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Abstract

In this study, we present the existence result for the the second order m-point boundary
value problems on infinite time scales. Nagumo condition, lower and upper solutions play
an important role in the arguments.
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Introduction

First and higher order boundary value problems (BVPs) have been studied in many papers,
such as [3, 4, 10, 20, 22, 23] for multipoint BVP and [1, 2, 5, 9, 12, 15-19, 21] for infinite inter-
val problem. Also there is a large bibliography on papers related to lower and upper solutions
with nonlinear boundary value conditions for first and higher order equations. It is assumed in
[11, 14] one pair of well-ordered upper and lower solutions and then applied some fixed point
theorems or monotone iterative technique to obtain a solution. In the classical books of Bern-
feld and Lakshmikantham [6] and Ladde et al. [13], the classical theory of the method of lower
and upper solutions and the monotone iterative technique are given. This gives the solution
as the limit of a monotone sequence formed by functions that solve linear problems related to
the nonlinear equations considered. It is important to point out that to derive the existence of
a solution a growth condition on the nonlinear part of the equation with respect to the depend-
ence on the first derivative is imposed. The most usual condition is the so-called Nagumo con-
dition imposes a quadratic growth in the dependence of the derivative.

In [19], Yan et al. established an upper and lower solution theory for the following
second order boundary value problem
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Y'(@0) + p0)f (¢, y(1),y' (1)) = 0, 1 € (0, 00),
{ ay(0) = by'(0) = yo 2 0, lim Y (@) =k,
where a, b,k > 0. By using the upper and lower solutions method, the authors presented
sufficient conditions for the existence of unbounded positive solutions.
In [15], Lian and Geng considered the second order Sturm—Liouville boundary value
problem on the half line

W) + GOf ¢, u(®), ' () = 0, t € (0, ),
w(0)—an'(0)=B, u'(+0)=C,

where a > 0, B, C € R. They concerned with the existence of multiple unbounded solutions.
We consider the following boundary value problem on an infinite time scale;

—[pOur 01 + w@)f (1, u(®), WD) 1)) =0, t € (a, ),
m—2
— [A] —
| aut@) = pul @ ;Zku(:p, W
yu(eo) + 61l (00) = N bu(&y),
k=1

«

where «a,f,7,6,&,a;,,b, (for k=1,2,...,m—2) are complex constants such that
lal +[B] #0, |y|+16]|#0 and & €T\{a}, v : (a,0)— (0,00) is a continuous
function, p : (a,00) - C is V- differentiable on (a,),, p(¢) #0 for all ¢ € (a, ),
pY¥ i (a,0), > C, f:[a,00)x RXxR — R are continuous functions and T is any time
scale such that T* = co.

Throughout this paper, we mean u(o0) = rllrg u(t) and u[A](t) = p(t)uA(t). Also, by an
interval (a, 00), we mean the intersection of the real interval (a, co) with the given time scale
T. Some preliminary definitions and theorems on time scales can be found in the books [7, 8].

This paper is organized as follows. In Section “The Preliminary Lemmas”, some def-
initions and lemmas are presented. We establish an upper and lower solution theory for
problem (1.1) in Section “Main Result”. Sufficient conditions are given for the existence
of at least one solution for this problem.

The Preliminary Lemmas

To prove the main results in this paper, we will employ several lemmas. We consider the
following boundary value problem

~[pOuPr 01 = y(), t € (a, ),
m—2
au(a) — pulBa) = Y au(&,),
: ; 2" ¢ @1
yu(o) + 61 (o) = Y’ bu(&y).
k=1

L

Let ¢, and ¢, be the solutions of the linear problems
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~lpO$2 DY =0, 1 € (a, ),
o@=p ¢P@=a

and

~[p@OP2 01" =0, 1 € (a, ),
py(0) =6, ¢ )(c0) =~y

t
respectively, so the functions ¢, and ¢, are given by ¢, (H)=f+a / % and
[os] a p s
As
d()=06+y / —.
g ¢ p)

Let we define d :=yﬁ+a6+ay/ As

« PO
and
m—=2 m=2
-2 (&) d— Y (&)
Q= k=1 k=1 _

m-2

m—2
d— 2 ﬂk(pl(fk) - 2 ﬂkd’z(fk)
k=1 k=1
The following lemmas are easily proved similar to Lemmas 2.3 and 2.4 in [20].

Lemma 2.1 Let Q,d # 0. Then for y € Cla, o), boundary value problem (2.1) has a
unique solution

u(t)=/ G, 5)y(s)Vs + A), (1) + B(y), (),

where
_1f ()1, a<s <1< oo,
G = 3{ d)i(t)d)j(S), a<t<s<oo,
m=2 © m—2
| Z a )y G sy@Vs d= T auha(&)
A@) = =| ! k=1
) Q| m=2 © m=2
;;1 by [ G y()Vs  — El byby(&)
and
m—2 m—2 o
1~ Y adi(&) X a [, G&.9)y(s)Vs
B(y) == k,j,l_z k=1

m-2 .
d= Y b (&) X b [,” G 5)y(s)Vs
k=1 k=1
We assume that the following conditions are satisfied:

(H) a,y>20,,6>0,a,b,>0fork=1,2,....,m—2,
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(Hy) p:(a,00)—= (0,00)is V— differentiable on (a, o), and PV (a, ), = C is con-
tinuous function,
m—2 m—=2
(H;) Q<0,d- Zk=1 a (&) >0,d— Zk_ b (&) > 0.

Lemma 2.2 Assume that (H,) — (H;) hold. Then, 0 < G(t,s) < G(s,s) fort,s € [a, o).

Lemma 2.3 If/aoo G(s, 9)|y(s)|Vs < o0, then the following inequalities are satisfied:

AL SA/ G(s,9)[y(®)[Vs, [BO)I SB/ G(s,9)[y(s)| Vs,

where
m—2 ) m—2
=
1 Z @ d - Z a$(&) 1|~ 2=t @b IZ:I ay
A= 5 ’ B = 5 m—2 miZ :
Z by - Z bir (&) d= Y b (&) X b
k=1 k=1 k=1 k=1
Proof Tt can be easily proven with simple calculation. a

Now, we present some definitions and lemmas which are essential in the proof of our main
results.

Definition 2.1 A function u € C'[a, ) N C2(a, o) is called a lower solution of (1.1) if

PO DO + w(@)f (1, u(t), D) 1)) > 0, 1 € (a, ),

m—2
au(a) — pulD(a) < Y au(&y),
9 k=1

m=2

yu(oo) + 8ul®(c0) < 3’ bu(&y).
k=1

\

Definition 2.2 A function u € C'[a, ) N C?(a, o0) is called an upper solution of (1.1) if

P> 01" + w(t)f(t u(r) #2) <0, 1 € (a, ),

aii(a) - fi > (a) > Z (&),
m—2

yii(00) + 67 (00) > Y (%)),
k=1

Definition 2.3 Given a pair of functions u, u € C![a, o) satisfying u(t) < u(?), t € [a, o).
A function f is said to satisfy the Nagumo condition with respect to the pair of functions
u,u, if there exist a non-negative function ¢ € C[a, o) and a positive, increasing one
h € Cla, ) such that

lf(t, u,v)| < p®Oh(V]),
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forallt € [a, o), u(t) < u < u(t),v € Rand

/a°° @Sy (s)Vs < o0, /aw h(|ss|)vs =0

Lemma 2.4 Let g : T — R be a strictly increasing function in T and A—differentiable
inTY, T=g(Mand f : T = R be rd - continuous. Then for all a,t € T, the following is
satisfied:

t [{0]
/ Fg()g ()As = / FEr.
a g(a)

Main Result

In this section, by using upper and lower solutions, we will prove the existence of the solution
of problem (1.1). We shall work in the Banach space

t
E= {ue C'fa, ) : lim 1 +”((t)_a) < oo, }i?ou[A](t)< oo}

with the norm
llull = max{ llull,, D)l )

where

|u(®)] A A
lull, = sup ———, |lu!®|l, = sup [D@).
! t€la,o0) 1 + (t - a) t€[a,00)

We consider the following problem

[POuP D1 + wOf* (1, u(®), D) = 0, t € (a, ),
m—2
(@) = pulB(a) = ),
) au(a) — pu'=(a) ];c:ku(ék a1
yu(eo) + 6uAl(o0) = N’ bu(&y),
k=1

L

where
u — u(r)
Sr(t u(®),v) — m, u(t) > u,
frtu,v) =1 folt,u,v), _ u(t) <u < u(),
St (D), V) — 1+“|;—f(;)(t)| ) < u
and
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f(t! u, _R)7 v < _R7
frlt,u,v) =1 f(t,u,v), —R<ZVvLR,
ft,u,R), v>R.

We define the operator F : E — E by
Fu(r) = / G(t, )y ()f* <S, u(s), M[A](S))VS + AW, (1) + Bwf™), (1.

It is well known that the existence of the solution to the system (3.1) is equivalent to the
existence of fixed point of the operator F. So we shall seek a fixed point of F .
In the rest of the paper, we assume that the following conditions are satisfied:

(H,) Problem (1.1) has a pair of upper and lower solutions u , u with u(t) < u(t) for
t € (a, ),

(Hs) f e C(a,o0)X R?, R) satisfies the Nagumo condition with respect to u and u also
ft, u, ) is non-decreasing in R and f(t,u,v) < 0 for all ¢ € [a, o), u(t) < u < u(t)
andv € R,

(Hg) llirg w(Ou®) (@) + 1) < oo, where p is graininess function.

Theorem 3.1 Assume that (H,) — (H,) hold. Then problem (1.1) has at least one solution
u € E such that u(t) < u(t) < u(t) fort € [a, ).

Proof First, we show that the operator F : E — E is well defined. For any fixed u € E, we
have

/a . % v (S’ u(s), M[A](s))Vs < / " G(s, )y (s)(@(s)Hy + 1)Vs < oo,

where H, = ma)é h(s). By Lebesgue dominated convergent theorem, we get
O<s<|ul Al

Fu(t) ®  G(t,9) " (A
lim ————— =) = lim { /a T+0-a w(s)f (s, u(s), u (s))Vs

(@)
1+(t-a)

t
+ B +¢(2[<_) 5 }

_ 7 i G . N
- / fim Y (s, u(s), u (s))Vs

o ¢,(0)
+A(wf)tlgg—l+(t_a)

. $>(0)
MR AR )

+AWS™)

<00,

and similarly, we find
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[A]
o (@)
d

lim (i) 2)(1) = lim { / S OWE* (5 u(s), 1)) Vs

¢[1A](t) ® A [A]
+ / DoV * (5, u(s), ()| Vs + A 210

+ BP0 + 0w (o (0)f*(0(0), u(o (1), u[m(g(t)))}

= lim ¢[zi](t) / WO (5,100 1089 s
+Af") lim iﬁﬁ”(i) + Blys™) lim ¢2()
+ im (O (o) (o(0), uo (1), A1)
= / " W (105108 (5)) Vs + Ay - 7B

+ lim (O (e )" (o0, u(o®), X))
<00,

sofuekE.
Now, we shall prove that F : E — E is continuous. For any convergent sequence
u, — u, there exists r; > 0 such that||u, ||, ||| < r,. From then, we have

TG0 Lo N
/a sV O (54,048

—f* (s, u(s), u[A](s)> Vs <2 /°° G(s, s)l//(s)((p(s)H,l + 1)Vs < o,

where H, = max h(s).
1 0<s<ry

And then, for all t € [a, ), we get

|[Fu,(t) = Fu()] 1
l+(—a) 1+@-

—f* (s, u(s), ul® (s))] Vs

+ [A(u/f*(s, i, “LA])) - A(wf’* (s’ N )) 1 +¢(1l(? .

+ [B<Wf*(s, un»uiﬁ]>> - B(Wf*(s, u, MA]))] %

" ap Gl Al
5/a a:lfw 1+(t—a)W(S)P (s,un(s),un (s)>

— £ (s, u(s), WD) (s))| Vs

a)’ /a mG(t, s)lll(s)[f*(s, un(s)7uLAJ(S)>

A (i) = (st | sop 55
b, (1)

B(q/[f* (s, u,, uLA]) -f* (s, u, uld )] > sup

asi<eo 1+ (t —a)

+
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from which, we find

lim ||Fu, — Fu||, = 0.

And similarly, for all 7 € [a, o0), we get

¢[2Ad](t) /Id)l(s)‘l/(s) [f* (S, u,,($), MLA](S)>
_p (s, u(s), M[A](s))] -
L oo /°° SO (2,008

=" (s uts), 1 2(5) ) | Vs
Aot <A (o)

o)) <o ()

+ uOw G| (o0, 1, 0), 1t e 0)

(Fu,) (o) = (Fu )| =

(0. 1o 0.0 |
[A]( )
/ ¢1(s>w(s)P (510, 12105
—f* (s u(s), u[A](s)> Vs

[A]( )
/ ¢2(S)W(V)P (5,2

—f* (s, u(s), u[A](s)> Vs

(ol (s t) 1 )]
ool (s t) 1 )]

+ﬂ(t)u/(6(t))}f*<G(t),u,,(6(t)), A GO)

< sup
a<t<oo

+ sup

a<t<oo

sup i)

a<t<oo

sup ¢ (0)

ast<co

+

—f* (6([), u(o(?)), uW(o(t))>] ‘

this implies

lim [|(Fu,) A0 - 0P| =o.
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Thus F : E — E is continuous.
Let D C E be any bounded set, then there exists » > 0 such that for any u € D, it holds
||u]| < r. Then for any u € D and ¢ € [a, o0), we find

o ) * (Al .
l+(t—a) 1+(@-a) /a G(t, )y (s)f (s, u(s), u (s))Vs+A(Wf )b, (1)
+ B(u/f*)¢2(t)’
S /aoo ai];l<poo % (S) }f* S, M(S), u[A](S)> VS
$,(1) (1)
TIAWSOI sup 77— HIBWOI sup s

<(1 +Ag;(c0) +B¢2(a))/ G(s, )y ()@($)H, + 1)Vs < oo,

where H, = 51<1;1<)( h(s). And by the similar way, for all # € [a, ), we get

Al | B A
[0 | == [ aowr (s.ue.u8))vs
[A]
L0 (s)ul(s)f*(s, u(s),u[A](s)>Vs
+ AP0 + B o)
+ uOW (O (o10. (). e 0) )|
[A]
< sup / b1 (MW () @()H, + 1)Vs
+ u(t)w(o(l))((p(a(t))H, +1)
[A]( )
+ sup / O, (W (s)(@(s)H,. + 1)Vs
a<t<oco
[A sup |¢[A](r>|

+B sup (¢[2A1<r>|] / G(s, 9w () @($)H, + Vs < oo,

a<t<oo

that is, F(D) is uniformly bounded. Moreover, we can easily show that F(D) is
equicontinuous.
Finally, we show that F(D) is equiconvergent at infinity. In fact, we have

@ Springer



738 Differential Equations and Dynamical Systems (October 2023) 31(4):729-742

Fu@®) i Fu(r)
‘1+(t—a) t»oo 1 4+ (t —a)

1 G@,s) . G, s A
_/; [1 +([—Cl) llilg 1+([ )]W(s)f (S M(S) u (S))VS

¢ () ) ¢, (1)
A f)[1+(z zliToH(z—a)]
" @, (0 . b, (1)
+Bwr") 1+(z—a)_z1iTol+(z—a)H

oo G(l, S) . G(l, S)
: /u ‘m T |V O@WH, + DVs

‘ (1) . (1)
— lim
1+(t—a) t=ol+(t—a)
S0 )
l+(t—a) o l+(—a)

— 0, ast - o,

/ G(s, 9w () @)H, + 1)Vs

a

+ B‘ / G(s, )y (s)(p(s)H, + 1)Vs
and similarly, we get
|(F!2) - (FutP(o0)|

/ 'G[Al(r, 5) = lim G2, 5)|w(s)(@($)H, + 1)Vs

+Ald 0~ lim ¢

/ G(s, )y (s)(@(s)H,. + 1)Vs

+ B0~ lim ¢

/ G(s, 9w () @()H, + 1)Vs

+ |u@y (o) - [lirglo HOW(cO)|(p®H, + 1)
-0, ast - oo.

Then, we obtain that F : E — E is completely continuous. By using the Schéuder fixed
point theorem, we find that F has at least one fixed pointu € E.

Now, we shall demonstrate that the function u satisfies u(f) < u(f) <u(f) and
[ulD(1)] < R for t € [a,c0) and positive real R. For this purpose, firstly, we show that
u(t) < u(t), t € [a, o). Therefore, let N > 0 and choose

u(t) — u(a) u(a) — u(t)
n> ( sup p(t)> max{ sup ———, sup — }

te€la,o0) €lNw) [—a €[Ny [—a

max{ sup | [A](t)| sup ’ [A](t)‘} <n,

t€la, ) t€la,o)

and R > 7 such that

R
/ S _vs> ( sup p(l)l[/(t)(p(t))( sup u(t)— inf u(t)).
n h(|S|) t€la,o) t€]a,00) t€la,00) —

@ Springer



Differential Equations and Dynamical Systems (October 2023) 31(4):729-742 739

Moreover, define g(f) = u(t) — u(t). Suppose that g(¢) > 0 for some ¢ € [a, 00). Hence, there

exists 7, € [a, oo) such that g(#,) = sup g(¢). There are three cases to consider.
t€la,o0)
Case 1. If t, € (a, ), then, from [8, Lemma 6.17], we know

g2(1) < 0 and [p(1)g2 (1)1 < 0,

from which, the assumption (Hs) and R > sup | E[A](I)L we obtain
t€la,)

[P(fo)gA(fo)]v =[P(to)EA(fo)]v - [P(to)MA(fo)]V
> = y(0f (19, (). 421 ) + w@f* (10, ) 1))
= = w0 (1o, ). 1 210) ) + w10 tt0), M 1))

M(to) - Z(t())
1+ |u(t0) - Z(lo)|

>y 0|10 ). 2 10) ) = £ (10, t0), w1 ) |

>0,

—w()

which is a contradiction.
Case 2. If t, = a, then, by the boundary condition, we have

0 < au@ - u(@) < fp(@) (4> @ - u@),

which is a contradiction.
Case 3. If g(o0) = sup g(#), then, similarly, using the boundary condition, we get
tela,o)

0 < 7(u(c0) — u(co)) < 5(uw(oo) - Q[A](OO)>,

which is also a contradiction. Consequently, u(z) < u(z) holds for all ¢ € [a, c0). Similarly,
we can show that u(¢) < u(¢). Now, we demonstrate that [u!21(¢)| < R for ¢ € [a, o0). There
are three cases to be considered.

Case 1. If [ul2)(r)| < n, Vt € [a, ), we take R = n and we complete the proof.

Case 2. If |llD)(1)| > n, V1 € [a, 00), without loss of generality, we suppose ul2(1) > 5
fort € [a, o0). While for any 7 > N, we get

=T — _
sup p() ( u(T) - i(a)> > sup p(t) < u(T) - Z(a))

t€[a,00) T t€[a,o0) T
1 r A
= sup p(Hu=(s)As
T—-a a t€la,c0)
>,
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which is a contradiction.

Case 3. There exist 7,1, € [a, 00) such that [ul2l(z,)| > nand [ulD)(1,)| < 7.

In this case, firstly, suppose that ul2(z,) > 5 and |ul2)(7,)| < 5, then by a convenient
change of variable, we have

u[A](f,) 1 (Al v
il Vs = / I/l—(l) A\ v
/u[A](r(,) h(|S|) § o h(|M[A](t)|) [p(l)u (t)] t

B 1 —u[A](t) . (Al
- /t mW)f <t,u(t),u (t))Vz

c —u[A](l‘) f —M[A]([)
/f(-) h(lM[A](l‘)l) W(t)f o ./c h(lu[A](t)l) W(t)f !

L VAN /0% . (Al
< / my/(t)f <t,u(t),u (z))w

4 M[A](Z)
PN IATA v
S/c h(|u[A](,)|)"’(f)(P(f) ([u2@))Vi

= / ' pOUL Oy (e(1)Ve

S< sup p(t)w(t)co(t)> / IMA(t)Vt

t€la,o0)

=< sup p(t)w(t)w(t)> / W )V

t€la,o0)

=< sup p(t)l//(t)(l’(t)>(u(6(t1)—M(G(C))

t€la,o0)

§< sup P(t)l//(t)(ﬂ(t)>< sup ﬁ(t)_tei[gio )z(t)>

t€la,o0) t€[a,o)

R )
< —— Vs,
/n h(]sl)

this implies, ul2)(1,) < R, where ¢ = inf{r € [1,,1,] : ulD(r) > 0}.
Secondly, we suppose that —ul2(7,) > 5 and |ul2)(#,)| < 5. Similarly, we get
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—ea ho Al v
LV = / M—(Z‘) A v
/MIAJ(tO) h(|S|) s i h(lu[A](l)l) [p(l)u (t)] t

_ [0 _uPlo . [A]
_/t] h(Iu[A](f)DW(I)f (t,u(t),u (t))Vt

LAVAN IO /’o ulD(p)
= _— t *Vt-‘r _— NVt
/t, wiason? Y o st

k M[A]([) . (A]
< / mu/(t)f (t,u(t),u (z))w

kA
<) PRV
B /tl h(|u[A](t)|)W(t)q’(t) (le='@DVe

k
_ / —p(OuP OW DRV

k
S( sup p(t)w(t)qo(t)> / —uP (Vi

t€la,o0) 1

k
=< sup p(t)w(t)w(t)> / —u" (o (t))Vt

t€la,o0) .

S< sup P(l)w(t)(p(t)>( sup ﬁ(t)—tei[zlgo)z(t)>

tela,o0) 1€[a,o0)

ko
< Vs,
/,7 h(|s])

hence, —u!2(t,) < R, where k = sup{z € [t,,7,] : ul®)(z) < 0}. Since #, and #, can be taken
arbitrary, we conclude that if there exists a ¢ € [a, c0) with |ulA)(5)| > n, then |ulD)(#)| < R.
Therefore,

[P (017 = =y @Of (&, u(t), D)) = —w () (1, u(®), D) 1)),

that is, u is a solution of problem (1.1). This completes the proof. O
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