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Abstract
In this paper, we study the existence and uniqueness of mild solutions for a class of multi-
term time-fractional stochastic differential equations in Hilbert spaces.We tend to implement
fractional calculus, generalized semigroup theory and stochastic analysis techniques to obtain
the main results. We come up with a new set of sufficient conditions with the coefficients
in the equations satisfying some non-Lipschitz conditions and using standard Picard type
iterations. Finally, an application is given to illustrate that our obtained results are valuable.
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Introduction

In the last few decades, fractional differential equations have been attracted the interest of
many researchers towards itself, due to demonstrate applications in widespread areas of
science and engineering such as in models of medicine (modeling of human tissue under
mechanical loads), electrical engineering(transmission of ultrasound waves), biochemistry
(modeling of proteins and polymers) etc. It has been verified that fractional differential
equations are the beneficial tools to describe dynamical behavior of the real-life phenomena
more precisely. Nowadays, the multi-term time-fractional differential equations generating
great interest among the mathematicians and engineers. For instance, in the papers [10]
and [22] multi-term time-fractional differential equations are considered with constant and
variable coefficients, respectively, which include a concrete case of fractional diffusion-
wave problem. Moreover, for multi-term time-fractional diffusion equations in [16,19] the
authors studied analytic solutions and numerical solutions. Recently, Pardo at al. in [29]
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studied the existence of mild solutions to themulti-term time-fractional differential equations
with Caratheodory type conditions using the concept of measure of noncompactness. For
fundamental concepts regarding to fractional differential equations, one canmake reference to
the papers [4,5,8,13,17,21,27–29,32,37], the monographs [18,25,30] and references therein.

On the other hand, noises or stochastic perturbations are unavoidable and omnipresent
in nature as well as in man-made systems, so we have to move from deterministic models
to stochastic models. Stochastic differential equations play an important role in formulation
and analysis in mechanical, electrical, control engineering, and physical sciences. Motivated
by these facts many researchers are showing great interest in investigating an appropriate
system to analysis the qualitative properties such as existence, uniqueness, controllability and
stability of these physical processes with the help of fractional calculus, stochastic analysis,
fixed point theorems and time delay techniques. Zhang et al. [39] investigated existence and
asymptotic stability for a class of fractional stochastic differential equations by virtue of
some fixed point theorems. Rajivganthi et al. [31] established the existence results for mild
solutions and optimal controls by applying successive approximation approach for a class of
fractional neutral stochastic differential equations. Recently, Benchaabane and Sakthivel [3]
obtained the existence results for Sobolev-type fractional stochastic differential equations
via standard Picard type iterations. For more details, we refer to the books [11,14,24,26] and
novel papers [6–9,35,38] and references therein.

Motivated by the above facts, in this paper, we investigate the existence and uniqueness
results for a abstractmulti-term time-fractional stochastic system using Picard type iterations.
Moreover, the aim of studying such system is motivated by the fact that a integer order
differential equationhavingn derivatives termsmaybe transformed into a abstract formoffirst
order differential system, but the fractional differential equation may not have this property.
So, the technique used in this paper provides the tools to study a fractional differential
equation having more than one fractional derivatives.

This paper is organized as follows. In “Preliminaries” section, we will formulate the
problem and recall some basics of fractional calculus and stochastic analysis which will be
employ to attain our mains results. In “Main Results” section, the existence and uniqueness
results of mild solution are obtained. In the next section an example is provided to show the
feasibility of the theory discussed in this paper.

Preliminaries

In this section, we provide some notations, basic definitions and lemmas, which will be used
throughout the paper. In particular, we recall main properties of stochastic analysis theory
[24,26,36], generalized semigroup theory and well known facts in fractional calculus [30].

Let R and N denote the sets of real and natural numbers, respectively. Let H and K be two
real separable Hilbert spaces and let L(H, K) be the space of bounded linear operators form
H to K. For convenience, without confusion we will employ the same notation ‖.‖ to denote
the norms in H, K and L(K, H) and 〈·, ·〉 for inner product in H and K. For a linear operator
A on H,R(A),D(A) and ρ(A) represent the range, domain and resolvent of A, respectively.
Let w(t) be a Q-Wiener process on a complete probability space (�,F, {Ft }t≥0,P) with a
filtration {Ft }t≥0 satisfying the usual conditions(i.e right continuous and {F0} containing all
P-null sets) with the linear bounded covariance operator Q ∈ L(K, K) = L(K) such that
tr Q < ∞, where tr denotes the trace of the operator. Further, we assume that there exist a
complete orthonormal system {en}n≥1 inK, a sequence of non-negative real numbers {λn}n≥1
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such that Qen = λnen, n = 1, 2, 3, . . . and a sequence {ζn}n≥1 of independent Brownian
motions such that

〈w(t), e〉 =
∞∑

n=1

√
λn〈en, e〉Kζn(t), e ∈ K, t ∈ I = [0, T ], T < ∞, (2.1)

and Ft = Fw
t , where Fw

t is the σ -algebra generated by {w(s) : 0 ≤ s ≤ t} and FT = F .

Further, assume thatL0
2 = L2(Q

1
2 K, H) represents the space of all Hilbert Schmidt operators

from Q
1
2 K to H with norm ‖φ‖L0

2
= tr [φQφ∗] < ∞, φ ∈ L(K, H). Let L2(FT , H) be

the space of all FT measurable H valued square integrable random variables. Moreover, let
LF
2 (I, H) be the Hilbert space of all square integrable and Ft adapted processes with value

in H. We denote by BT the Banach space of all H-valued Ft adapted processes y(t, ω) :
I × � → H which are continuous in t for a.e. fixed ω ∈ � and satisfy

‖y‖BT = E
(

sup
t∈[0,T ]

‖y(t, ω)‖p
) 1

p

< ∞, p ≥ 2.

In this paper, we study the existence and uniqueness of mild solutions to the following
multi-term time-fractional stochastic differential system
⎧
⎪⎨

⎪⎩

cD1+β y(t) +
n∑

j=1

α j
cDγ j y(t) = Ay(t) + F(t, y(t)) + G(t, y(t))

dw(t)

dt
, t ∈ (0, T ],

y(0) = ϕ, y′(0) = χ,

(2.2)

where cDη stands for the Caputo fractional derivative of order η > 0, A : D(A) ⊂ H → H

is a closed linear operator on H. All γ j , j = 1, 2, . . . , n are positive real numbers such that
0 < β ≤ γn ≤ · · · ≤ γ1 ≤ 1. The functions F and G are suitable functions to be defined
later. The initial given data ϕ, χ are inF0-measurableH-valued random variable independent
of w with finite p moments.

To give a appropriate representation of mild solution in terms of certain family of bounded
and linear operators, we define following family of operators.

Definition 2.1 [29] Let A be a closed linear operator on a Hilbert space H with the domain
D(A) and let β > 0, γ j , α j be the real positive numbers. Then A is called the generator
of a (β, γ j )− resolvent family if there exists ω > 0 and a strongly continuous function
Sβ,γ j : R

+ → L(H) such that {λβ+1 + ∑n
j=1 α jλ

γ j : Re λ > ω} ⊂ ρ(A) and

λβ

(
λβ+1 +

n∑

j=1

α jλ
γ j − A

)−1

y =
∫ ∞

0
e−λtSβ,γ j (t)ydt, Re λ > ω, y ∈ H. (2.3)

The following result guarantee for the existence of (β, γ j )− resolvent family under some
suitable conditions.

Theorem 2.2 [29] Let 0 < β ≤ γn ≤ · · · ≤ γ1 ≤ 1 and α j ≥ 0 be given and let A be a
generator of a bounded and strongly continuous cosine family {C(t)}t∈R. Then A generates
a bounded (β, γ j )− resolvent family {Sβ,γ j (t)}t≥0.

Now, we recall some definitions and basic results on fractional calculus (for more details
see [29,30]). Define gη(t) for η > 0 by

gη(t) =
{ 1

�(η)
tη−1, t > 0;

0, t ≤ 0,
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where � denotes gamma function. The function gη has the properties (ga ∗gb)(t) = ga+b(t),
for a, b > 0 and ĝη(λ) = 1

λη for η > 0 and Re λ > 0, where (̂·) and ∗ denote the Laplace
transformation and convolution, respectively.

Definition 2.3 The Riemann-Liouville fractional integral of a function f ∈ L1
loc([0,∞), R)

of order η > 0 with lower limit zero is defined as follows

I η f (t) =
∫ t

0
gη(t − s) f (s)ds, t > 0,

and I 0 f (t) = f (t).

This fractional integral satisfies the properties I η◦ I b = I η+b for b > 0, I η f (t) = (gη∗ f )(t)

and Î η f (t) = 1
λη f̂ (λ) for Reλ > 0.

Definition 2.4 Let η > 0 be given and denote m = �η�. The Caputo fractional derivative of
order η > 0 of a function f ∈ Cm([0,∞), R) with lower limit zero is given by

cDη f (t) = Im−ηDm f (t) =
∫ t

0
gm−η(t − s)Dm f (s)ds, m − 1 < η ≤ m,

and cD0 f (t) = f (t), where Dm = dm
dtm and �·� is ceiling function. In addition, we have

cDη f (t) = (gm−η ∗Dm f )(t) and the Laplace transformation of Caputo fractional derivative
is given by

ĉ Dη f (t) = λη f̂ (λ) −
m−1∑

d=0

f (d)(0)λη−1−d , λ > 0. (2.4)

Remark 2.5 Let m − 1 < η ≤ m, then

(I η ◦ cDη
) f (t) = f (t) −

m−1∑

d=0

f (d)(0)gd+1(t), t > 0. (2.5)

If f (d)(0) = 0, for d = 1, 2, 3, . . . ,m − 1, then (I η ◦ cDη) f (t) = f (t) and ĉ Dη f (t) =
λη f̂ (λ).

In order to define the concept of mild solution for the system (2.2), by comparison with
the fractional differential equation given in [29], we associate system (2.2) to an integral
equation. In this paper, we give the following definition of mild solution for the system (2.2).

Definition 2.6 An H-valued stochastic process {y(t)}t∈I is said to be mild solution of (2.2)
if

(i) y(t) is measurable and Ft adapted, for each t ∈ I,
(ii) y(t) satisfies the following equation

y(t) =Sβ,γ j (t)ϕ + (g1 ∗ Sβ,γ j )(t)χ +
n∑

j=1

α j

∫ t

0

(t − s)β−γ j

�(1 + β − γ j )
Sβ,γ j (s)ϕds

+
∫ t

0
Tβ,γ j (t − s)F(s, y(s))ds +

∫ t

0
Tβ,γ j (t − s)G(s, y(s))dw(s), (2.6)

P-a.s. for all t ∈ I, where Tβ,γ j (t) = 1
�(β)

∫ t
0 (t − s)β−1Sβ,γ j (s)ds.
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Lemma 2.7 [20], For any p ≥ 2 and let h be L2
0-valued predictable process such that

E
( ∫ T

0 ‖h(s)‖p
L2
0
ds

)
< +∞, then we have

E
(

sup
s∈[0,t]

∥∥∥∥
∫ s

0
h(r)dw(r)

∥∥∥∥
p)

≤cp sup
s∈[0,t]

E
(∥∥∥∥

∫ s

0
h(r)dw(r)

∥∥∥∥
p)

≤CpE
( ∫ t

0
‖h(r)‖p

L2
0
dr

)
, t ∈ I,

where cp =
(

p
p−1

)p

and Cp =
(

p
2 (p − 1)

) p
2
(

p
p−1

) p2

2

.

Main Results

In this section, we establish the existence and uniqueness results of mild solutions for the
system (2.2). Throughout in this section we denote S0 = supt∈[0,T ] ‖Sβ,γ j (t)‖. Moreover,

we have ‖Tβ,γ j (t)y‖L = S0tβ

�(1+β)
‖y‖ for y ∈ H. We consider the following assumptions

(A1) The functions F : I × H → H,G : I × H → L0
2 are measurable and continuous in

y for each t ∈ I and there exists a function U : I × [0,∞) → [0,∞) such that

E(‖F(t, y)‖p) + E(‖G(t, y)‖p
L0
2
) ≤ U (t,E(‖y‖)p) (3.1)

for all y ∈ L p(�,FT , H) and all t ∈ I.
(A2) For each fixed x ∈ [0,∞), U (t, x) is locally integrable in t and non-decreasing

continuous in x for each fixed t ∈ I and for all θ > 0, x0 ≥ 0, the integral equation
x(t) = x0 + θ

∫ t
0 U (s, x(s))ds admits a global solution on I.

(A3) There exist a function V : I × [0,∞) → [0,∞) such that

E(‖F(t, x) − F(t, y)‖p) + E(‖G(t, x) − G(t, y)‖p
L0
2
) ≤ V (t,E(‖x − y‖)p) (3.2)

for all x, y ∈ L p(�,FT , H) and all t ∈ I.
(A4) For each fixed x ∈ [0,∞), V (t, x) is locally integrable in t and non-decreasing

continuous in x for each fixed t ∈ I. Moreover, V (t, 0) = 0 and if a non-negative
continuous function z(t), t ∈ I satisfies z(t) ≤ σ

∫ t
0 V (s, z(s))ds for t ∈ I subject

to z(0) = 0 for some σ > 0, then z(t) = 0 for all t ∈ I.

Remark 3.1 (i) For all x ≥ 0, define V (t, x) = V x , where V > 0 is a constant, then (A3)

implies global Lipschitz condition.
(ii) If V (t, x) is concave with respect to x > 0 for each fixed t ≥ 0 and

‖F(t, x) − F(t, y)‖p + ‖G(t, x) − G(t, y)‖p
L0
2

≤ V (t, ‖x − y‖p), for all x, y ∈ H, and t ≥ 0.

Then by Jensen’s inequality (3.2) is satisfied.
(iii) Let V (t, x) = ξ(t)ϑ(x), t ∈ I, x ≥ 0, where ϑ : [0,∞) → [0,∞) is monotone

non-decreasing, continuous and concave function with ϑ(0) = 0, ϑ(x) > 0 for all
x > 0 and

∫
0+ 1/ϑ(x)dx = ∞ and ξ(t) ≥ 0 is locally integrable. It can be observed

that ϑ satisfies (3.2) [33].
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Let us give some concrete functions. For ε ∈ (0, 1) sufficiently small, we define [33]

ϑ1(x) =
{
x log(x−1), 0 ≤ x ≤ ε;
ε log(ε−1) + ϑ ′

1(ε
−)(x − ε), x > ε.

(3.3)

ϑ2(x) =
{
x log(x−1) log log(x−1), 0 ≤ x ≤ ε;
ε log(ε−1) log log(ε−1) + ϑ ′

2(ε
−)(x − ε), x > ε.

(3.4)

where ϑ ′
1 and ϑ ′

2 stand for left derivatives of ϑ1 and ϑ2 at the point ε.All the functions satisfy∫
0+ 1/ϑi (x)dx = ∞, i = 1, 2 and concave and nondecreasing. It should be noted that the
proposed conditions are more general than the Lipschitz conditions.

Taking into account the aforementioned definitions and lemmas, we give the following
existence and uniqueness results of mild solutions for the system (2.2).

Theorem 3.2 Assume that the assumptions (A1)−(A4) are hold, then the system (2.2) admits
a unique mild solution in BT .

First, we prove the existence part of Theorem 3.2 based on the Picard type approximation
technique. Let us construct a sequence of stochastic processes {yn}n∈N∪{0} defined by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

y0(t) = Sβ,γ j (t)ϕ + (g1 ∗ Sβ,γ j )(t)χ +
n∑

j=1

α j

∫ t

0

(t − s)β−γ j

�(1 + β − γ j )
Sβ,γ j (s)ϕds

yn+1(t) = Sβ,γ j (t)ϕ + (g1 ∗ Sβ,γ j )(t)χ +
n∑

j=1

α j

∫ t

0

(t − s)β−γ j

�(1 + β − γ j )
Sβ,γ j (s)ϕds

+B1(yn)(t) + B2(yn)(t),

(3.5)

where

B1(yn)(t) =
∫ t

0
Tβ,γ j (t − s)F(s, yn(s))ds, (3.6)

and B2(yn)(t) =
∫ t

0
Tβ,γ j (t − s)G(s, yn(s))dw(s). (3.7)

In order to establish existence results of the Theorem 3.2, we are required the following
lemmas.

Lemma 3.3 Under the assumptions (A1)−(A4), the sequence {yn}n∈N∪{0} is well defined.
Moreover, it is bounded in BT i.e. supn∈N∪{0} ‖yn‖BT ≤ C, where C > 0 is a constant.

Proof From (3.5), we have

E‖yn+1(t)‖p ≤5p−1E‖Sβ,γ j (t)ϕ‖p + 5p−1E‖(g1 ∗ Sβ,γ j )(t)χ‖p

+ 5p−1E

∥∥∥∥
n∑

j=1

α j

∫ t

0

(t − s)β−γ j

�(1 + β − γ j )
Sβ,γ j (s)ϕds

∥∥∥∥
p

+ 5p−1E‖B1(yn)(t)‖p + 5p−1E‖B2(yn)(t)‖p. (3.8)

Using (3.5), Hölder inequality and monotonicity of U , we get
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E‖B1(yn)(t)‖p ≤ S p
0

(�(1 + β))p

(
p − 1

β p + p − 1

)p−1

T β p+p−1
∫ t

0
E(‖F(s, yn(s))‖p)ds

≤C1

∫ t

0
U (s,E‖yn(s)‖p)ds

≤C1

∫ t

0
U (s, ‖yn‖p

Bs
)ds,

where C1 = S p
0

(�(1+β))p

(
p−1

β p+p−1

)p−1

T β p+p−1.

Again, using Lemma 2.7, Hölder inequality and monotonicity of U , we get

E‖B2(yn)(t)‖p ≤CpE
( ∫ t

0
‖Tβ,γ j (t − s)‖2‖G(s, yn(s))‖2L2

2
ds

) p
2

≤Cp

(
S0

�(1 + β)

) p
2
(

p − 2

2β p + p − 2

) p−2
2

T 2β p+p−2
∫ t

0
E(‖G(s, yn(s))‖p

L2
2
)ds

≤C2

∫ t

0
U (s,E‖yn(s)‖p)ds

≤C2

∫ t

0
U (s, ‖yn‖p

Bs
)ds,

where C2 = Cp

(
S0

�(1+β)

) p
2
(

p−2
2β p+p−2

) p−2
2

T 2β p+p−2.

Now, using the above inequalities in (3.8), we acquire

E‖yn+1(t)‖p ≤5p−1S p
0 E(‖ϕ‖p) + 5p−1S p

0 T
pE(‖χ‖p) + 5p−1

( n∑

j=1

S0α j T 1+β−γ j

�(2 + β − γ j )

)p

E(‖ϕ‖p)

+ 5p−1(C1 + C2)

∫ t

0
U (s, ‖yn‖p

Bs
)ds

≤k1 + k2

∫ t

0
U (s, ‖yn‖p

Bs
)ds,

where k1 = 5p−1
[
S p
0 E(‖ϕ‖p) + S p

0 T
pE(‖χ‖p) +

( n∑

j=1

S0α j T 1+β−γ j

�(2 + β − γ j )

)p

E(‖ϕ‖p)

]
and

k2 = 5p−1(C1 + C2).
Therefore,

‖yn+1‖p
Bt

≤ k1 + k2

∫ t

0
U (s, ‖yn‖p

Bs
)ds. (3.9)

Now, we consider the following integral equation

z(t) = k1 + k2

∫ t

0
U (s, z(s))ds. (3.10)

By the assumption (A2), (3.10) admits a global solution z(·) on I. Next, we show by applying
induction argument that ‖yn‖p

Bt
≤ z(t), for all t ∈ I. For all t ∈ I, we have
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‖y0‖p
Bt

≤ 3p−1S p
0 E(‖ϕ‖p) + 3p−1S p

0 T
pE(‖χ‖p)

+ 3p−1
( n∑

j=1

S0α j T 1+β−γ j

�(2 + β − γ j )

)p

E(‖ϕ‖p) ≤ k1 ≤ z(t).

Now, let us assume that ‖yn(t)‖p
Bt

≤ z(t) for all t ∈ I. Then by (3.9),(3.10) and non-
decreasing property on U in second variable, we obtain

z(t) − ‖yn+1‖p
Bt

≥ k2

∫ t

0
(U (s, z(s)) −U (s, ‖yn‖p

Bs
))ds, ∀t ∈ I. (3.11)

In particular, supn∈N∪{0} ‖yn‖BT ≤ z(T )1/p i.e. {yn}n∈N∪{0} is well defined. ��
Lemma 3.4 Under the assumptions (A1)−(A4), the sequence {yn}n∈N∪{0} is a Cauchy
sequence in BT .

Proof Let us define δn(t) = supn≤m ‖ym − yn‖p
Bt
. For all m, n ∈ N ∪ {0}, we obtain

ym(t) − yn(t) ≤
∫ t

0
Tβ,γ j (t − s)[F(s, ym(s)) − F(s, yn(s))]ds

+
∫ t

0
Tβ,γ j (t − s)[G(s, ym(s)) − G(s, yn(s))]dw(s).

Now, recalling the same argument as in Lemma 3.3, we obtain

‖ym − yn‖p
Bt

≤C3

∫ t

0
V (s, ‖ym−1 − yn−1‖p

Bs
)ds (3.12)

where C3 = 2p−1
[

S p
0

(�(1+β))p

(
p−1

β p+p−1

)p−1

T β p+p−1 + Cp

(
S0

�(1+β)

) p
2
(

p−2
2β p+p−2

) p−2
2

T 2β p+p−2
]
. This shows that

δn(t) ≤C3

∫ t

0
V (s, δn−1(s))ds. (3.13)

It is clear that the functions δn are well defined for all n ≥ 0, categorically monotone non-
decreasing and uniformly bounded due to Lemma 3.3. Since {δn(t)}n∈N∪{0} is a monotonic
non-increasing sequence for each t ∈ I, there exists a monotone non-decreasing function
δ such that limn→∞ δn(t) → δ(t). Now, by virtue of Lebesgue convergence theorem, we
follow from the inequality (3.13) that

δ(t) ≤C3

∫ t

0
V (s, δ(t))ds, as n → ∞. (3.14)

By the assumption (A4) and Lemma 2.2 in [1] that δ = 0, ∀t ∈ I. Since 0 ≤ ‖ym − yn‖p
BT

≤
δn(T ) and limn→∞ δn(t) → δ(t), therefore as a result {yn}n∈N∪{0} is a Cauchy sequence in
BT . ��
Proof of Theorem 3.2. Existence: Form Lemma 3.4, let us denote y as a limit of the sequence
{yn}n∈N∪{0}. Now, similar as in the proof of Lemma 3.4, we can show that the right side of
the sequence {yn}n∈N∪{0} given by (3.5) tends to
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Sβ,γ j (t)ϕ + (g1 ∗ Sβ,γ j )(t)χ +
n∑

j=1

α j

∫ t

0

(t − s)β−γ j

�(1 + β − γ j )
Sβ,γ j (s)ϕds

+
∫ t

0
Tβ,γ j (t − s)F(s, y(s))ds +

∫ t

0
Tβ,γ j (t − s)G(s, y(s))dw(s), as n → ∞.

��
Uniqueness: Let x, y ∈ BT be two mild solutions of the system (2.2). Now following the
proof of Lemma 3.4, similar as (3.12) we can obtain

‖x − y‖p
Bt

≤C3

∫ t

0
V (s, ‖x − y‖p

Bs
)ds. (3.15)

By using the assumption (A4), similar as in proof of Lemma 3.4, we get ‖x − y‖p
BT

→ 0,
which shows that x = y. This completes the proof.

Remark 3.5 In this paper, in order to obtain existence and uniqueness results a Picard type iter-
ations technique is employed in place of fixed point theorem. In this technique, we avoided the
compactness conditions [29], Lipschitz continuity of nonlinear functions and some inequality
conditions (as given in Theorem 3.5 in [29], Theorem 3.2 and Theorem 3.3 in [36]).

Example

The fractional order diffusion wave equations have great applications in varies fields of
science and engineering. These equations represent propagation ofmechanicalwaves through
viscoelastic media, charge transport in amorphous semiconductors [15,23], and may be used
in thermodynamics and the flow of fluid through fissured rocks [2].

We provide a concrete example to illustrate the feasibility of the established results. Let
β, γ j > 0, j = 1, 2, 3, . . . , n be given such that 0 < β ≤ γn ≤ · · · ≤ γ1 ≤ 1. Let
H = L2([0, π]). We consider the following system

cD1+β z(t, x) +
n∑

j=1

α j
cDγ j z(t, x) = ∂2

∂x2
z(t, x) + F̂(t, z(t, x)) + Ĝ(t, z(t, x))

dw(t)

dt
,

(4.1)

z(t, 0) =z(t, π) = 0, t ∈ [0, 1], (4.2)

z(0, x) =z0(x),
∂z(t, x)

∂t
|t=0 = z1(x), 0 ≤ x ≤ π, (4.3)

where w(t) denotes one dimensional R-valued Brownian motion and z0(x), z1(x) ∈
L2([0, π]) are F0 measurable and satisfy E‖z0‖2 ≤ ∞,E‖z1‖2 ≤ ∞, here we con-
sider p = 2. Let w(t) = ∑∞

n=1
√

λnζn(t)en (λn > 0), where ζn(t) are one dimensional
standard Brownian motion mutually independent on a usual complete probability space
(�,F, {Ft }t≥0,P). Define a operator A : D(A) ⊂ H → H by

Au = u′′, u ∈ D(A),

where D(A) := {u ∈ H : u, u′ are absolutely continuous, u′′ ∈ H, u(0) = u(π) = 0}.
Then the operator A has spectral representation given by

Au =
∞∑

n=1

−n2〈u, un〉un,
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where un(x) = (
√
2/π) sin nx , n = 1, 2, . . . , is the orthogonal set of eigenfunctions corre-

sponding to the eigenvalues λn = −n2 of A. Then A will be a generator of cosine family
such that

C(t)u =
∞∑

n=1

cos nt〈u, un〉un,

Thus A generates a strongly continuous cosine family. Then, for β, γ j > 0, j =
1, 2, 3, . . . , n such that 0 < β ≤ γn ≤ · · · ≤ γ1 ≤ 1, by Theorem 2.2, we conclude
that A generates a bounded (β, γ j )− resolvent family

Sβ,γ j (t)u =
∫ ∞

0

1

t
(1+β)

2

�(1+β)
2

(st−
(1+β)

2 )C(s)uds, t ∈ [0, 1],

where

�(1+β)
2

(v) =
∞∑

n=0

(−v)n

n!�(−(β(n + 1)) − n)
, v ∈ C,

is the Wright functions. Let us denote y(t)(x) = z(t, x) and ϕ = z0(x), χ = z1(x) for

t ∈ [0, 1], x ∈ [0, π]. Then, Ay(t) = ∂2

∂x2
z(t, x) and for the functions F,G : [0, 1]×H → H,

we have

F(t, y(t))(x) = F̂(t, z(t, x)), G(t, y(t))(x) = Ĝ(t, z(t, x)).

Then the system (4.1)–(4.3) has a abstract form of the system

cD1+β y(t) +
n∑

j=1

α j
cDγ j y(t) = Ay(t) + F(t, y(t)) + G(t, y(t))

dw(t)

dt
, t ∈ (0, 1],

(4.4)

y(0) = ϕ, y′(0) = χ. (4.5)

Now, by the Theorem 3.2 we may conclude that if the functions F and G satisfy the assump-
tions (A1)−(A4), then the system (4.1)–(4.3) has a unique mild solution.

Remark 4.1 Since, the mathematical models involving nonlocal conditions may describe
many real life problems more precisely rather than standard initial conditions, for instance,
Deng [12] explained that the diffusion phenomena of a small amount of gas in a transparent
tube can be described efficiently using nonlocal conditions rather than local conditions.
Therefore there has been significant development in study of differential equations with
nonlocal conditions [12,29]. In this remark, we consider the existence and uniqueness results
for mild solutions to the following class of multi-term time-fractional stochastic differential
system
⎧
⎪⎨

⎪⎩

cD1+β y(t) +
n∑

j=1

α j
cDγ j y(t) = Ay(t) + F(t, y(t)) + G(t, y(t))

dw(t)

dt
, t ∈ (0, T ],

y(0) = g1(y), y′(0) = g2(y),
(4.6)

where g1, g2 : C([0, T ], H) → H are suitable functions and other functions are defined
in (2.2). In particular, the nonlocal conditions in (4.6) may be applied in physics for more
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realistic results than the classical initial conditions y(0) = ϕ, y′(0) = χ . For example
g1, g2 may be express as

g1(y) =
m∑

i=1

ai y(ti ), g2 =
m∑

i=1

bi y(ti ),

where ai , bi (i = 1, 2, 3, . . . ,m) are given constants and 0 < t1 < · · · < tn ≤ T . The
established results for the system (2.2) may be extended to investigate the existence and
uniqueness ofmild solutions of (4.6)with nonlocal conditions by applying the same technique
as used in Theorem 3.2.

Remark 4.2 On the other hand, the theory of fractional impulsive differential equations also
has been generated a great interest among the researchers, because many physical processes
and phenomena which are effected by abrupt changes in the state at certain moments are
naturally described by fractional impulsive differential equations. These changes occur due
to disturbances, changing operational conditions and component failures of the state. For
example, mechanical and biological models subject to shocks. Generally the abrupt changes
in the state for instant period in evolution process are formulated by impulsive differential
equations. Since, in addition to stochastic effects in fractional system, impulsive effects
likewise exists in real process. Therefore, the fractional stochastic differential equations have
been widely investigated with impulsive effects, see [4,13,38]. Since, the study of existence
of mild solutions for the system (2.2) with impulsive effects is left open. Anticipating a wide
interest in such problems, one may contributes in filling this important gap.

Conclusion

The available literature regarding to multi-term time-fractional differential systems has been
reported with the method of separation of variables [10,16,22], Caratheodory type condi-
tions and measure of noncompactness technique [28,29,37], to obtain the main outcomes in
deterministic case. But, in this paper, we established the existence and uniqueness results for
multi-term time-fractional stochastic differential systemwith the coefficients in the equations
satisfying some non-Lipschitz conditions and using standard Picard type iterations. Here, it
should be noticed that the Lipschitz condition is a special case of the proposed conditions.
By adopting the ideas developed in this paper, one may establish some stability results [34]
with impulsive effects which are very effective in study of a phenomenon with discontinuous
jumps.
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