2) > 0 , when solution decreases in [t∗

i
+ ��2, t

∗
i
+ �2].

Let y(t) = −x(t) and note that conditions on y(t) are equivalent as in the case above. 	
� ◻

Note that Lemma 2 guarantees that for all t ∈ (0, �2]

This is a really important property since it guarantees that the changes of monotonicity can 
be confined to the interval [t∗

i
+ ��2, t

∗
i
+ �2] and

Now we start computing t̊i for (1) with parameters satisfying (C1), (C2) and (C3). Using 
(9) and the symmetry of the system we can consider, without loss of generality, i to be odd 
which yields:

Lemma 2 guarantees that the solution x(t) of (1), and therefore t̊i , depend on the value of 
�(t) for t ∈ [t∗

i
+ ��2, t

∗
i
+ �2] . In addition Lemma 1 shows that �(t) can change value maxi-

mum once in the aforementioned interval.
This leads to four possible different scenarios: 

	(S1)	 �(t∗
i
+ ��2) = �2 ⟺ mod (t∗

i
+ ��2, T) ≥ � . 

	 (S1a)	 �(t∗
i
+ t) = �2, ∀t ∈ [��2, �2].

	 (S1b)	 ∃t̃i ∈ (𝛽𝜏2, 𝜏2) such that
		    𝜏(t∗

i
+ t) = 𝜏2, ∀t ∈ [𝛽𝜏2, t̃i),

		    𝜏(t∗
i
+ t) = 𝛽𝜏2, ∀t ∈ (t̃i, 𝜏2].

	(S2)	 𝜏(t∗
i
+ 𝛽𝜏2) = 𝛽𝜏2 ⟺ mod (t∗

i
+ 𝛽𝜏2, T) < 𝛾 . 

	 (S2a)	 �(t∗
i
+ t) = ��2, ∀t ∈ [��2, �2].

	 (S2b)	 ∃t̃i ∈ (𝛽𝜏2, 𝜏2) such that
		    𝜏(t∗

i
+ t) = 𝛽𝜏2, ∀t ∈ [𝛽𝜏2, t̃i),

		    𝜏(t∗
i
+ t) = 𝜏2, ∀t ∈ (t̃i, 𝜏2].

We study the monotonicity of x(t) for t ∈ [t∗
i
+ ��2, t

∗
i
+ �2] which depends on the sign of 

f (x(t − �(t))) = −sgn(x(t − �(t))).
In case (S1a),

x(t) is thus decreasing in [t∗
i
, t∗
i
+ �2) and then increasing in (t∗

i
+ �2, t

∗
i+1

] . There is a unique 
change of monotonicity so t̂i = t∗

i
+ 𝜏2 and t̊i = 𝜏2.

x(t∗
i
+ 𝜏2) =

1

d

[
e−d(1−𝛽)𝜏2

(
e−d𝛽𝜏2 − 2

)
+ 1

]
< 0.

(9)x(t∗
i
− t)

{
> 0 if i is odd ,

< 0 if i is even .

t̂i ∈ [t∗
i
+ 𝛽𝜏2, t

∗
i
+ 𝜏2].

x(t) < 0, t ∈ (t∗
i
, t∗
i+1

).

x(t − 𝜏2) > 0, ∀t ∈ [t∗
i
+ 𝛽𝜏2, t

∗
i
+ 𝜏2).
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In case (S1b), x(t) decreases in [t∗
i
+ 𝛽𝜏2, t̃i] and in the delay changing point, it starts 

increasing since

Moreover t̊i = t̃i − t∗
i
 , since it is the time when the unique monotonicity change occurs and 

t̂i = cT  for some natural number c.
In case (S2a),

x(t) is thus increasing in [t∗
i
+ ��2, t

∗
i+1

) . The change of monotonicity occurs in t̂i = t∗
i
+ 𝛽𝜏2 

and t̊i = 𝛽𝜏2.
In these three cases, we can use the method of steps and consider the IVP of the ODE 

(4) in [t∗
i
, t∗
i
+ t̊i] and we substitute t̂i = t∗

i
+ t̊i to yield:

In case (S2b), there is a triple change of monotonicity since

Let t̆i ∶= t̃i − t∗
i
 . As in case (S2a), the first monotonicity change of x(t) occurs at t = t∗

i
+ ��2 

where the solution increases until it reaches t̃i . At this point, 𝜏(t̃i) = 𝜏2 and this change in 
delay forces the solution to decrease again until it reaches t∗

i
+ �2 and then finally increases 

in [t∗
i
+ �2, t

∗
i+1

].
We aim to calculate t̂i in this scenario. The first step consists of calculating t∗

i+1
 . We 

note that, similarly as in case (S2a), we have x(t∗
i
+ ��2) =

1

d

(
e−d��2 − 1

)
 . Then we con-

sider the IVP below in [t∗
i
+ 𝛽𝜏2, t̃i]:

which yields the solution

So

Now consider the following system in [t̃i, t∗i + 𝜏2]:

Its solution is given by

x(t − 𝛽𝜏2) < 0, ∀t ∈ [t̃i, t
∗
i
+ 𝜏2).

x(t − 𝛽𝜏2) < 0, ∀t ∈ [t∗
i
+ 𝛽𝜏2, t

∗
i
+ 𝜏2).

x(t̂i) =
1

d
(e−dt̊i − 1).

x(t − 𝛽𝜏2) < 0, ∀t ∈ [t∗
i
+ 𝛽𝜏2, t̃i),

x(t − 𝜏2) > 0, ∀t ∈ [t̃i, t
∗
i
+ 𝜏2).

x(t − 𝜏(t)) < 0, ∀t ∈ [t∗
i
+ 𝜏2, t

∗
i+1

).

{
x�(t) = −dx(t) + 1

x(t∗
i
+ ��2) =

1

d

(
e−d��2 − 1

)
,

x(t) =
1

d

[
e−d(t−(t

∗
i
+��2))

(
e−d��2 − 2

)
+ 1

]
.

x(t̃i) =
1

d

[
e−d(t̃i−(t

∗
i
+𝛽𝜏2))

(
e−d𝛽𝜏2 − 2

)
+ 1

]
.

{
x�(t) = −dx(t) − 1,

x(t̃i) =
1

d

[
e−d(t̃i−(t

∗
i
+𝛽𝜏2))

(
e−d𝛽𝜏2 − 2

)
+ 1

]
.
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and

where we omit the details of the computation.
Finally, we consider the increasing system in [t∗

i
+ �2, t

∗
i+1

]:

with its solution given by

By imposing x(t∗
i+1

) = 0 in the above equation, we get

At this point, we solve for t̂i by considering the increasing system for t in [t̂i, t∗i+1] described 
in (5). The solution of

is given by

In the same way, we impose x(t∗
i+1

) = 0 to yield

Now we can find t̊i by equaling the two quantities derived for t∗
i+1

.

Note that the equation above (11) includes scenarios (S1a) when t̆i = 𝛽𝜏2 , and (S2a) when 
t̆i = 𝜏2.

Proposition 1  Let x(t) be the solution to (1) where the parameters satisfy the following 
assumption:

Then

x(t) =
1

d

[
e−d(t−(t

∗
i
+t̆i))

[
e−d(t̆i−(t

∗
i
+𝛽𝜏2))

(
e−d𝛽𝜏2 − 2

)
+ 2

]
− 1

]
,

x(t∗
i
+ 𝜏2) =

1

d

(
e−d𝜏2 − 1 − 2e−d(1−𝛽)𝜏2 + 2e−d(𝜏2−t̆i)

)
,

{
x�(t) = −dx(t) + 1,

x(t∗
i
+ 𝜏2) =

1

d

(
e−d𝜏2 − 1 − 2e−d(1−𝛽)𝜏2 + 2e−d(𝜏2−t̆i)

)
,

x(t) =
1

d

[
e−d(t−(t

∗
1
+𝜏2))

(
e−d𝜏2 − 2 − 2e−d(1−𝛽)𝜏2 + 2e−d(𝜏2−t̆1)

)
+ 1

]
.

t∗
i+1

= t∗
i
+ 𝜏2 +

1

d
ln
(
−e−d𝜏2 + 2 + 2e−d(1−𝛽)𝜏2 − 2e−d(𝜏2−t̆i)

)
.

{
x�(t) = −dx(t) + 1

x(t∗
1
+ t̊i) =

1

d

(
e−dt̊i − 1

)
,

x(t) =
1

d

[
e−d(t−(t

∗
i
+t̊i))

(
e−dt̊i − 2

)
+ 1

]
.

(10)t∗
i+1

= t∗
i
+ t̊i +

1

d
ln
(
2 − e−dt̊i

)
.

(11)t̊i +
1

d
ln
(
2 − e−dt̊i

)
= 𝜏2 +

1

d
ln
(
−e−d𝜏2 + 2 + 2e−d(1−𝛽)𝜏2 − 2e−d(𝜏2−t̆i)

)
.

(12)
[
ln(1 + ed𝜏2 ) − ln(2)

]
d𝜏2

< 𝛽 <

[
ln(2ed𝜏2 − 1)

]
d𝜏2

.
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Moreover,

(1)	 If 𝛽 < 1 , t̊k can be calculated exactly if and only if ť = cT + 𝛾  is not in 
[t∗
k
+ ��2, t

∗
k
+ �2], ∀c ∈ ℕ.

(2)	 If 𝛽 > 1 , t̊k  can be calculated exactly if and only if ť = dT  is not in 
[t∗
k
+ �2, t

∗
k
+ ��2], ∀d ∈ ℕ.

Proof  Condition (12) guarantees that t̂i < t∗
i+1

 for all i. The first inequality derives directly 
from lemma 2 when 𝛽 < 1 since

while the second part of the inequality occurs when 𝛽 > 1 and is computed in a similar 
way. Condition (14) is enough to guarantee equality (10); therefore we apply (10) itera-
tively i − j times and end up with (13).

Moreover, there is a single change of monotonicity in [t∗
k
, t∗
k+1

] when the delay �(t) 
defined in (2) does not change from �min to �max in the interval [t∗

k
+ �min, t

∗
k
+ �max] . Only 

when this happens, we can calculate t̊k analytically (i.e. this corresponds to scenarios (S1) 
or (S2a) in case 𝛽 < 1 ), otherwise we should adopt a procedure similar to scenario (S2b) to 
calculate it numerically. 	�  ◻

Searching for Periodic Solutions

In this section, we use the method of steps to solve (1) with initial condition (3) where 
k0 = 0 without loss of generality, and find its periodic solutions.

We define an m-cycle periodic solution of period P of (1) to be a periodic solution of 
period P = t∗

j+2m+1
− t∗

j+1
 for all natural j. We are searching for the periodic solutions that 

complete m cycles in one period.

Theorem 1  Consider the following Delay Differential Equation:

where

and

(13)t∗
i
− t∗

j
=

i−1∑
k=j

[
t̊k +

1

d
ln
(
2 − e−dt̊k

)]
.

(14)t̂i ≤ t∗
i
+ 𝜏2 < t∗

i+1
,

(15)

⎧
⎪⎨⎪⎩

x�(t) = −dx(t) + f (x(t − 𝜏(t)))

x(t) > 0 ∀t ∈ [−𝜏max, 0)

x(0) = 0,

𝜏(t) =

{
𝜏2, if mod (t,T) ≥ 𝛾

𝜏1 = 𝛽𝜏2, if mod (t,T) < 𝛾
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for d, �2 , 𝛽 > 0 ; T > 𝛾 > 0 where �max ∶= max(��2, �2) and �min ∶= min(��2, �2).

Moreover, let �2, �, d, � satisfy inequality (12) and let l ∈ ℚ be such that l = m

n
 and 

gcd(m, n) = 1 for m, n ∈ ℕ and suppose the parameters satisfy

Then there exists a T such that (15) yields an m-cycle periodic solution of period nT.

Before proving the Theorem, we analyse the two conditions assumed and explain 
why they are relevant.

As seen in Proposition  1, the first condition (12) guarantees that t̂i < t∗
i+1

 for all i. 
Note that this condition limits the values of � which should be “close enough” to one; 
this can be translated by asking that the two switching delays should not differ by much.

Lemma 3  If condition (16) is not satisfied, then there is no  m -cycle periodic solution of 
period  nT for the system (15).

Proof  Suppose that condition (16) does not hold or equivalently

In this case �(t) = ��2 for all t ∈ [0, 2l (��2 +
1

d
ln(2 − e−d��2 ))] which yields:

This choice of T contradicts with the assumption (𝛾 < T) , thus there is no m-cycle periodic 
solution of period nT for the system (15). 	�  ◻

Proof  of Theorem 1—Since condition (12) holds, we can apply Proposition 1 to obtain

If there exists a T that satisfies (17), we know that �(t∗
2m+1

+ t) = �(t∗
1
+ t) for all t ≥ 0 so it 

is an m-cycle periodic solution of period t∗
2m+1

− t∗
1
= nT .

This is equivalent to showing that the function

contains at least one root.

f (x) = −sgn(x) =

⎧
⎪⎨⎪⎩

1, if x < 0

0, if x = 0

−1, if x > 0,

(16)𝛾 < 2l [𝛽𝜏2 +
1

d
ln(2 − e−d𝛽𝜏2 )].

� ≥ 2l [��2 +
1

d
ln(2 − e−d��2 )].

T = 2l
(
��2 +

1

d
ln(2 − e−d��2 )

)
≤ � .

(17)nT = t∗
2m+1

− t∗
1
=

2m∑
k=1

[
t̊k(T) +

1

d
ln
(
2 − e−dt̊k(T)

)]
.

(18)g(T) = nT −

2m∑
k=1

[
t̊k(T) +

1

d
ln
(
2 − e−dt̊k(T)

)]
,
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We analyse the periodic solutions separately if l is natural or not. a) Periodic solutions 
for l ∈ ℕ (i.e. n = 1 ). It is important to note that t̊k does not depend on T for k ≤ 2m , thus 
we can study each of the t̊k separately. This leads to the possibility of simplifying (17) into

and the choice of T would be unique since the right hand side is a constant given all the 
other parameters.

The calculation of t̊k depends on the choice of � : 

(1)	 𝛾 ≥ 𝜏2 + (k − 1)𝛽𝜏2 +
k−1

d
ln(2 − e−d𝛽𝜏2 ) ⟹ t̊k = 𝛽𝜏2.

(2)	 𝛾 ≤ k𝛽𝜏2 +
k−1

d
ln(2 − e−d𝛽𝜏2 ) ⟹ t̊k = 𝜏2.

(3)	 Otherwise t̊k ∈ (𝜏min, 𝜏max) and this can be branched into two further cases: 

(a)	 𝛽 > 1 → t̊k = 𝛾 − t∗
k
.

(b)	 𝛽 < 1 → t̊k is calculated numerically using (11).

Note that there is a maximum t̊k that falls into 3) and happens if 𝛾 ∈ [t̊k + 𝛽𝜏2, t̊k + 𝜏2] . We 
are able to predict in this case all the other t̊k without further calculations since:

j < k ⟹ t̊j = 𝛽𝜏2 ; k < j < 2m + 1 ⟹ t̊j = 𝜏2.
(b) Periodic solutions in all other cases (l ∈ ℚ ⧵ ℕ) . This time t̊k are functions of T 

which complicates the problem of searching for a root of (18).
We first consider the continuity of ̊t1(T) with respect to T. We want to prove that given 

T > 0 and for 𝜖 > 0,

If no change of delay occurs in [��2, �2] , there always exists a small enough � such that

and continuity is verified easily.
We now study the subcase in which 𝛽 < 1 and there is exactly one change in delay in 

[��2, �2] , given T. This can be further subdivided into scenarios (S1b) and (S2b) of Sect. 3:
(S1b) occurs when t̊1(T) = 𝜇T  for some � ∈ ℕ . We can always find a small enough � 

such that t̊1(T − 𝜖) = 𝜇(T − 𝜖) and t̊1(T + 𝜖) = 𝜇(T + 𝜖) . So the continuity holds as � → 0.
(S2b) occurs when there is a change of monotonicity at �T + � for some � ∈ ℕ . 

We can always find a small enough � such that t̃1(T − 𝜖) = 𝜇(T − 𝜖) + 𝛾 and 
t̃1(T + 𝜖) = 𝜇(T + 𝜖) + 𝛾 . Let

and

T =

2m∑
k=1

[
t̊k +

1

d
ln
(
2 − e−d

̊tk

)]
,

lim
𝜖→0

̊t1(T − 𝜖) = lim
𝜖→0

̊t1(T + 𝜖) = ̊t1(T).

t̊1(T − 𝜖) = t̊1(T + 𝜖) = t̊1(T),

h1(x) ∶= x +
1

d
ln
(
2 − e−dx

)

h2(t̃) ∶= 𝜏2 +
1

d
ln
(
−e−d𝜏2 + 2 + 2e−d(1−𝛽)𝜏2 − 2e−d(𝜏2−t̃)

)
.
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Note that h1(x) and h2(t̃) are continuous functions with respect to x and t̃ respectively. But � 
is finite, therefore if � → 0,

Using (11), we get the following three equations:

Since the right hand side of all equations converges to the same quantity as � → 0 and h1(x) 
is continuous, then ̊t1(T) is also a continuous function. At this point, it is clear that the con-
tinuity can be generalized for multiple delay changes, for cases where 𝛽 > 1 and for t̊k(T) 
with k ∈ {1,… , 2m}.

In particular, g(T) defined in (18) is a continuous function with respect to T since it 
is a composition of continuous functions. Moreover, condition (12) guarantees that 
𝜏min ≤ t̊k(T) ≤ 𝜏max so we can consider the following: 

(1)	 Tmin = 2l
[
�min +

1

d
ln
(
2 − e−d�min

)]
,

(2)	 Tmax = 2l
[
�max +

1

d
ln
(
2 − e−d�max

)]
.

Note that the continuous function g satisfies g(Tmin) ≤ 0 and g(Tmax) ≥ 0 . Therefore we 
can apply the Intermediate Value Theorem which states that there exists at least one 
T̂ ∈ [Tmin, Tmax] such that g(T̂) = 0.

This T̂  will yield an m-cycle periodic solution of period nT we are searching for and this 
proves the Theorem. 	�  ◻

The delay-change period T can be approximated numerically by considering a grid of 
values for I = [Tmin, Tmax] and choosing the value that minimizes |g(T)|.

Theorem 2  Consider equation (15) with known parameters  �2 ,  � ,  d and  T satisfying 
condition  (12) of Theorem 1 and the following condition:

Then there exists a  � such that (15) yields an  m -cycle periodic solution of period  nT.

The proof is similar to Theorem 1 where the main step is to show that t̊k(𝛾) is a continu-
ous function for k ∈ {1,… , 2m} and we choose to omit it.

Theorems 1 and 2 show that under certain conditions, it is possible to find coexisting 
periodic solutions with different periods and cycles by varying just one of the switching-
delay related parameters.

h2(�(T + �) + �) → h2(�T + �);

h2(�(T − �) + �) → h2(�T + �).

h1(t̊1(T)) = h2(𝜇T + 𝛾);

h1(t̊1(T + 𝜖)) = h2(𝜇(T + 𝜖) + 𝛾);

h1(t̊1(T − 𝜖)) = h2(𝜇(T − 𝜖) + 𝛾).

2l
[
�min +

1

d
ln(2 − e−d�min )

]
≤ T ≤ 2l

[
�max +

1

d
ln(2 − e−d�max )

]
.
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Numerical Experiments

In this section we provide some simulations using Matlab to obtain different multi-cycle 
periodic solutions using Theorem 1 as explained above.

We assume in all the plots that three of the parameters are always fixed: � = 0.6 , �2 = 3 , 
d = 0.1 . Then we choose � satisfying condition (16); in the first two cases � = 3 , in the rest 
we choose a larger � = 8 to demonstrate interesting dynamics. We also introduce dashed 
lines at y = nT  to show the period of each solution.

The parameters that vary throughout these plots are m and n which regulate the behav-
iour of solutions since we aim to search for an m-cycle periodic solution of period nT. In 
these simulations T is computed numerically and our method proves to be rather stable in 
identifying multi-cycle periodic solutions.

The two plots in Fig.  2 show two of the possible 1-cycle periodic solutions of (15) 
which are obtained by choosing n = 1 and n = 2 respectively. Important to notice is that 
the two solutions yield different behaviours since the solution in the right panel presents 
two extrema in every period with the same absolute value but this does not occur in the left 
panel because the maxima presents a higher absolute value.
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Fig. 2   In the left panel, 1-cycle Periodic Solution of Period T = 8.6295 ; in the right panel, 1-cycle Periodic 
Solution of Period 2T = 6.6498
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The two plots in Fig. 3 show examples of 2-cycle periodic solutions of (15). In this case, 
it is interesting to note how the two solutions present similar behaviour and their period is 
just slightly different.

The two plots in Fig.  4 represent different 3-cycle periodic solutions of (15) where 
� = 8 . Note that the peaks of the solutions are the same since all parameters are the same; 
the only thing that differs are the peak patterns since the former presents two global max-
ima and minima in every period while the latter just one of both. The two plots in Fig. 5 
represent different 5-cycle periodic solutions of (15). Interesting to note is the fact that the 
plot on the right presents additional oscillations since one of the local peaks undergoes 
periodically  through a triple change of monotonicity. This happens since that special case 
identifies with scenario (S2b) of Sect. 3 (Fig. 5).
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Fig. 3   In the left panel, 2-cycle Periodic Solution of Period T = 19.2388 ; in the right panel, 2-cycle Peri-
odic Solution of Period 3T = 19.1721
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Conclusion

We have introduced a DDE model with periodic switching delays and described the behav-
iour of some solutions induced by its negative feedback. In particular, we know that the 
solutions are always bounded and, under relevant conditions on the parameters, the exist-
ence of multi-cycle periodic solutions can occur. The main condition requires that the two 
switching delays, which can be considered for example in the tick population egg dynamics 
in [2] as the normal and diapause delay, should be close enough to each other. This guaran-
tees that its dynamics can be studied analytically and in the case where the two delays tend 
to coincide, we can approximate their dynamics to a single-delay population model which 
has already been analysed by [11].

The model studied in this paper can be used in several applications in different fields 
[12], so it would be useful to study the implications of its dynamics case by case. It is 
though necessary in first place to expand our research on these examples of periodic 
delay-switching DDEs as studied by [13] and have a better understanding of its theoretical 
results. In this direction, we would like to further analyse this model by considering the 
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Fig. 4   In the left panel, 3-cycle Periodic Solution of Period T = 27.8687 ; in the right panel, 3-cycle Peri-
odic Solution of Period 2T = 23.9084
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effects of perturbation on these periodic solutions and dropping some of the simplifying 
assumptions on the model (for example considering f to be continuous).
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