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Abstract
We consider the population dynamics of prey under the effect of the two types of predators.
One of the predator types is harvested, modelled with a term with a Michaelis–Menten type
functional form. Besides local stability analysis, we are interested that how harvesting could
directly affect the dynamics of the ecosystem, such as existence and dynamics of coexistence
equilibria and periodic solutions. Theoretical and numerical methods are used to study the
role played by several bifurcations in the mathematical models.

Keywords Prey population · Two types of predator · Michaelis–Menten type functional ·
Harvesting · Stability · Bifurcation

Introduction

The dynamic relationship between prey and predators remains an important issue in math-
ematical ecology [1,4,17,23,24,37,48,57]. Common models of ecological prey–predator
interactions consist of two-dimensional ordinary differential equations with terms repre-
senting the growth of the prey and predator populations and the consumption of prey by the
predator. In these models, the species normally follow different growth functions [20,26,56].
Among these functions, the logistic growth function is an important one, first used byVerhulst
[49] tomodel growth of humanpopulations.Although there exist someother growth functions
[22,40], Feller [16] argued that for almost every population that increases to asymptotically
approach a finite size, it is adequate to model its growth with the logistic growth func-
tion. The most crucial element in these models is the “functional response”, that describes
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the rate at which the prey are consumed by the predator. The first prey–predator models
(Lotka–Volterra) [36,39,49,50] used a simple functional response proportional to the popu-
lation of predators. Several other types of response functions were formulated later, such as
the Holling types [25,26], the ratio-dependence type [2,33], and the Beddington–DeAngelis
type [3,15]. Two-species predator–prey models have been studied extensively, for example
[6,11,13,29,30].

The long-term dynamics of ecological systems and the persistence of species within them
are substantial concerns in ecology. Mathematical models have been used to investigate these
issues in a variety of ecological systems. For example, Bian et al. [5] considered a stochastic
prey–predator system in a polluted environment with a Beddington–DeAngelis functional
response, and obtained a sufficient condition to ensure the existence of boundary and positive
periodic solutions.

Furthermore, from the point of view of the management of renewable resources, the
effects of harvesting of populations are vitally important to predict [9,54]. Many authors have
studied prey–predator models with harvesting functions that are constant, linear or rational
[14,31,35,43,46,55,58–60]. Two- and three-dimensionalmodelswith linear harvesting and/or
refuge, as well as harvesting with the habitat divided into two patches, have been studied
in [12,32,44]. A detailed study of the impact of harvesting of one or two species and its
relationship to maximum sustainable yield is given in [21,41]. In 1979, May et al. [41]
proposed the following model to describe the interaction of a prey species and a predator
species, subjected to various harvesting terms:

⎧
⎨

⎩

Ṗ = r P
(
1 − P

k

)− aPU − H1,

U̇ = sU
(
1 − U

bP

)− H2,

(1)

where P(t) and U (t) represent the population densities of prey and predators at time t ,
respectively; r and k describe the intrinsic growth rate and the carrying capacity of the prey
in the absence of predators, respectively;a is themaximumvalue atwhich per capita reduction
rate of the prey P can attain; s is the intrinsic growth rate of predators; bP takes on the role
of a prey-dependent carrying capacity for predators and b is a measure of the quality of the
food for predators. The terms H1 and H2 describe the effects of harvesting on the prey and
predators, respectively. In [7], Chakraborty et al. proposed a two-dimensional prey–predator
model where predator’s functional response is ratio-dependent and predator population is
harvested at catch-per-unit effort hypothesis. Ratio-dependent prey–predator models with
harvesting have been studied more recently [38,55] mainly from a mathematical point of
view. In [27], Hu and Cao give a detailed analysis for a system (1) with a Michaelis–Menten
type functional form of harvesting rate for predators H2 = qEU

cE+lU , and with H1 = 0. The
existence and stability of equilibria, and the existence of codimension one bifurcations, such
as saddle-node, transcritical and Hopf, and as well as a codimension two Bogdanov–Takens
bifurcation, are shown. Song et al. [47] proposed a prey–predator model with Michaelis–
Menten type predator harvesting and a diffusion term. They derived sufficient conditions to
ensure that the coexistence equilibrium is asymptotically stable by analyzing the distribution
of characteristic roots, and investigated a Hopf bifurcation.

In recent decades, it has been demonstrated that complex dynamics, including chaos, can
appear in continuous-time models with three or more species [18,45,51]. For instance, to
study the impact of predation by different types of predators on prey population dynam-
ics, Mukhopadhyay and Bhattacharyya [42] formulate a model describing the population
dynamics of one prey species (P) and two species of predators (U , V )
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ṗ = r P
(
1 − P

k

)− g(P,U , V ) − h(P,U , V ),

U̇ = sU
(
1 − γU

P

)
,

V̇ = eh(P,U , V ) − mV ,

(2)

where it is assumed that g(P,U , V ), h(P,U , V ) are Holling type II and type III functional
responses, respectively. They analyze themodel from a thermodynamic perspective and study
the thermodynamic stability of the different equilibria.

Motivated by these two papers [27,42], in this work we consider a three-species model
which is similar to (2), but with harvesting of one predator species with a Michaelis–Menten
type functional form. Also, instead of Holling types II and III functional responses, we
assume Holling types I and II functional responses, respectively. Generally, the effects of
harvesting in prey–predator systems is a relatively new issue and most previous studies of
prey–predator systemswith harvesting consist of two-speciesmodels. Here, we study a three-
species continuous-time prey–predator model with two predator types where one species of
predator is harvested, using a Michaelis–Menten type function to model the harvesting. To
the best of our knowledge, a three-species system such as (2) with a nonlinear harvesting
function in prey or predator species has not yet been studied as mathematical model, hence
this study can be considered complementary to the studies of systems (1) and (2). Our study
includes local stability analysis, existence of periodic solutions and codimension one and
two bifurcations, as well as conditions for the nonexistence of periodic orbits in the model.
We give more details in the last paragraph of “Conclusion”.

The layout of this paper is as follows: the basic assumptions and the model formation
are given in “Mathematical Model”. In “Equilibria and Invariant Region”, the existence of
equilibria and the dissipative properties of the system are studied. The stability properties of
equilibria are discussed in “Linearized Stability”. “Local Bifurcations” studies the existence
of bifurcations. We show that, in addition to codimension one bifurcations, such as saddle-
node, transcritical and Hopf, there is also a codimension two Hopf-steady state bifurcation.
Numerical calculations are used to illustrate and extend the theoretical results. Finally, a
conclusion is given in “Conclusion”.

Mathematical Model

In this section, we present the system of differential equations describing the prey–predator
model with Michaelis–Menten type predator harvesting. The model takes in to account one
prey population P and two different types of predators: U and V are the population sizes
of the two predator species at any time t and we suppose that there is no direct competition
between them. We considered our system with a Michaelis–Menten type functional form of
harvesting rate in one of the predators. In this paper, we consider the model

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ṗ = r P
(
1 − P

k

)− c1PU − c2PV
P+d2

,

U̇ = sU
(
1 − γU

P

)
− qEU

cE+lU ,

V̇ = ec2PV
P+d2

− mV ,

(3)
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where, we assume that the prey population experiences logistic growth in the absence of both
predators with carrying capacity k and maximum intrinsic growth rate r . The parameter c1 is
the search rates of the first type of predator on the prey species, and c2 is the search rate by the
second type of predator. The parameter d2 is the half-saturation constant for a Holling type
2 predator. Also, the growth for the first type of predator is supposed to follow a logistic law
with s(> 0) as the predator’s intrinsic growth rate of population and the carrying capacity is
taken to be dynamic and is proportional to the prey density ( P

γ
).We assumed that the first type

of predator is harvested at a rate harvesting, H(E,U ) = qEU
cE+lU , proposed by Clark [10], the

so-called Michaelis–Menten type functional form, where q is the catchability coefficient, E
is the external effort devoted to harvesting, c and l are constants. The second type of predator
is supposed to follow a Holling type 2 functional response; e is the conversion efficiency,
denoting the number of newly born of the second type of predator for each captured prey
species; m is the natural death rate of the second type of the predator.

In order to simplify system (3), we take the following scalings as in [28],

t = r t, P = ec2
r

P, U = c1
r
U , V = c2

r
V ,

drop the bars, then rewrite the system (3) as:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ṗ = P
[
(1 − αP) −U − V

βP+d2

]
,

U̇ = U
[(

δ − ηU
P

)− ξ
μ+U

]
,

V̇ = V
[

P
βP+d2

− m
r

]
,

(4)

where β = r
ec2

, α = r
ec2k

= β
k , δ = s

r , η = sγ ec2
rc1

= sγ
c1β

, ξ = c1qE
lr2

and μ = c1cE
lr are

positive constants.
If we change the parameters c2 (or r , or e) and q while keeping all other parameters in (3)

fixed, we equivalently change parameters β and ξ in (4), but with

α = β

k
, η = sγ

c1β
, (5)

and k, s, γ , c1 fixed. In our numerical exploration of the dynamics of (4), we vary β and ξ

and use (5).

Equilibria and Invariant Region

Equilibria

In order to obtain the equilibria of system (4), we consider the nullclines, which are given
by:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

P
[
1 − αP −U − V

βP+d2

]
= 0,

U
[
δ − ηU

P − ξ
μ+U

]
= 0,

V
[

P
βP+d2

− m
r

]
= 0.

(6)
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Equilibria are in the intersections of these nullclines. We easily see that system (4) possesses
a unique axial equilibrium E1 and a (U = 0) boundary equilibrium E2, respectively, given
by

E1 =
(
1

α
, 0, 0

)

, E2 = (P2, 0, V2),

where P2 = md2
r−mβ

, V2 = r P2
m (1− αP2), with r −mβ > 0 and parameters such that V2 > 0,

i.e, β < min
{

r
m , rk

m(k+d2)

}
= rk

m(k+d2)
. For other possible (V = 0) boundary equilibria, we

need to consider the positive solutions P > 0, U > 0 of the following system:
⎧
⎨

⎩

1 − αP −U = 0,

δ − ηU
P − ξ

μ+U = 0.
(7)

About the number of V = 0 boundary equilibria E j = (Pj ,Uj , 0) of system (4), we have
the following theorem [27].

Theorem 1 The V = 0 boundary equilibria of system (4) are the axial state E1 and:

(a) If ξ > ξ1 = δμ + δ + ημα + 2ηα − 2
√

ηα(1 + μ)(ηα + δ), then system (4) has no
positive V = 0 boundary equilibria.

(b) If ξ = ξ1 andμ < δ
ηα

, then system (4) has a unique positive V = 0 boundary equilibrium

E3 = (P3,U3, 0),

where P3 =
√

ηα(1+μ)(ηα+δ)
α(δ+ηα)

> 0 and U3 = δ+ηα−√
ηα(1+μ)(ηα+δ)
δ+ηα

> 0.

(c) If δμ < ξ < ξ1 and μ < δ
ηα

then system (4) has two distinct positive V = 0 boundary
equilibria

E4 = (P4,U4, 0), E5 = (P5,U5, 0)

such that P4,5 = δμ+δ+ημα+2ηα−ξ∓√
Δ(ξ)

2α(δ+ηα)
> 0, U4,5 = 1 − αP4,5 > 0, where

Δ(ξ) = ξ2 − 2ξ(δμ + δ + ημα + 2ηα) + (δμ + δ + ημα)2.

(d) If ξ = δμ, μ < δ
ηα

, then the V = 0 boundary equilibrium E5 coincides with the axial
equilibrium E1 and system (4) has a remaining positive V = 0 boundary equilibrium

E4 = (P4,U4, 0),

where P4 and U4 from case (c) now simplify to P4 = η(1+μ)
δ+ηα

> 0, U4 = δ−ηαμ
δ+ηα

> 0.
(e) If 0 < ξ < δμ, then system (4) has a unique positive V = 0 boundary equilibrium

E4 = (P4,U4, 0), where P4 and U4 are the same as in case (c).

Proof See [27]. ��
Now we analyze the existence of internal equilibria, which are positive solutions of the
following algebraic equations

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 − αP −U − V
βP+d2

= 0,

δ − ηU
P − ξ

μ+U = 0,

P
βP+d2

− m
r = 0.

(8)
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The last equation gives the solution

P∗ = md2
r − mβ

,

which is positive if

β <
r

m
.

Eliminating the variable V , we obtain an equation for the variable U ,

ηU 2 + (ημ − δP∗)U + P∗(ξ − δμ) = 0.

Let
g(U ) = ηU 2 + (ημ − δP∗)U + P∗(ξ − δμ).

Lemma 1 (i) If 0 < ξ < δμ and β < r
m , then g(U ) has a unique positive root

U∗
0 = −(ημ − δP∗) +√

(ημ − δP∗)2 − 4ηP∗(ξ − δμ)

2η
.

(ii) If ξ = δμ, δP∗ − ημ > 0 and β < r
m , then g(U ) has a unique positive root

U∗
1 = δP∗ − ημ

η
.

(iii) If δμ < ξ < δμ + (ημ−δP∗)2
4ηP∗ , δP∗ − ημ > 0 and β < r

m then g(U ) has two distinct
positive roots

U∗
2,3 = −(ημ − δP∗) ∓√

(ημ − δP∗)2 − 4ηP∗(ξ − δμ)

2η
.

.
(iv) If ξ = δμ + (ημ−δP∗)2

4ηP∗ := ξ2, δP∗ − ημ > 0 and β < r
m then g(U ) has a unique

positive root

U∗
4 = δP∗ − ημ

2η
.

.

For positive internal equilibria, we need solutions E∗
j = (P∗

j ,U
∗
j , V

∗
j ) of (8) with P∗

j =
P∗ > 0, U∗

j > 0 and V ∗
j > 0 for j = 0, . . . , 4. We have

V ∗
j = r P∗

m

(
1 − αP∗ −U∗

j

)
, (9)

but we are unable to find simple criteria for V ∗
j > 0 in terms of parameters, other than

substituting the parameter expressions for P∗,U∗
j into (9). For specific parameter values we

can find curves where V ∗
j = 0 numerically using the path continuation software Auto and

obtain parameter regions where positive internal equilibria exist, such as in Fig. 1.

Invariant Region

Definition 1 If there exists a compact set K ⊆ I ntR3+ = Ω , such that all solutions of (4)
with initial condition in Ω eventually enter and remain in K , then the system (4) is called
uniformly persistent.
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Fig. 1 Regions in (ξ, β) parameter space where (4) has positive internal equilibria, for fixed parameter values
r = 2, k = 100, d2 = 10, s = 0.4, γ = 0.44, c1 = 0.1, m = 0.4, δ = 0.2, μ = 0.29050

Theorem 2 Let

(i) k
β(k+d2)

− m
r > 0

(ii) ξ < δμ

(iii) P4 > P2

where P2 = md2
r−mβ

and P4 = δμ+δ+ημα+2ηα−ξ−
√

ξ2−2ξ(δμ+δ+ημα+2ηα)+(δμ+δ+ημα)2

2α(δ+ηα)
are

given in Theorem 1. Then the system (4) is uniformly persistent.

Proof We use the method of average Lyapunov function [19]. Consider a function of the
form ν(P,U , V ) = PUV . We define

ζ(P,U , V ) = ν̇

ν
= Ṗ

P
+ U̇

U
+ V̇

V

=
[

(1 − αP) −U − V

βP + d2

]

+
[

δ − η
U

P
− ξ

μ +U

]

+
[

P

βP + d2
− m

r

]

.

Now, we prove that this function is positive at each of the boundary equilibria. Then

ζ(E1) = ζ

(
1

α
, 0, 0

)

= δ − ξ

μ
+ k

β(k + d2)
− m

r
> 0,

ζ(E2) = ζ(P2, 0, V2) = δ − ξ

μ
> 0.

The first relation holds by condition (i), and ζ(E2) > 0 by (ii). Since we assume ξ < δμ,
from Theorem 1, the system (4) has a unique positive boundary equilibrium E4. Therefore,
we have:
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ζ(E4) = ζ(P4,U4, 0) = 1 − αP4 −U4 + δ − η
U4

P4
− ξ

μ +U4
+ P4

βP4 + d2
− m

r

= P4
βP4 + d2

− m

r
> 0,

which is positive from the condition (iii). The proof is completed by applying Theorem 5 in
[19]. ��
We note that the conditions (i)–(iii) in Theorem 2 are quite restrictive. Below we consider a
variety of interesting dynamics where the conditions may not necessarily hold.

In the followingwe are interested in the existence of solutions to Eq. (4)which are bounded
by positive functions.

Theorem 3 Let ε1, ε2 be any positive constants and define MP = 1
α

+ ε1, MU = δMP
η

+ ε2.
Let

Ω =
{
(P,U , V ) ∈ R

3+ : 0 < P +U + V ≤ r

m
W
}

,

where

W =
(
1 + m

r

)2

4α
+

MP

(
δ + m

r − ξ
μ+MU

)2

4η
.

Then Ω is positively invariant.

Proof First of all, it is clear that the planes U = 0 and V = 0 are invariant. Assume that
(P(t),U (t), V (t)) is an arbitrary positive solution of system (4), then the first equation of
system (4) yields

dP

dt
= P(1 − αP) − PU − PV

βP + d2
≤ P(1 − αP).

From Lemma 2.4 in [52], there exists a constant T1 > 0 such that P(t) ≤ 1
α

+ ε1 = MP , for
any small constant ε1 > 0 and for t ≥ T1.

Similarly, from the second equation of system (4) and Lemma 2.4 in [52], there exist two
positive constants MU and T2 > 0 such that

U (t) ≤ δMP

η
+ ε2 = MU

for t ≥ T2 and ε2 > 0.
Defining that χ(t) = P(t) +U (t) + V (t), then we get:

χ̇ + m

r
χ ≤ (−α)P2 +

(
1 + m

r

)
P − η

MP
U 2 +

(

δ + m

r
− ξ

μ + MU

)

U

≤
(
1 + m

r

)2

4α
+

MP

(
δ + m

r − ξ
μ+MU

)2

4η
= W

Thus χ̇ + m
r χ is bounded. According to Lemma 2.1 in [8], we have:

χ ≤ r

m
W +

(

χ(0) − rW

m

)

e−m
r t .
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Therefore χ(t) is ultimately bounded, and if follows that each positive solutions of system
(4) is uniformly ultimately bounded. Hence, there are two positive constants MV and T3 such
that V (t) ≤ MV , for t ≥ T3. Let T = max

{
T1, T2, T3

}
, then we have 0 < P(t) ≤ MP ,

0 ≤ U (t) ≤ MU and 0 ≤ V (t) ≤ MV for t ≥ T . This ensures the existence of compact set
Ω which is a proper subset of R3+ such that as t −→ ∞, the solutions of (3) will be always
within the set Ω . Thus, the system (3) is dissipative. The proof of the theorem is completed.

Linearized Stability

In this section we study the linearized stability of the different steady states. Invariance of
solutions U (t) = V (t) = 0 under the flow of system (4), implies that the U (t) and V (t)
components of all solutions with positive initial conditions, remain positive for all time.
Hence, in the following, first we consider the system (4) in the absence of “type one” and
“type two” predators and analyze the stability of the system in these cases. Next we study
the stability of equilibria for (4) in 3 dimensions.

Stability and Bifurcations in the Absence of “Type One” Predators

The U = 0 plane is clearly invariant for (4). In the absence of predators of “type one” (U ),
the model (4) reduces to the well known Rosenzweig–MacArthur model with Holling type
II functional response

⎧
⎪⎨

⎪⎩

Ṗ = P(1 − αP) − PV
βP+d2

,

V̇ = PV
βP+d2

− m
r V ,

(10)

which has three equilibria, the origin G0 = (0, 0), the axial equilibrium G1 = ( 1
α
, 0), and

G2 = (P2, V2), where P2 = md2
r−mβ

and V2 = r
m P2(1 − αP2) are both positive provided that

rk
m(k+d2)

< β < r
m .

Linear stability analysis shows that the trivial state G0 is an unstable saddle. At the
boundary equilibrium point G1 = ( 1

α
, 0), the eigenvalues are λ1 = −1 < 0 and λ2 =

k
β(k+d2)

− m
r = m

rβ (β0 − β), where, β0 = rk
m(k+d2)

. If 0 < β < β0, then the axial state G1 is
an unstable saddle; if β > β0, then G1 is a stable node. Also, the system (10) undergoes a
transcritical bifurcation about the point G1 as β passes through β0.

For r(k−d2)
m(k+d2)

= β1 < β < β0, the interior equilibrium G2 is asymptotically stable and
for 0 < β < β1, G2 is unstable. There is a supercritical Hopf bifurcation as β decreases
through β1 and a stable periodic orbit exists for β < β1 (e.g. [34, Example 3.1]). For r = 2,
k = 100, m = 0.4, d2 = 10, c2 = 1.5, e = 0.6, we get β0 = 4.5455 and β1 = 4.0909. In
Fig. 2 we show typical phase portrates for the planar system (10). For β = 3.9 < β1, there
is a stable periodic orbit around G2, while G0 and G1 are saddle points. Also, for this value
of β the interior equilibrium G2 is a spiral source and unstable. The corresponding phase
portrait is shown in Fig. 2a. For β1 < β = 4.199 < β0, there is a spiral sink for system (10)
at G2 and for this value of β, the boundary equilibrium G1 is a saddle. The phase portrait is
shown in Fig. 2b. For β = 4.8 > β0 the axial equilibrium G1 is a stable node and there are
no equilibria in the interior of the first quadrant. The corresponding phase portrait is shown
in Fig. 2c.
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P ’ = P (1 − 0.039 P) − (P V)/(3.9 P + 10)
V ’ = (P V)/(3.9 P + 10) − (0.4/2) V
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Fig. 2 Phase portraits of the two-dimensional system (10) with P on the horizontal axis and V on the vertical
axis, for r = 2, k = 100, m = 0.4, d2 = 10, c2 = 1.5, e = 0.6: a When β = 3.9 < β1, then G2 is a source
and G0 and G1 are saddles and there is a stable periodic orbit around G2; b for β = 4.199 ∈ (β1, β0), G2 is
a sink, G0 and G1 are saddles, and there is no periodic orbit; c G1 is a stable node and there are no equilibria
in the interior of the first quadrant for β = 4.8 > β0

Stability and Bifurcations in the Absence of “Type Two” Predators

Likewise, it is clear that the V = 0 plane is invariant for (4). Hence, in the absence of
predators of “type two” (V ), the model (4) becomes:

⎧
⎪⎨

⎪⎩

Ṗ = P [(1 − αP) −U ] ,

U̇ = U
[(

δ − ηU
P

)− ξ
μ+U

]
.

(11)

The equilibria of system (11) correspond to the V = 0 boundary equilibria of system (4),
which we discussed in Theorem 1. Hu and Cao [27] give the existence and linearized stability
of the equilibria of the planar system (11). They also study bifurcations in (11), and show there
is a transcritical bifurcation at ξ = δμ, and generically a saddle node bifurcation at ξ = ξ1, if
μ < δ

ηα
, where ξ1 is given in Theorem 1. They show parameter values exist, where there is a

Hopf bifurcation of unstable periodic orbits, and where there is a codimension 2 Bogdanov–
Takens bifurcation. For these latter two bifurcations, analytical expressions are derived for
normal form coefficients which are then evaluated numerically to show these bifurcations
exist and are nondegenerate for specific parameter values. Numerical simulations are carried
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out to demonstrate the validity of the theoretical results. For more detail the reader is referred
to [27].

Linearized Stability in Three Dimensions

In this section, we assume the conditions of Theorem 2 are satisfied. Now, we study the local
stability around the axial state E1, the boundary state E2 (the type one predator-free), and
E4 (the type two predator-free) equilibrium points.

First, we denote the Jacobian matrix (J = [Ji j ]) as follows:

J(P,U ,V ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 − 2αP −U − d2V
(βP+d2)2

−P − P
βP+d2

ηU2

P2 δ − 2ηU
P − ξμ

(μ+U )2
0

d2V
(βP+d2)2

0 P
(βP+d2)

− m
r

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (12)

It can be easily seen that one of the eigenvalues of Jacobian matrix about E1 and E2 is
λ = δ − ξ

μ
and therefore, by condition (ii) of Theorem 2, these equilibria are unstable. Next

we study the stability of equilibrium point E4. At this point, the Jacobian matrix takes the
form:

JE4 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−αP4 −P4 − P4
βP4+d2

ηU2
4

P2
4

δ − 2ηU4
P4

− ξμ

(μ+U4)2
0

0 0 P4
(βP4+d2)

− m
r

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Thus one of the eigenvalues of JE4 is

λ = P4
βP4 + d2

− m

r
,

which is positive (according to condition (iii) of Theorem 2). Therefore, the boundary equi-
librium point E4 is unstable.

Next we study the interior equilibrium points E∗
j , j = 0, . . . , 4. For convenience, we

denote E∗
j := E∗ = (P∗,U∗, V ∗). The Jacobian matrix about this equilibrium is:

JE∗ = [ ji,k]3×3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 − 2αP∗ −U∗ − d2V ∗
(βP∗+d2)2

−P∗ − P∗
βP∗+d2

ηU∗2
P∗2 δ − 2ηU∗

P∗ − ξμ

(μ+U∗)2 0

d2V ∗
(βP∗+d2)2

0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(13)

Then, the characteristic polynomial is

h(λ) = λ3 + A∗λ2 + B∗λ + C∗, (14)

where
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A∗ = −( j11 + j22),

B∗ = ( j11 j22 − j12 j21 − j13 j31),

C∗ = j13 j31 j22. (15)

If we assume j22 < 0, then it is clear that C∗ > 0. Now, we consider the two following cases:

(1) j11 < 0. Then it can be easily verified that A∗ > 0, B∗ > 0 and D∗ = A∗B∗ − C∗ > 0.
Therefore, by the Routh–Hurwitz criteria all of roots of h(λ) have negative real parts
and the interior equilibrium point E∗ is stable.

(2) j11 > 0. In this case, if the conditions:

(i) | j22| > j11,
(ii) j12 j21 < j11 j22,

are satisfied, then it can be easily checked that A∗ > 0, B∗ > 0. Furthermore

D∗ = A∗B∗ − C∗ = (− j11 − j22)( j11 j22 − j12 j21 − j13 j31) − j13 j31 j22 > 0,

since

j22( j12 j21 − j211) > j11 j
2
22 − j11 j12 j21 − j11 j13 j31

= j11 j
2
22 + j11(− j12 j21 − j13 j31)

> j11 j
2
22 + j11(− j11 j22).

The second inequality holds by condition (ii) and the fact that− j13 j31 > 0. But j22 < 0,
therefore we have

j22 j12 j21 − j22 j
2
11 − j11 j

2
22 + j211 j22 = j22( j12 j21 − j11 j22) > 0,

which is positive from the condition (ii). Hence by the Routh–Hurwitz criteria all of
roots of h(λ) have negative real parts and the interior equilibrium E∗ is stable.

Summarizing the above discussions, we arrive at the following theorem:

Theorem 4 Suppose that the conditions of Theorem 2 are satisfied. Then the boundary equi-
libria E1, E2 and E4 are unstable. Also, if j22 = δ − 2ηU∗

P∗ − ξμ

(μ+U∗)2
is negative in (13),

the interior equilibrium E∗
0 is locally asymptotically stable.

If ξ < δμ and β is sufficiently small, there is a unique interior equilibrium E∗
0 (see Lemma 1).

For r = 2, k = 100, m = 0.4, d2 = 10, β = 2.2222, δ = 0.2, η = 0.79201, μ = 0.29050,
ξ = 0.03, δμ = 0.058100, we have j11 = −0.018644 and j22 = −0.15164, which both are
negative, and therefore the interior equilibrium point E∗

0 is asymptotically stable. A sample
trajectory is shown in Fig. 3.

Local Bifurcations

In this section, we will discuss various possible bifurcations of system (4). Conditions for
transcritical bifurcations, saddle-node bifurcations, Hopf bifurcations and Hopf-steady state
bifurcations are studied. We also use numerical methods to explore some global dynamics.
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Fig. 3 Numerical simulation of the three dimensional model (4) with parameter values r = 2, k = 100,
m = 0.4, d2 = 10, β = 2.2222, δ = 0.2, η = 0.79201, μ = 0.29050, ξ = 0.03. The interior state E∗

0
is (3.6, 0.78195, 2.4849) and initial conditions are (3.16, 0.54, 6.22). a The trajectory in 3 dimensions, b
populations as functions of time t . The simulation illustrates the stability of E∗

0

Transcritical Bifurcations

System (4) has many transcritical bifurcations of equilibria, within both the two-dimensional
U = 0 and V = 0 boundary planes both involving the axial equilibrium E1, and in R

3+
involving boundary equilibria.

At E1 = ( 1
α
, 0, 0), the eigenvalues of the Jacobian matrix of the linearization at E1 are

λ1 = −1 < 0, λ2 = m
rβ ( rk

m(k+d2)
− β) and λ3 = δ − ξ

μ
. Thus we can expect bifurcation

involving E1 at parameters values where λ2 = 0, or λ3 = 0. At β = β0 = rk
m(k+d2)

, there
is a transcritical bifurcation within the U = 0 boundary plane where E1 coincides with E2

(e.g. Fig. 4). Similarly, at ξ = ξ0 = δμ there is a transcritical bifurcation within the V = 0
boundary plane, where E1 coincides with E5 [27]. The existence of these bifurcations can
be analyzed with center manifold calculations, which are minor modifications of the cor-
responding calculations for the two-dimensional systems (10) and (11). There are several
transcritical bifurcations where a boundary equilibrium coincides with an interior equilib-
rium. At the U = 0 boundary equilibrium E2, the characteristic equation of the Jacobian
matrix of the linearization at E2 is

[

δ − ξ

μ
− λ

] [

λ(λ + 2αP2 + d2V2
(βP2 + d2)2

− 1) + md2V2
r(βP2 + d2)2

]

= 0. (16)

Therefore at ξ = ξ0 = δμ, we can expect transcritical bifurcations involving E2. Depend-
ing on the value of β, the interior equilibrium involved can be E∗

0 or E∗
2 ; see Lemma 1 and

also Fig. 1.
If ξ = ξ0, the Jacobian matrix JE2 has a zero eigenvalue. By using the translation

(X2, Y2, Z2, ϕ) = (P − P2,U , V − V2, ξ − ξ0), we transform the equilibrium E2 to the
origin:
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Fig. 4 One-parameter bifurcation diagrams for the two-dimensional system (10), produced byAuto, showing
a transcritical bifurcation at β0 = 4.5455 and a Hopf bifurcation at β1 = 4.0909. The left panel shows β on
the horizontal axis and P on the vertical axis, while the right panel shows β on the horizontal axis and V on the
vertical axis. Solid red lines correspond to branches of stable equilibria, solid black lines to unstable equilibria.
Closed green circles correspond to maximum and minimum P or V values on stable periodic orbits. Portions
of solution branches corresponding to V < 0 have no significance in the model, but are shown to clarify the
transcritical bifurcation and change of stability (color figure online)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ2 = (1 − 2αP2 − d2V2
(βP2+d2)2

)X2 − P2Y2 − P2
βP2+d2

Z2 + (−α + βd2V2
(βP2+d2)3

)X2
2 − X2Y2

− d2
(βP2+d2)2

X2Z2 + βd2
(βP2+d2)3

X2
2Z2 − d2β2V2

(βP2+d2)4
X3
2 + O |(X2, Y2, Z2, ϕ)|4 ,

Ẏ2 = − ϕ
μ
Y2 + (

ϕ+δμ

μ2 − η
P2

)Y 2
2 − ϕ+δμ

μ3 Y 3
2 + η

P2
2
X2Y 2

2 + O |(X2, Y2, Z2, ϕ)|4 ,

Ż2 = d2V2
(βP2+d2)2

X2 + ( P2
βP2+d2

− m
r )Z2 − βd2V2

(βP2+d2)3
X2
2 + ( d2

(βP2+d2)2
)X2Z2

− βd2
(βP2+d2)3

X2
2Z2 + β2d2V2

(βP2+d2)4
X3
2 + O |(X2, Y2, Z2, ϕ)|4 .

(17)

For convenience, we denote tr := 1 − 2αP2 − d2V2
(βP2+d2)2

and Det := md2V2
r(βP2+d2)2

.
Then under the transformation

⎛

⎝
X2

Y2
Z2

⎞

⎠ =
⎛

⎝
0 A B
1 0 0

− P2r
m 0 1

⎞

⎠

⎛

⎝
x2
y2
z2

⎞

⎠ ,

where

A := −m
√

Det − ( tr
2

)2

r Det
, B := m.tr

2r Det
, (18)

system (17) becomes:

ẋ2 = −ϕ

μ
x2 + (

ϕ + δμ

μ2 − η

P2
)x22 − ϕ + δμ

μ3 x32 + η(Ay2 + Bz2)

P2
2

x22 + O
(|x2, y2, z2, ϕ|4)

ẏ2 = tr

2
y2 +

√

Det −
(
tr

2

)2

z2 + O
(|x2, y2, z2, ϕ|2)
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ż2 = −
√

Det −
(
tr

2

)2

y2 + tr

2
z2 + O

(|x2, y2, z2, ϕ|2) .

Then, we obtain the vector field reduced to the center manifold

ẋ2 = −ϕ

μ
x2 +

(
δ

μ
− η

P2

)

x22 + O
(|ϕ| |x2|2 + |x2|3

)
.

Thus, we have a transcritical bifurcation provided δP2 −ημ = 0. Note that at the bifurcation
point we have P2 = P∗.

Summarizing what can be obtained analytically, we have the following theorem.

Theorem 5 The system (4) has a transcritical bifurcation at the axial equilibrium E1 when
ξ = δμ. If δP∗−ημ = 0, then (4) has a transcritical bifurcation at the boundary equilibrium
E2 when ξ = δμ.

There can be further transcritical bifurcations at V = 0 boundary equilibria E3, E4, E5. Due
to the algebraic complexity of the relevant characteristic equations, we have used numerical
calculations to explore these, by numerically evaluating the quantitiesA∗, B∗, C∗ in (15) and
with the path continuation software Auto. See Figs. 1, 5, 9.

Saddle-Node Bifurcations

In “Equilibria and Invariant Region”, we have given conditions for the existence of two
boundary (E4 and E5) and two interior (E∗

2 and E∗
3 ) equilibria. The boundary equilibria are

distinct if δμ < ξ < ξ1, and they coincide at E3 if ξ = ξ1, where ξ1 is given in Theorem 1.

Likewise, the interior equilibria are distinct if δμ < ξ < δμ + (ημ−δP∗)2
4ηP∗ := ξ2 and they

coincide at E∗
4 if ξ = ξ2. The coincidence of equilibria is due to the occurrence of saddle-node

bifurcations for boundary and interior equilibria.
The characteristic equation for the equilibrium E3 is given by:

(
P3

βP3 + d2
− m

r
− λ

)
(
λ2 + Aλ + B

) = 0,

where

A = −1 + 2αP3 +U3 − δ + 2η
U3

P3
+ ξμ

(μ +U3)2
,

B = (1 − 2αP3 −U3)

(

δ − 2η
U3

P3
− ξμ

(μ +U3)2

)

+ ηU 2
3

P3
,

are the same as for the characteristic equation λ2 + Aλ + B = 0 for the two-dimensional
system (11). The analysis of the saddle-node bifurcation of V = 0 boundary equilibria in
(4) at ξ = ξ1 is a minor modification of the analysis of the same bifurcation in (11) given by
[27].
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Next, let ξ = ξ2 and consider the interior equilibrium E∗
4 . The Jacobian matrix about this

equilibrium JE∗
4

= [ jik]3×3 is:

J(P∗,U∗
4 ,V ∗

4 ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 − 2αP∗ −U∗
4 − d2V ∗

4
(βP∗+d2)2

−P∗ − P∗
βP∗+d2

ηU∗2
4

P∗2 0 0

d2V ∗
4

(βP∗+d2)2
0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (19)

and the characteristic equation is:
[
λ2 − j11λ − ( j12 j21 + j13 j31)

]
λ = 0. (20)

One of eigenvalues is λ3 = 0, and the two other eigenvalues λ1 and λ2 satisfy

λ1.λ2 = −( j12 j21 + j13 j31) > 0, λ1 + λ2 = j11 = 1 − 2αP∗ −U∗
4 − d2V ∗

4

(βP∗ + d2)2
.

If j11 is negative, then λ1 and λ2 have negative real parts. By calculations similar to those
above, we obtain the vector field reduced to the one-dimensional center manifold

ẋ3 = − U∗
4

μ +U∗
4

ψ −
(

η

P∗ − ξ2

(μ +U∗
4 )2

)

x23 + O |(x3, ψ)|3 ,

where ψ := ξ − ξ2. Then, we have a saddle-node bifurcation provided

η

P∗ − ξ2

(μ +U∗
4 )2

= 0.

We summarize the above discussion in the following theorem.

Theorem 6 The system (4) has a saddle-node bifurcation at the boundary equilibrium E3

when ξ = ξ1. If j11 = 1−2αP∗ −U∗
4 − d2V ∗

4
(βP∗+d2)2

is negative in (19) and η
P∗ − ξ2

(μ+U∗
4 )2

= 0

then (4) has a saddle-node bifurcation at the interior equilibrium E∗
4 when ξ = ξ2.

For r = 2, k = 100, m = 0.4, d2 = 10, β = 2.2222, δ = 0.2, η = 0.7920000001,
μ = 0.29050, we obtain ξ = ξ2 = 0.07914600920, and all conditions of the saddle-node
bifurcation are satisfied. Furthermore, if we consider C∗ in Eq. (14) as a function of ξ , then
C∗(ξ) = 0 when ξ = ξ2.

Hopf Bifurcations

In “Linearized Stability” we have studied conditions required for local asymptotic stability
of an interior equilibrium E∗. It is possible for an internal equilibrium E∗(= E∗

0 or E
∗
2 or E

∗
3 )

to lose its stability through a Hopf bifurcation.
Considering β as the bifurcation parameter, we investigate conditions under which the

characteristic equation (14) at the equilibrium E∗ has a pair of purely imaginary roots for a
critical value β = βcri t . Then we check if the stability of E∗ changes when β passes through
βcri t .

For the characteristic equation (14), purely imaginary roots λ = ±iω exist if and only
if D∗ = A∗B∗ − C∗ = 0 with B∗ > 0. If we consider β as the bifurcation parameter
and D∗(β) = 0 at a critical value β = βcri t , then d

dβ
Re λ(β)|β=βcri t = 0 is equivalent to
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Fig. 5 One-parameter bifurcation diagrams for system (4) produced by Auto, with ξ = 0.03 and β as the
bifurcation parameter, showing a transcritical bifurcation of E4 and E∗

0 at β = 2.387532005 and a Hopf
bifurcation of E∗

0 at β = 1.852291. Other parameter values are r = 2, k = 100, m = 0.4, d2 = 10, δ = 0.2,
η = 0.95017, μ = 0.29050. All panels show β on the horizontal axis while the vertical axes are P , U , V
in the left, middle and right panels, respectively. Solid red lines correspond to branches of stable equilibria,
solid black lines to unstable equilibria, and open blue circles to maximum and minimum values on unstable
periodic orbits. The portions of branches corresponding to V < 0 have no significance in the model, but are
shown to clarify the transcritical bifurcation and change of stability (color figure online)

d
dβ

D∗(β)|β=βcri t = 0. To verify the existence of a Hopf bifurcation at β = βcri t , the first
Lyapunov number l1 in the normal formmust be shown to be nonzero. This has been done for
the two-dimensional system (10) at the equilibrium G2 [34] which corresponds to theU = 0
boundary equilibrium E2 for system (4). For system (11) when V = 0, see [27]. For positive
interior equilibria for system (4) we have not found a useful expression for l1. Instead, for
particular parameter values we have numerically solved D∗(β) = 0 to find βcri t where we
expect a Hopf bifurcation, and checked with the path continuation Auto to numerically find
the direction of the Hopf bifurcation and the stability of the bifurcating periodic orbits.

For example, when r = 2, k = 100, m = 0.4, d2 = 10, δ = 0.2, η = 0.95017,
μ = 0.29050, ξ = 0.03, we obtain βcri t = 1.852291. This suggests that a periodic orbit
is created near E∗

0 = (3.1769, 0.5493, 6.2249). Auto agrees with this and also finds the
periodic orbit, which is unstable, see Fig. 5.

Hopf-Steady State Bifurcation

In “Equilibria and Invariant Region”, we showed when ξ = ξ2, then the three-dimensional
system (4) has an interior equilibrium E∗

4 , provided that V ∗
4 > 0. In “Linearized Stability”,

it is shown that if ξ = ξ2, then there exists a zero eigenvalue at E∗
4 and generically a saddle-

node bifurcation of steady states occurs. In addition, if β = βcri t , which is general depends
on ξ , then we have a Hopf bifurcation. In this section we study the codimension two Hopf-
steady state bifurcation that can occur if we vary the parameter pair (ξ, β). Let ξ = ξ2, so
the characteristic equation for JE∗

4
is given by (20). Then considering j11 as a function of β,

solve j11(β) = 0 to obtain β = βcri t . Then for (ξ, β) = (ξ2, βcri t ) the linearization of (4)
at the equilibrium E∗

4 has a pair of purely imaginary eigenvalues λ1,2 = ±iω and one zero
eigenvalue λ3 = 0.

We translate the equilibrium E∗
4 of system (4) to the origin by using the transformation

X = P − P∗, Y = U −U∗
4 and Z = V − V ∗

4 . Then under the transformation

⎧
⎪⎨

⎪⎩

X = ω
j31

x

Y = j21
j31

y + z

Z = y − j12
j13

z,
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we obtain:
⎛

⎝
ẋ
ẏ
ż

⎞

⎠ =
⎛

⎝
0 −ω 0
ω 0 0
0 0 0

⎞

⎠

⎛

⎝
x
y
z

⎞

⎠+
⎛

⎜
⎝

j31
ω
K11

− j12 j31
ω2 K21 − j13 j31

ω2 K31

− j13 j31
ω2 K21 + j21 j13

ω2 K31

⎞

⎟
⎠ , (21)

where

K11 :=
(

ω

j31
x

)2 (

−α + βcri t d2V ∗
4

(βcri t P∗ + d2)3

)

− ω

j31
x

(
j21
j31

y + z

)

− d2
(βcri t P∗ + d2)2

(
ω

j31
x

)(

y − j12
j13

z

)

− β2
cri t d2V

∗
4

(βcri t P∗ + d2)4

(
ω

j31
x

)3

+
(

ω

j31
x

)2 (

y − j12
j13

z

)
βcri t d2

(βcri t P∗ + d2)3

−
(

ω

j31
x

)3 (

y − j12
j13

z

)(
β2
cri t d2

(βcri t P∗ + d2)4

)

+ . . . ,

K21 := −ηU∗2
4

P∗3

(
ω

j31
x

)2

+ 2ηU∗
4

P∗2

(
ω

j31
x

)(
j21
j31

y + z

)

+
(

ξ2μ

(μ +U∗
4 )3

− η

P∗

)(
j21
j31

y + z

)2

+ η

P∗2

(
j21
j31

y + z

)2 (
ω

j31
x

)

− 2ηU∗
4

P∗3

(
j21
j31

y + z

)(
ω

j31
x

)2

− ξ2μ

(μ +U∗
4 )4

(
j21
j31

y + z

)3

+ ηU∗2
4

P∗4

(
ω

j31
x

)3

+ . . . ,

K31 :=
( −βcri t V ∗

4 d2
(βcri t P∗ + d2)3

)(
ω

j31
x

)2

+
(

ω

j31
x

)(

y − j12
j13

z

)
d2

(βcri t P∗ + d2)2

− βcri t d2
(βcri t P∗ + d2)3

(
ω

j31
x

)2 (

y − j12
j13

z

)

+ β2
cri t d2V

∗
4

(βcri t P∗ + d2)4

(
ω

j31
x

)3

+ β2
cri t d2

(βcri t P∗ + d2)4

(
ω

j31
x

)3 (

y − j12
j13

z

)

+ . . . .

For convenience, we denote f 1 := j31
ω
K11, f 2 := − j12 j31

ω2 K21 − j13 j31
ω2 K31 and f 3 :=

− j13 j31
ω2 K21 + j21 j13

ω2 K31.

Now we consider W = x + iy, W̄ = x − iy and Z = z. Then, under this transformation:

x = W + W̄

2
, y = i(W̄ − W )

2
, z = Z ,

the system (21) becomes:
⎛

⎝
Ẇ
˙̄W
Ż

⎞

⎠ =
⎛

⎝
iω 0 0
0 −iω 0
0 0 0

⎞

⎠

⎛

⎝
W
W̄
Z

⎞

⎠+
⎛

⎝
F1(W , W̄ , Z)

F2(W , W̄ , Z)

F3(W , W̄ , Z)

⎞

⎠ , (22)
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such that F1,2 = f 1(x(W , W̄ ), y(W , W̄ ), z) ± i f 2(x(W , W̄ ), y(W , W̄ ), z) and F3 =
f 3(x(W , W̄ ), y(W , W̄ ), z). We check that:

F1,2 = j31
ω

K11 ± i

[

− j12 j31
ω2 K21 − j13 j31

ω2 K31

]

,

F3 = − j13 j31
ω2 K21 + j21 j13

ω2 K31.

Therefore, all we really need to study is

⎧
⎨

⎩

Ẇ = iωW + F1(W , W̄ , Z),

Ż = F3(W , W̄ , Z),

(23)

since the second component of (22) is simply the complex conjugate of the first component.
We put (23) in normal form. In the following we simplify second and third order terms. The
normal form is obtained as:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ẇ = iωW + Ã1WZ + Ã2WZ2 + Ã3W 2W̄ + . . . ,

˙̄W = −iωW̄ + ¯̃A1W̄ Z + ¯̃A2W̄ Z2 + ¯̃A3WW̄ 2 + . . . ,

Ż = B̃1WW̄ + B̃2Z2 + B̃3WW̄ Z + B̃4Z3 + . . . ,

(24)

where,

ω := √
B∗,

Ã1 := −1

2
+ d2 j12

2(βcri t P∗ + d2)2 j13
− j12 j21

ω2

(

− η

P∗ + ξ2μ

(μ +U∗
4 )3

)

+ i

(
d2 j12

2ω(βcri t P∗ + d2)2
− j12ηU∗

4

ωP∗2

)

,

Ã2 := 3ξ2μ j12 j21
2ω2(μ +U∗

4 )4
− i

j12η

2ωP∗2 ,

Ã3 := ηU∗
4 j12 j21

4P∗3 j231
+ 3ξ2μ j321 j12

8ω2(μ +U∗
4 )4 j231

− 3ω2β2
cri t d2V

∗
4

8(βcri t P∗ + d2)4 j231
− βcri t d2 j13

16(βcri t P∗ + d2)3

− i

[
βcri t d2ω

8(βcri t P∗ + d2)3 j31
+ η j12 j221

8P∗2ω j231
+ 3ηωU∗2

4 j12
8P∗4 j231

+ 3β2
cri t V

∗
4 d2ω j13

8(βcri t P∗ + d2)4 j231

]

B̃1 := ηU∗2
4 j13

2 j31P∗3 − j13 j221
2ω2 j31

(−η

P∗ + ξ2μ

(μ +U∗
4 )3

)

− j21 j13βcri t d2V ∗
4

2 j231(βcri t P∗ + d2)3
,

B̃2 := − j13 j31
ω2

(−η

P∗ + ξ2μ

(μ +U∗
4 )3

)

,

B̃3 := ηU∗
4 j13

P∗3 j31
− βcri t d2 j21 j12

2 j231(βcri t P∗ + d2)3
,

B̃4 := ξ2μ j13 j31
ω2(μ +U∗

4 )4
.
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Likewise, by considering the Ã j = ã j + i c̃ j and B̃ j = b̃ j for j = 1, 2, 3, . . ., in cylindrical
coordinates a normal form can be expressed as:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ṙ = ã1r Z + ã2r Z2 + ã3r3 + O(|r |4 , |Z |4),

Ż = b̃1r2 + b̃2Z2 + b̃3r2Z + b̃4Z3 + O(|r |4 , |Z |4),

θ̇ = ω + c̃1Z + O(|r |2 , |Z |2).

(25)

For now we will neglect terms of O(3) and higher and the θ̇ component of (25). Thus, the
vector field we will study is

⎧
⎨

⎩

ṙ = ã1r Z ,

Ż = b̃1r2 + b̃2Z2.

(26)

Rescaling by letting r̄ = �r and Z̄ = ς Z , we get

˙̄r = �

[

ã1
r̄ Z̄

�ς

]

, ˙̄Z = ς

[
b̃1
�2 r̄

2 + b̃2
ς2 Z̄

2

]

.

Now, letting � = −
√

|b̃1b̃2|, ς = −b̃2, and dropping the bars on r̄ , Z̄ , we obtain

ṙ = ar Z , Ż = br2 − Z2, (27)

where a = −ã1
b̃2

and b = −b̃1b̃2
|b̃1b̃2| = ±1. From [53] Sections 20.4 and 20.5, a candidate for a

versal deformation is given by

ṙ = μ1r + ar Z ,

Ż = μ2 + br2 − Z2, b = ±1. (28)

The study of the local dynamics of (28) is similar to [53] Section 20.7. To summarize, the
details will be omitted. For more details the reader is referred to [53].

Now we illustrate dynamics of the system at Hopf-steady state bifurcation point with
specific choices for parameters.

We choose parameter values r = 2, k = 100, m = 0.4, d2 = 10, μ = 0.29050 and
δ = 0.2. Then by using the bifurcation diagram (Fig. 9) we can see that for a set of value
of bifurcation parameter (β and ξ ), the Hopf-Zero bifurcation can appear. We consider the
threshold values β = 2.866, ξ = 0.1081, and η = 0.6140963015. For these parameter values
we obtain P = 4.687, U = 0.6289, V = 5.549, j11 = j22 = 0, j12 = −4.686035614,
j21 = 0.01106084996, j13 = −0.2, j31 = 0.1010796074, ω = 0.2684175851, ã1 =
−0.3518073871, b̃1 = −0.001148923185, b̃2 = −0.02543292168. Then using these values

we obtain b = −b̃1b̃2
|b̃1b̃2| = −1 and a = −ã1

b̃2
= −13.83275549 which is negative. The phase

portraits of this case (in the different regions in the μ1μ2-plane), are shown in [53] Section
20.7.

To support this calculation we used Auto to obtain a two-parameter plot of bifurcation
curves in a vicinity of (ξ2, βcri t ), see Fig. 6. Then we used Auto again to obtain bifurca-
tion diagrams for one-parameter line segments in the vicinity of the codimension two point
(ξ2, βcri t ). For example, see Figs. 7 and 9. These results agree with the results of the normal
form computation above (Fig. 8).
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Fig. 6 Two-parameter bifurcation diagram of system (4) showing curves of codimension one local bifurcations
in the (ξ, β) parameter plane, in the vicinity of the codimension two point (ξ2, βcri t ) = (0.1081, 2.866). Other
parameter values are r = 2, k = 100, m = 0.4, d2 = 10, μ = 0.29050

Fig. 7 One-parameter bifurcation diagrams for system (4) produced by Auto, with β = 2.8 and with ξ ∈
[0.09, 0.11] as the bifurcation parameter on the horizontal axis, showing transcritical, saddle-node, and Hopf
bifurcations in the vicinity of the codimension two point (ξ2, βcri t ). The vertical axes are P , U , and V in the
left, middle and right panels respectively. Other parameter values are as in Fig. 6. Line types are as in Fig. 5

Fig. 8 One-parameter bifurcation diagrams for system (4) produced by Auto, with β = 3 and with ξ ∈
[0.11, 0.12] as the bifurcation parameter on the horizontal axis, showing transcritical, saddle-node, and Hopf
bifurcations in the vicinity of the codimension two point (ξ2, βcri t ). The vertical axes are P , U , and V in the
left, middle and right panels respectively. Other parameter values are as in Fig. 6. Line types are as in Fig. 5
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Fig. 9 Two-parameter bifurcation diagram of system (4) showing curves of codimension one local bifurcations
in the (ξ, β) parameter plane. Other parameter values are r = 2, k = 100, m = 0.4, d2 = 10, μ = 0.29050

Some Global Dynamics

For global dynamics we have Theorems 2 and 3. In particular, if there are no compact
attracting sets in the positive octant for system (4), then almost all trajectories are attracted
to a stable equilibrium or periodic orbit in one of the two boundary planes U = 0 or V = 0.

For other global results we have used simulation and the path continuation software
Auto. For r = 2, k = 100, m = 0.4, d2 = 10, μ = 0.29050 we used Auto to produce
the two-parameter bifurcation diagram in Fig. 9, showing curves, in the (ξ, β) parameter
plane, of codimension one local bifurcations that occur at internal equilibria. Then we can
use Auto again to produce one-parameter bifurcation diagrams corresponding to parameter
paths in the (ξ, β) plane. For example, we set ξ = 0.04 and increase β from 1. The unique
interior equilibrium E∗

0 (see Fig. 1) has a Hopf bifurcation at βcri t = 1.977234 and then
it leaves the interior of the positive octant at a transcritical bifurcation with the V = 0
boundary equilibrium E4 at βtr = 2.443622. Following the branch of periodic orbits from
the Hopf bifurcation point, Auto finds they exist for β > βcri t and are unstable, until at
βsnp = 3.369468 there is a saddle-node bifurcation of periodic orbits, and a branch of stable
periodic orbits exists for β < βsnp , see Fig. 10. Decreasing β from βsnp and following
the branch of stable periodic orbits, we encountered numerical difficulties with Auto as
the periodic orbits become more singular. However, using simulation it appears that the
stable three-dimensional periodic orbits approach, as β decreases from βsnp , the stable two-
dimensional periodic orbits that exist in the U = 0 plane for system (10), see Fig. 11.
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Fig. 10 One-parameter bifurcation diagram for system (4) produced by Auto, with ξ = 0.04 and with β

as the bifurcation parameter, showing a transcritical bifurcation at β = 2.443622, a Hopf bifurcation at
β = 1.977234 and a saddle-node bifurcation of periodic orbit at β = 3.369468. Other parameter values are
r = 2, k = 100, m = 0.4, d2 = 10, μ = 0.29050. The horizontal axis is β and the vertical axis is V (other
variables P and U are not shown). Solid red lines correspond to branches of stable equilibria, solid black
lines to unstable equilibria, open blue circles to maximum and minimum values on unstable periodic orbits,
and closed green circles to maximum and minimum values on stable periodic orbits. The portions of branches
corresponding to V < 0 have no significance in the model, but are shown to clarify the transcritical bifurcation
and change of stability (color figure online)

Fig. 11 Comparison of two- and three-dimensional periodic orbits for ξ = 0.04 and decreasing values of β.
The blue trajectories are in the phase plane of the two-dimensional system (10) in the absence of predator type
one, and the red trajectories are from the three-dimensional system (4) projected on to the PV-plane (horizontal
axis P , vertical axis V ). The values of β are 3.369, 3.3, and 3 in the left, middle and right panels respectively,
and the other parameter values are r = 2, k = 100, m = 0.4, d2 = 10, μ = 0.29050

Conclusion

In this paper, a prey–predator model with two types of predator and Michaelis–Menten
functional harvesting of one type of predator has been studied analytically and numerically.
First, we have found an attracting region for this model which is ecologically meaningful.
Then, the dynamics of the model are investigated. Sufficient conditions are given for a
positive interior equilibrium to exist and be locally asymptotically stable. Theorem 4 provides
more information about asymptotic stability of some equilibria. Next, we have considered
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bifurcations in the three-dimensional system (4) depending on one or two parameters. Using
analytical and numerical methods, we studied codimension one transcritical, saddle-node
and Hopf bifurcations, and a codimension two Hopf-steady state bifurcation.

Using numerical methods, we observed that there exist stable large-amplitude periodic
orbits which for some parameter values approach the stable two-dimensional periodic orbits
that exist in the U = 0 plane for system (10). For the periodic orbits mentioned in “Some
Global Dynamics” (see also Figs. 10, 11), the maximum values of U on the periodic orbits
are less than 10−4 when β < 3. The relationship between these three-dimensional periodic
orbits and the two-dimensional orbits in the U = 0 plane is worth further study.

In our study, we consider the system (2) with an additional harvesting term of Michaelis–
Menten functional form. The impacts of constant-effort harvesting on system (2) have been
extensively studied. How more realistic nonlinear harvesting affects the dynamics of system
(2) is not yet clear, but we have made a start with this work. We consider β, which is
proportional to the maximum intrinsic growth rate of the prey species, and ξ , which is
proportional to the catchability coefficient of the harvested (“type one”) prey species as
bifurcation parameters. We have shown that for sufficiently small ξ there is a stable interior
equilibrium, which corresponds to coexistence of all three species. However, there are also
stable large-amplitude oscillations involving all three species. For larger values of ξ there is
a variety of dynamical behaviour such as saddle-node, transcritical, Hopf and Hopf-steady
state bifurcations involving all three species, but for sufficiently large values of ξ the model
not surprisingly predicts extinction of the harvested predator species.
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