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Abstract
The role of astrocytes in physiological processes is always a matter of interest for biolo-
gists, mathematicians and computer scientists. Similar to neurons, astrocytes propa-
gate  Ca2+ over long distances in response to stimulation and release gliotransmitters in a 
 Ca2+-dependent manner to modulate various important brain functions. There are various 
processes and parameters that affect the cytoplasmic calcium concentration level of astro-
cytes like calcium buffering, influx via calcium channels, etc. Buffers bind with calcium 
ion  (Ca2+) and makes calcium bound buffers. Thus, it decreases the calcium concentration 
 [Ca2+] level.  Ca2+ enters into the cytosol through voltage gated calcium channel (VGCC) 
and thus it increases the concentration level. In view of above, a three-dimensional math-
ematical model is developed for combined study of the effect of buffer and VGCC on cyto-
solic calcium concentration in astrocytes. Finite element method is applied to find the solu-
tion using hexagonal elements. A computer programme is developed for entire problem to 
simulate the results. The obtained results show that high affinity buffer reveals the effect of 
VGCC and at low buffer concentration VGCC effects more significantly.
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Introduction

Computational neuroscience has emerged as a new research area for mathematicians and theo-
retical scientists due to its complex physiology. One of the notable examples is modelling cal-
cium signalling in glial cell like astrocytes. Astrocytes are found to be the most diverse popu-
lation of glial cells in nervous system. Twenty years ago, the traditional view of astrocytes was 
merely as supportive cells providing only structural and metabolic support to neurons [1–3]. 
Recent studies of astrocytes have suggested that these cells not only supports the neurons but 
actively participates in the dynamic regulation of cerebral microcirculation, synaptic transmis-
sion and neuronal activation [2, 4–6]. Astrocytes are now widely accepted as nerve cells that 
propagate  Ca2+ over long distances in response to stimulation and similar to neurons release 
transmitters (called gliotransmitters) in a  Ca2+-dependent manner [4, 7]. Spontaneous astro-
cytic  Ca2+ oscillations have been observed and implicated in important functions of the brain. 
However, the mechanism of spontaneous  Ca2+ oscillations is still unclear. Therefore, it is criti-
cal to understand how the  Ca2+ oscillations are generated and modulated [7, 8].

There are so many processes involved in calcium signalling that effects the calcium con-
centration in cytosol. The notable examples are calcium buffering, entrance of calcium ion 
 Ca2+ through voltage gated channels, etc. Mathematical problems have been formulated in 
the form of reaction–diffusion equation, advection diffusion equation for one- and two-dimen-
sional cases. Tripathi et al. have studied the effect of several parameters like sodium calcium 
exchanger, buffer concentration, diffusion coefficients etc. on calcium concentration  [Ca2+] in 
neuron [9–11]. Tewari et  al. have developed the mathematical model to study the effect of 
sodium calcium exchanger, calcium buffering, VGCC etc. on calcium concentration in neu-
ron for one- and two-dimensional cases [12, 13]. To find the solution, different numerical and 
analytical techniques have been used like Laplace transform, finite difference method (FDM), 
FEM, finite volume method (FVM), etc. FEM has gained general acceptance for handling 
the diversity of problems along with diverse geometrical configurations and boundary condi-
tions which can be examined by a single computer programme. Jha et al. have developed two-
dimensional reaction diffusion equation to study the effect of buffer concentration on cytosol 
in astrocytes [14]. Later on, the model is extended to study the comparative effect of buffer 
concentration and VGCC on cytosolic calcium concentration in astrocytes [15]. Naik et  al. 
have studied the effect of RyR calcium channel, ER and SERCA pump on calcium distribu-
tion in Oocytes cell [16]. Before this, authors have studied the effect of various parameters in 
oocytes and T-lymphocyte using finite element method. In this paper we have extended the 
already present models [17–19] in three-dimensional mathematical model. The physiological 
results obtained are interpreted with neurological disorders like Alzheimer’s and Parkinson’s 
diseases using one and two dimensional mathematical models [20, 21]. In previous paper, 
study has been made for only point source. In this paper line source is incorporated to modu-
late more realistic situation. FEM is used to solve the problem. A computer program is devel-
oped for the entire problem to simulate the results.

Mathematical Formulation

Mathematical model is developed in the form of diffusion equation for steady state case. 
Calcium buffering and VGCC are included in the model. The formulation of calcium buff-
ering and VGCC is given in subsequent subsections.
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Calcium Buffering

Calcium buffers were examined for their ability to reduce evoked transmitter release 
when injected into the presynaptic terminal of the squid giant synapse. Ethylene glycol 
tetraacetic acid (EGTA) is virtually ineffective at reducing transmitter release, even at esti-
mated intracellular concentrations. Conversely, the buffer 1,2-bis(o-aminophenoxy)ethane-
N,N,N,N-tetraacetic acid (BAPTA) has an equilibrium affinity for calcium similar to that 
of EGTA, which produced a substantial reduction in transmitter release when injected in 
presynapse [22, 23]. Experimentally Wang et al. [23] first reported and illustrated directly 
that cytoplasmic calcium buffering constitutes an important and powerful mechanism for 
modulating astrocytic  Ca2+ waves.

Calcium kinetics in astrocytes is governed by a set of reaction–diffusion equations 
which can be framed assuming the following bimolecular reaction between  Ca2+ and buffer 
species [24, 25]

where  [Bj] and  [CaBj] are free and bound buffer respectively, and ‘j’ is an index over buffer 
species. The resulting partial differential equations in three dimensions for Eq.  (1) using 
Fickian diffusion can be stated as [24, 26]

where

DCa , DBj
, DCaBj

 are diffusion coefficients of free calcium, free buffer and  Ca2+ bound 
buffer respectively. k+

j
 and k−

j
 are association and dissociation rate constants for buffer ‘j’ 

respectively.

Voltage Gated (Operated) Calcium Channel

Astrocytes were shown to express voltage-gated  [Ca2+] channels similar to those found in 
neurons [1, 27]. Later, it was found that  Ca2+ influx through voltage-gated ion-channels 
significantly increases cytosolic calcium concentration  [Ca2+]i in astrocytes. Voltage-gated 
 Ca2+ channels form an important path way for  [Ca2+] entry in excitable cells; the later 
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have been found to express a variety of  [Ca2+] channels, differing in their voltage depend-
ence, kinetics, and pharmacological properties [28, 29]. Calcium channels are integral 
membrane proteins composed of five subunits, each playing a distinct role in channel func-
tion. MacVicar first demonstrated  Ca2+ action potentials in cAMP-treated cultured cortical 
astrocytes when the  K+ conductance was blocked and 10 mM  Ba2+ was added [30]. The 
 Ca2+ current has been modelled using the Goldman–Hodgkin–Katz (GHK) current equa-
tion as given below [26, 30].

where 
[
Ca2+

]
i
 and 

[
Ca2+

]
0
 , are the intracellular and extracellular calcium concentrations 

respectively. PCa is the permeability of calcium ion, zCa is the valency of calcium ion. F 
is Faraday’s constant. Vm is membrane potential. R is Real gas constant and T is Absolute 
temperature. Equation (6) is converted into molar/second by using the following equation

The negative sign in Eq. (7) is taken because, by convention the inward current is taken 
to be negative. GHK current equation gives the current density as a function of voltage. 
The GHK equation is derived from the constant field which assumes that the electric field 
in the membrane is constant and thus ions move in the membrane as in free solution.
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can be written for steady state as
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Also, the background concentration of  [Ca2+] is 0.1 µM. As moving far away from the 
source. The calcium concentration

For the convenience the Eq. (8) can be written as

The discretized variational form of Eq. (11) can be written as:

Here, we have used ‘u’ in lieu of  [Ca2+] for our convenience, e = 1 2…125. In the term 
outside the integral, µ(e) = 1 for e = 1 and µ(e) = 0 for rest of the elements. The shape function of 
concentration variation within each element is defined by [31] and shown in Fig. 1.
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Fig. 1  Descretization of the 
domain in three dimensions
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where ū(e) =
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From the Eq. (14) we have

where

Substituting  c(e) from Eqs. (14), (16) and (17) we get

Now the integral  I(e) can be written in the form
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where, M̄(e) =
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This leads to a following system of linear algebraic equations.

Here ū = u1, u2, … u216 , K is the system matrices, and F is system vector. The Gauss-
ian elimination method is employed to solve the system (27).

Results and Discussion

The numerical results for calcium profile against different biophysical parameters have 
been obtained using numerical values of parameter given in Table 1 unless stated along 
with the figures.
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Table 1  Values of physiological 
parameters of astrocytes [15, 
17, 24]

Symbol Parameter Value

DCa Diffusion coefficient 250 μm2/s
� Source amplitude 1pA
Vast Volume of the cytosol 5.233 × 10−13l

F Faraday’s constant 96,485 Coul/mole
R Ideal gas constant 8.31 J/(mole K)
T Temperature 300 K
Pout Rate of calcium efflux from the 

cytosol
0.5 s−1

ZCa Valance of  Ca2+ ion 2
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Figure 2 shows the variation of  [Ca2+] along the distance in x-axis. Cytosolic  [Ca2+] 
profile moves from high concentration to low concentration so it is highest at the source 
and it decrease rapidly up to 2 µm and after that it attains its background concentration 
of 0.1 μM as it goes far away from the source. The combined effect of buffer and VGCC 
has been shown in Fig.  2. The obtained result is in agreement with the previous results 
obtained in literature [14–16]. For the comparative study, the graph is plotted below to 
show the effect of low and high amount of buffer concentration and VGCC along x, y, and 
z directions.

In Fig. 3, the spatial variation in calcium profile is shown in two-dimensional way con-
sidering (a) x and y (b) x and z and (c) y and z directions. Calcium concentration is higher 
at the mouth of the channel and it decrease rapidly up to 2 µm far from the source and then 
attains the background concentration. Since space is taken cubical and the flow of ion is 
considered smooth, the movement of calcium profile is found same in all x, y, and z direc-
tions. The behaviour of calcium profile is same as that of shown in Fig. 2. Since buffers 
exist near the plasma membrane of the cell, most of the free calcium ions are bonded by the 
buffers and makes calcium bound buffer near the source. Due to calcium buffering nerve 
cells control the flow of transmitters from one cell to another cell or synapse. Also this 
mechanism saves the nerve cell from the toxicity rendered due to high amount of calcium.

Figure 4a, b shows the variation in calcium profile along x and y directions. Calcium 
concentration decrease rapidly up to x = 2 µm (Fig. 4a) and x = 1 µm (Fig. 4b) then main-
tain the background concentration of 0.1 µM as move far away from the source. This dif-
ference is due to the presence and low of VGCC. Due to presence of voltage gated calcium 
channel more free calcium ion remains present in cytosol, so that concentration remains 
high near the source. Due to high free calcium concentration level, neurotransmitter (in 
glial cell like astrocytes) moves from one cell to another or in synapse in vesicular way. 
Both the buffers and the voltage gated calcium channels play important role in signalling 
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Fig. 2  Calcium distribution along x direction with buffer and VGCC 
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Fig. 3  Spatial variation of 
calcium concentration in a x and 
b y and x and z and c y and z 
direction in presence of buffers 
and VGCC 
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process of nervous system. Thus from Fig. 4a, b it is observed that the voltage gated cal-
cium channel affect the calcium concentration level significantly in astrocytes.

Figure  5 shows the calcium profile along two direction namely x and y axis in (a) 
presence and (b) low of VGCC. The line source is considered at the boundary. It is 
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Fig. 4  a, b Calcium Concentration at different distance from point source along x and y direction for 
B = 30 µM  k+=1.5 µM/s,  DCa = 250 µM2/s in presence and low of VGCC 
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assumed that more channels are nearer to each other and makes line source. Calcium 
concentration decrease rapidly near the source and maintain the background concentra-
tion as it moves far away from the source. In low of VGCC (Fig. 5b) calcium profile 
decrease more sharply than the presence of VGCC (Fig. 5a). Thus, both the buffers and 
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Fig. 5  a, b Calcium concentration at different distance from line source along x and y direction for 
B = 30 µM  k+=1.5 µM/s,  DCa = 250 µM2/s in presence and low of VGCC 
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voltage gated calcium channel plays their important role in calcium distribution in nerve 
cells like astrocytes.

Figure 6a shows the variation of  [Ca2+] along the x-axis for different amount of buffer 
at different position (x = 1, 2, 3, 4 µm) in cytosol in presence of different amount of buffer 
concentration B = 0–100 μ M and in presence of VGCC. As with the increase in the buffer 
concentration it is observed that with increase in buffer concentration, the calcium con-
centration decreases at x = 1 μm, 2 μm. Figure 6b shows the variation of  [Ca2+] along the 
x-axis for different amount of buffer at different positions (x = 1, 2, 3, 4 µm) in cytosol due 
to different values of buffer concentration B = 0–100 μ M in low of VGCC. We observe 
significant difference in concentration profiles in astrocytes from Fig. 6a in the presence of 
VGCC. It happens due to presence and low of VGCC.

Conclusion

The three-dimensional finite element model has been developed for a steady state case to 
study effect of buffer EGTA and VGCC, and influx on calcium concentration distribution 
in astrocytes. The dimension of the model is extended from two dimensions to three dimen-
sions. The finite element method is quite flexible and versatile in the present situation as it 
has been possible to incorporate the parameters like EGTA, VGCC, influx and diffusion 
coefficient in the model. The results indicate that EGTA and VGCC has significant effect 
on calcium profile in the astrocytes. Also, the influx has significant effect on calcium dis-
tribution in astrocytes. Further, it can be concluded that VGCC plays more important role 
in calcium regulation in the low amount of buffers. The buffers are completely saturated 
and do not have the capacity to bind or in case of failure of buffers to bind calcium due to 
any abnormality or damage caused to buffers, etc. As any alteration in calcium distribution 
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Fig. 6  a, b Calcium concentration at different distance from source, B = 5–200  µM,  k+=1.5 µM/s, 
 DCa = 250 µM2/s in presence and low of VGCC 
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in nerve cells are directly related neurological disorders like Alzheimer’s and Parkinson’s 
diseases. Such models can be developed further to study the relationship among various 
parameters under normal and abnormal conditions to generate information which can be of 
great use to biomedical scientists for clinical applications in neuronal diseases.
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