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Abstract
The article aims to investigate a prey–predatormodel which includes density dependent death
rate for predators and Beddington–DeAangelis type functional response. We observe the
changes in the existence and stability of the equilibrium points and investigate the complete
global dynamics of the model. A two-parametric bifurcation diagram has been described
here which shows the effect of density dependent death rate parameter of predator. We have
also examined all possible local and global bifurcations that the system could go through,
namely transcritical bifurcation, saddle-node bifurcation, Hopf-bifurcation, cusp bifurcation,
Bogdanov–Takens bifurcation, Bautin bifurcation and homoclinic bifurcation.

Keywords Predator–prey model · Beddington–DeAngelis · Functional response · Stability
analysis · Bifurcation · Global dynamics

Introduction

After developing by Lotka [23] and Volterra [39], several researchers observed the dynamical
analysis of ecological systems, modeled with ordinary differential equations. Lotka and
Volterra first introduced the classical prey–predator intersection model and based upon this
various two dimensional models are analyzed to understand the nature of intersection within
prey and predator species. For a prey–predator model it is important to choose a proper
functional response. Functional response is the interaction between predator-prey species
and it refers how much a single predator consumed prey population density per unit time. In
1965, after several experiments, Holling [16] suggested three different types of functional
responses like Holling type I, Holling type II and Holling type III to model the phenomena
of predation. Depend on these functional responses, several researchers have investigated a
large variety of dynamical systems ranging from simple two dimensional models to higher
dimensional models to understand the nature of intersection between prey and predator
species within the deterministic environment [12–14,16].

Holling type I (or Lotka–Volterra) functional response is one-dimensional and it is the
simple form of functional response as intake rate is constant here. But, the more reasonable

B Partha Sarathi Mandal
parthas@nitp.ac.in

1 Department of Mathematics, NIT Patna, Patna, Bihar 800005, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12591-019-00469-9&domain=pdf


266 Differential Equations and Dynamical Systems (January 2021) 29(1):265–283

functional response will be nonlinear. For Holling type II functional response, when prey
population density is high, the predator grows at a maximum relative growth rate α, whereas
at low prey densities � approximates the LotkaVolterra model (as � → αx

m when prey den-
sity x is at very low level), where �(x(t)) is the functional response. On the other hand,
for Holling type III functional response, growth curve becomes quadratic instead of linear

at low prey population densities (� → αx2
m when prey density x is at very low level). The

prey–predatormodelwithHolling-type functional response are strictly prey-dependent. Since
1959, Holling’s prey dependent type II functional response was the key on prey–predator the-
ory [34]. TheBeddington–DeAngelis functional responsewhich is introduced byBeddington
[5] andDeAngelis [10] is similar to theHolling type II functional response but an extra term in
the denominatorwhich is depend upon predator. The ratio-dependent functional response also
incorporates mutual interference by predators, but at low densities it has singular behaviour.
For mathematical analysis [19] and the references in [9] for some debate among biolo-
gists about ratio dependence. For different mathematical representations of the functional
response, readers are referred to [3,8,13,16,18,27]. The Beddington–DeAngelis functional
response has some similar qualitative features as the ratio-dependent form but at low densi-
ties it keeps away from some of the behaviors of it. It is known that Beddington–DeAngelis
type functional response is most acceptable than other available response functions and it has
the ability to take care of a number of ecological mechanisms [5,9]. This type of functional
response not only describe that two or more predator encounters prey but also explain that
predators spend some time to encounters other predator also. When predator density is very
high then feeding rate of predator decreases due to mutual interference among the predators
and in this case Holling type functional response is not appropriate. This is the reason for
the modification of Holling type II functional response in the form of BeddingtonDeAnge-
lis functional response. Several mathematical models including the Beddington–DeAngelis
type functional response have been investigated [6,11,21,22,35–38] and it also produce very
rich and biologically reasonable dynamics . In [6], Cantrell and Cosner have studied a prey–
predator model with Beddington–DeAngelis functional response and they analysed various
dynamical properties like stability, limit cycle, etc. In 2005, Dimitrov and Kojouharov [11]
considered a predator–prey model with Beddington–DeAngelis functional response and lin-
ear intrinsic growth rate of the prey population and shown that mutual interference between
predators can alone stabilize predator–prey interactions even when only a linear intrinsic
growth rate of the prey population is considered in the mathematical model. In this model
density dependent death rate of predator was not considered. In [22], Liu andWang have stud-
ied the global stability of the prey–predator model with Beddington–DeAngelis functional
response. In 2018, Tripathi et.al. [35] investigated the role of reserved region and degree
of mutual interference among predators in the dynamics of system and obtained different
conditions that affect the persistence of the system.

In a prey–predator model density dependent death rate of predator has significant amount
of effect on the system. There are very few researchers analyzed the fact that include the
role of density dependent death rate of predators to the system dynamics [2,28,30]. Inspired
by the above facts, in this paper we consider a prey–predator model with the Beddington–
DeAngelis functional response and density dependent death rate of predator. Hence, it is very
important to know the significant effect of the Beddington–DeAngelis functional response
and density dependent death rate of predator on the system and to the best of our knowledge
this model along with global dynamics has yet not been investigated by any one. Clearly,
our model is the generalization of the model [6,11,21,22]. In this work, we show that the
conversion rate of prey and density dependent death rate of predator have an important role
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in the dynamics of the system. We show that the stable coexisting steady-state is possible
when density dependent death rate is very high. Complete stability analysis of the system and
global dynamics of the system are presented to investigate the influence of conversion rate
parameter and density dependent death rate parameter. We find that, oscillatory coexistence
of both the prey and predator populations is possible for low intraspecific competition rate of
predator. When consumption rate is low, coexistence state of both the species occur through
transcritical bifurcation and when consumption rate is high, more than one equilibrium state
of both the species is observed for low intraspecific competition rate of predator. We also
compare the dynamics of the system with [11].

The present paper is represented as follows: in “Development of the Model” section, we
discuss the basic model with dimensionless variables and parameters. We also check that the
solution is always bounded and positive in this section. In “Stability of Equilibria and Local
Bifurcation” section, we discuss the existence and stability of the equilibrium points. Also
we study several local bifurcations, namely, transcritical bifurcation, saddle-node bifurcation,
Hopf-bifurcation;which are of codimension one and the systemalso undergoes different types
of codimension two bifurcations, namely, cusp bifurcation, Bogdanov–Takens bifurcation
and Bautin bifurcation in this section. In “Global Dynamics” section, we discuss the global
dynamics of the system. In this section, comparison between the dynamics of our systemwith
[11] is also given. Ecological interpretations of obtained results are provided in “Discussion”
section.

Development of theModel

First classical prey–predator interaction model proposed by Lotka and Volterra is given by
the following system of equations [23,39]:

dx

dt
= x f (x) − g(x, y)y,

dy

dt
= pg(x, y)y − dy,

where x(t) and y(t) denote the prey and predator density at time t respectively. f (x) is the
prey growth rate in the absence of predator and g(x, y) is the predator’s functional response.
Parameters p and d stand for conversion rate of prey and death rate of predator, respectively.
Here, we consider the logistic functional response in the prey growth equation, and hence
the expression of f (x) is given by

f (x) = r x
(
1 − x

k

)
,

where r is the prey intrinsic growth rate and k is environmental carrying capacity for prey.
Also, we consider the functional response of predator to be Beddington–DeAngelis type and
it is given by

g(x, y) = cxy

a + x + by
,

where c represents consumption rate, a is the saturation constant and b is predator interference
rate. We also add density dependent death rate for the predator. In the present work, we
consider the following prey–predator model with logistic functional response in the prey
growth, Beddington–DeAngelis functional response and density dependent death rate for the
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predator. The prey–predator model is represented by the following two nonlinear ordinary
differential equations,

dx

dt
= r x

(
1 − x

k

)
− cxy

a + x + by
, (1)

dy

dt
= pcxy

a + x + by
− γ y − δy2, (2)

where δ is the predator intraspecific competition rate and initial conditions should be non
negative, i.e x(0) ≥ 0, y(0) ≥ 0. All parameters are positive constants. To reduce the number
of parameters, we use the following model with dimensionless variables defined by x = ku,
y = kv and t = T

r ,

du

dT
= u(1 − u) − αuv

A + u + Bv
, (3)

dv

dT
= Suv

A + u + Bv
− Qv − Rv2, (4)

where α = c
r , A = a

k , B = b, S = pc
r , Q = γ

r , R = δk
r are dimensionless parameters.

Positivity of Solution

From Eqs. (3)–(4), we can write,

u(T ) = u(0)exp

[∫ T

0

(
(1 − u(s)) − αv(s)

A + u(s) + Bv(s)

)
ds

]
,

v(T ) = v(0)exp

[∫ T

0

(
Su(s)

A + u(s) + Bv(s)
− Q − R(s)

)
ds

]
.

From above it is clear that u(T ) > 0 and v(T ) > 0 whenever u(0) > 0, v(0) > 0. Hence
any solution from first quadrant of uv-plane gives always a positive solution. Further we
can verify that any solution trajectories starting from (u, 0) with u > 0, remain within the
positive u-axis and same result follows for positive v-axis. Hence, the set (u, v) : u, v ≥ 0 is
an invariant set.

Boundedness of Solution

In order to prove the boundedness of the solutionwe have to consider two cases 0 < u(0) < 1
and u(0) > 1. From Eq. (3), we can write,

u(T ) = u(0)exp

[∫ T

0
N (u(s), v(s))ds

]
,

where N (u(s), v(s)) =
(
(1 − u(s)) − αv(s)

A+u(s)+Bv(s)

)
. Now

Case I: Consider 0 < u(0) < 1, our clam is u(T ) ≤ 1 otherwise there exist two real number
T1 and T2 with T2 > T1 such that u(T1) = 1 and u(T ) > 1 for T ∈ (T1, T2). Then,
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u(T ) = u(0)exp

[∫ T

0
N (u(s), v(s))ds

]

= u(0)exp

[∫ T1

0
N (u(s), v(s))ds

]
exp

[∫ T

T1
N (u(s), v(s))ds

]

(since, ex+y = ex ∗ ey i f xy = yx)

= u(T1)exp

[∫ T

T1
N (u(s), v(s))ds

]
< u(T1),

as N (u(s), v(s)) < 0 ∀ T ∈ (T1, T2), Which contradict our hypothesis. So u(T ) ≤ 1 for all
T > 0.

Case II: Now consider u(0) > 1 so u(T ) > 1 also, Then,

u(T ) = u(0)exp

[∫ T

0
N (u(s), v(s))ds

]
< u(0),

as N (u(s), v(s)) < 0 for u(T ) > 1.
Hence from the both cases we can say that any positive solution satisfy
u(T ) ≤ max[u(0), 1] for all T > 0.
Again from (4), we have

lim sup
T→∞

v(T ) ≤ S − Q

R
.

Parametric restriction should be S > Q as population densities are always positive.

Stability of Equilibria and Local Bifurcation

In this section we examine the possible number of equilibria of the system and their stability
followed by the details bifurcation analysis of the system.

Equilibria

The boundary equilibrium points of the system are E0(0, 0) and E1(1, 0). The interior equi-
librium points are the intersection points of the system (3)–(4) in the interior of the first
quadrant.

From Eq. (3), we get

(1 − u) = αv

A + u + Bv
,

(1 − u)(A + u + Bv) = αv,

v = (u + A)(u − 1)

B − Bu − α
.

From Eq. (4), we get

Su

A + u + Bv
= Q + Rv,

Su = (Q + Rv)(A + u + Bv),
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Fig. 1 The blue coloured curve is the first nullcline. The purple coloured doted line is the horizontal asymptote
of the second nullcline (cyan blue coloured curve)

v2(−RB) − v(BQ + AR + Ru) + (Su − Qu − AQ) = 0,

v = BQ + AR + Ru ± √
(BQ + AR + Ru)2 + 4RB(Su − Qu − AQ)

−2RB
.

So, interior equilibriumpoints of the system (3)–(4) are the intersection points of the following
two nullclines

v = (u + A)(u − 1)

B − Bu − α
, (5)

v = BQ + AR + Ru − √
(BQ + AR + Ru)2 + 4RB(Su − Qu − AQ)

−2RB
. (6)

We take square root negative in the Eq. (6), if the square root positive then v < 0, so
we do not get any branch in the positive quadrant. First nullcline (5) (see Fig. 1, blue
coloured curve) is a continuous smooth curve and lies in the first quadrant for u ∈ [0, 1].
The curve is increasing at (0, 0) and decreasing at (1, 0) and attains a local maximum at

um = (B−α)+
√

(α−B)2−B(αA+B−α)

B such that 0 < um < 1. The cyan blue coloured sec-

ond nullcline (6) intersects the positive u-axis at
(

AQ
S−Q , 0

)
and then rises monotonically

and bounded by its horizontal asymptote v = S−Q
R (see Fig. 1). We assume the parametric

restriction S > Q because if S < Q, then the second nullcline has no branch in the first
quadrant of the uv-plane and so the system have no feasible interior equilibrium point.

Theorem 3.1 Let us assume S > Q holds.

(a) If Q(1+A) < S then the system can have either one interior equilibrium or three interior
equilibrium points.

(b) If S < Q(1+ A) then the system does not posses any feasible interior equilibrium point.

Proof If we denote interior equilibrium point by Ei∗(ui∗, vi∗) (i = 1, 2, 3, as number of
interior equilibrium varies from one to three), then ui∗ and vi∗ are the positive root of

v = (u + A)(u − 1)

B − Bu − α
, (7)

F2(u) = Mu3 + Nu2 + Ou + P = 0, (8)
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Fig. 2 Possible number of equilibrium points changes from one to three. [parameters: α = 1, A = 0.01,
B = 0.1, Q = 0.2, a S = 0.5, RSN1 = 0.9794387, b S = 0.5, RSN2 = 3.243718, c S = 0.25]

where M = B2S + αR, N = 2αBS + 2αAR − 2B2S − αBQ − αR, O = B2S − 2αBS +
αBQ − αABQ + α2S − α2Q + αA2R − 2αAR and P = αABQ − α2AQ − αA2R. It is
quite difficult to find the intersection points by solving analytically. so we can try to find the
intersection points geometrically which is represented in Fig. 2.

If Q(1 + A) < S holds then the point
(

AQ
S−Q , 0

)
lies in between (0, 0) and (1, 0), the

number of points of intersection of the two curves (7) and (8) changes from one to three if
we gradually increase the value of R keeping all other parameters fixed. We assume the u-
components of the interior equilibria satisfy the ordering 0 < u1∗ < u2∗ < u3∗ < 1whenever
they exist. Figure 2 illustrates the possible number of interior equilibrium points under the
parametric restriction Q(1+ A) < S when R varies. We can find a value of S, denoted by S∗,
for which unique interior equilibrium point exists under the restriction Q(1+ A) < S < S∗.
When S∗ < S, one or three interior equilibrium points exist depending upon R. For any fixed
value of S (S∗ < S), we find a critical value of R = RSN1 (see Fig. 2a) for which the number
of interior equilibrium points changes from one to three. The system admits three interior
equilibrium points when RSN1 < R < RSN2 holds. Here R = RSN2 (see Fig. 2b) is the
threshold at which E1∗ and E2∗ collide and one more saddle-node bifurcation occurs. Then
E1∗ and E2∗ disappears and the system continues to have one interior equilibrium point for
all R > RSN2 (see Fig. 2c).

If S < Q(1 + A) then the point
(

AQ
S−Q , 0

)
lies on the right side of (1, 0), the system has

no feasible interior equilibrium point. 
�

Local Stability Results of the Equilibria

In this section we discuss the local stability property of the equilibrium points. First we check
the stability property of trivial and boundary equilibria.

Proposition 1 (a) E0(0, 0) is always a saddle point.
(b) E1(1, 0) is a stable point if S < Q(1 + A) and a saddle point if S > Q(1 + A).
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Fig. 3 Nature of stability of the interior equilibrium points

Proof The Jacobian matrix of the system is given by

J =
(
Fu Fv

Gu Gv

)
,

where F(u, v) = u(1− u)− αuv
A+u+Bv

,G(u, v) = Suv
A+u+Bv

− Qv − Rv2 and Fu = 1− 2u −
αv(A+Bv)

(A+u+Bv)2
, Fv = − αu(A+u)

(A+u+Bv)2
,Gu = Sv(A+Bv)

(A+u+Bv)2
,Gv = Su(A+u)

(A+u+Bv)2
− Q − 2Rv.

Evaluating the Jacobian matrix at E0 and E1 we find,

JE0 =
(
1 0
0 −Q

)
, JE1 =

(−1 − α
1+A

0 S
1+A − Q

)
.

The eigenvalues of JE0 are 1 and −Q, so E0(0, 0) is always a saddle point. The eigenvalues
of JE1 are −1 and S

1+A − Q, so E1(1, 0) is a stable point if S < Q(1+ A) and a saddle point
if S > Q(1 + A). 
�
Remark We have two cases. When S < Q(1 + A), then no interior equilibrium point exists
but E1(1, 0) is stable.When S > Q(1+A), then interior equilibrium points exist but E1(1, 0)
is saddle.

It is quite difficult to find the stability nature of the interior equilibrium points analytically.
Hence we study the general nature of the two nullclines with direction of their vector fields
and graphical Jacobian [Hastings, 1997] to find the nature of the stability of the interior
equilibrium points.

Proposition 2 Let us assume S > Q holds.

(a) E1∗, is an unstable point whenever it exists.
(b) E2∗, is a saddle point whenever it exists.
(c) E3∗, is locally asymptotically stable (unstable) if T r JE3∗ < 0 (T r JE3∗ > 0).

Proof Let F(u, v) = u f (u, v) and G(u, v) = vg(u, v) with f (u, v) = (1 − u) − αv
A+u+Bv

and g(u, v) = Su
A+u+Bv

− Q − Rv. Then we can write,

JEi∗ =
(
Fu Fv

Gu Gv

)
=

(
u fu u fv
vgu vgv

)
.

Using the graphical Jacobian method we find,

Sign(JE3∗) = Sign

(
u fu u fv
vgu vgv

)
=

(− −
+ −

)
, u3∗ > u fmax

=
(+ −

+ −
)

, u3∗ < u fmax ,
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where u fmax is the maximum of the curve f(u,v)=0. For u3∗ > u fmax , E3∗, is locally asymp-
totically stable as Det(JE3∗) > 0 and Tr JE3∗) < 0. Now if u3∗ < u fmax , we have
dv f

du |E3∗ < dvg

du |E3∗ , which implies Det(JE3∗) > 0, so E3∗ is stable if Tr JE3∗) < 0 and
unstable if Tr JE3∗) > 0 (Fig. 3).

Next whenever E2∗ exists we have,

Sign(JE2∗) = Sign

(
u fu u fv
vgu vgv

)
=

(+ −
+ −

)
.

But in this case dv f

du |E2∗ > dvg

du |E2∗ , which implies Det(JE2∗) < 0, so E2∗, is always a saddle
point (Fig. 3).

E1∗ is always unstable whenever it exists. It is quite difficult to determine analyti-
cally and graphically, so we can ensure it by numerical simulations. For example if we
fix the parameters α = 1, A = 0.01, B = 0.1, Q = 0.2, R = 3.2 and S = 0.5, then
we have three interior equilibrium points namely E1∗(0.02288852440, 0.03561581696),
E2∗(0.03205029891, 0.04506460096), E3∗(0.9016914419, 0.09051692997). The eigenval-
ues of the Jacobian matrix calculated at E1∗ are 0.402426653309752 and 0.043604359090
2483, which confirms that E1∗ is unstable. 
�

Local Bifurcations

In this section we study several local bifurcations, namely, transcritical bifurcation, saddle-
node bifurcation, Hopf-bifurcation; which are of codimension one and the system also
undergoes different types of codimension two bifurcations, namely, cusp bifurcation,
Bogdanov–Takens bifurcation and Bautin bifurcation. We assume that S > Q, otherwise
the interior equilibrium points does not exist.

Theorem 3.2 The model system go through a transcitical bifurcation at E1(1, 0) when the
parameter S crosses the transcritical bifurcation threshold STC = Q(1 + A).

Proof We prove that one interior equilibrium point bifurcates from (1, 0) at the threshold
S = Q(1 + A) = STC through transcritical bifurcation and also check the transversality
condition for transcritical bifurcation according to the Sotomayer’s theorem [29].

Calculating the jacobian matrix of the system (3)–(4) at (1, 0) when S = STC , we find
det J |STC= 0. So zero is an eigenvalue of the matrix. The eigenvectors corresponding to
zero eigenvalue of JSTC and [JSTC ]T are V = [−αQ

S , 1]T and W = [0, 1]T respectively.
Now we check the transversality conditions,

WT F1S((1, 0); STC ) = 0,

WT DF1S((1, 0); STC )V = 1

1 + A
�= 0,

WT D2F1((1, 0); STC )(V , V ) = −2

[
AQα

(1 + A)2
+ BQ

(1 + A)
+ R

]
< 0,

where F1(u, v) = [F(u, v),G(u, v)]T and F1S(u, v) = [
∂F
∂S (u, v), ∂G

∂S (u, v)
]T

(for details
seeAppendix 1).Here the transcritical bifurcation is supercritical and one interior equilibrium
point is generated through this transcritical bifurcation. 
�
Theorem 3.3 The system go through saddle-node bifurcation when F2(u) = 0 has a double
root in the interval (0, 1).

123



274 Differential Equations and Dynamical Systems (January 2021) 29(1):265–283

Proof Let uSN∗ be a double root of F2(u) = 0 such that 0 < uSN∗ < 1. Let us define the
corresponding threshold for S by SSN and for S = SSN we find uSN∗ is a double root of
F2(u) = 0. Then the two nullclines (5–6) touch each other at (uSN∗, vSN∗) = ESN∗ (say).As,
F(u, v) = u f (u, v) andG(u, v) = vg(u, v) and slopes of the both curves are equal at ESN∗,
i.e., dv f

du = dvg

du . Since dv f

du = ∂F/∂u
∂F/∂v

and dvg

du = ∂G/∂u
∂G/∂v

we have det JESN∗ = 0 and hence the
Jacobianmatrix has a zero eigenvaluewithmultiplicity one. Now eigenvectors corresponding
to zero eigenvalue of JESN∗ and [JESN∗ ]T are V = (1, k′)T and W = (k′′, 1)T respectively,

where k′ = − Su(A+Bv)

Su(A+u)−(Q+2Rv)(A+u+Bv)2
and k′′ = Su(A+u)−(Q+2Rv)(A+u+Bv)2

αu(A+u)
. We verify

the transversality conditions for saddle-node bifurcation [29]

WT F1S(ESN∗; SSN ) = uv

A + u + Bv
|ESN∗ �= 0,

WT D2F1(ESN∗; SSN )(V , V ) = 2
(A+u+Bv)3

[−(A+ u + Bv)3k′′ + αv(A+ Bv)k′′ − α(A+
u + Bv)(A+ 2Bv)k′k′′ + αBv(A+ Bv)k′k′′ + αBu(A+ u)k′2k′′ − Sv(A+ Bv) + S(A+
u + Bv)(A + 2Bv)k′ − SBv(A + Bv)k′ − Su(A + u)k′2 − R(A + u + Bv)3k′2] �= 0 (If
S �= SCP , R �= RCP )

(for details see “Appendix 2”). Hence the system undergoes saddle-node bifurcation. 
�
There exist two different cases of saddle-node bifurcation, one for the coincidence of E2∗
and E3∗ and the another one for the coincidence of E1∗ and E2∗. Two saddle-node bifur-
cation curves are denoted by SN1 and SN2 respectively.The expression for the saddle-node
bifurcation curves in S − R plane, defined as function of uSN∗, is given below

F2(uSN∗) = Mu3SN∗ + Nu2SN∗ + OuSN∗ + P = 0, (9)

F ′
2(uSN∗) = 3Mu2SN∗ + 2NuSN∗ + O = 0. (10)

Theorem 3.4 The system will go through cusp bifurcation when F2(u) = 0 has a triple root
in the interval (0, 1).

Proof Let uCP∗ be a triple root of F2(u) = 0. Then its explicit expression is given by

uCP∗ = − N

3M
(11)

For the feasibility of the point (uCP∗, vCP∗) the additional parametric restriction N
M < 0

Now proceeding as above it can be shown that the Jacobian matrix JECP∗ at ECP∗(uCP∗,
vCP∗) has one zero eigenvalue. Also, the quadratic normal form coefficient is given by,

WT D2F1(ECP∗; SCP )(V , V ) = 0.

Thus the system exhibit a codimension two local bifurcation namely cusp bifurcation when
the parameters (S, R) cross the threshold (SCP , RCP ). Thus in the cusp bifurcation point
both saddle-node bifurcation curves SN1 and SN2 meet each other. For finding the expression
of (SCP , RCP ) we replace the value of uSN∗ by uCP∗ in (9)–(10). 
�
Now we discuss the stability change of the interior equilibrium points through Hopf-
bifurcation. Only one interior point E3∗ changes its stability. The result is stated in the
following theorem.

Theorem 3.5 The interior equilibrium point E3∗ changes its stability through Hopf-
bifurcation at the threshold S = SH = 1

u(A+u)
[αv(A+ Bv)− (1−2u− Q−2Rv)(A+u+

Bv)2] such that T r(JE3∗) |S=SH = 0 and d
dS [Re(λ)] |S=SH �= 0, where λ is an eigenvalue of

the Jacobian matrix JE3∗ at S = SH .
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X Y (Y1, Y2, Y3, Y4) Z (Z1, Z2, Z3)
transcritical

bifurcation

saddle-node

bifurcation

no interior
equilibrium point

one interior
equilibrium point

three interior
equilibrium points

Three domains X, Y and Z

Fig. 4 Three different domains

For S = SH , clearly Tr(JE3∗) = 0. It is quite difficult to find the nature of the limit cycle
explicitly. The Hopf-bifurcation is called supercritical or subcritical if the Hopf-bifurcation
limit cycle is stable or unstable respectively. Herewe show numerically that the system under-
goes Hopf-bifurcation. We fix the parameters A = 0.01, B = 0.1, Q = 0.2, α = 1. Now
for R = 0.02, S = SH = 0.22138829, first lyapunov coefficient is 0.02455789 > 0, so the
system undergoes a subcritical Hopf-bifurcation and for R = 0.01, S = SH = 0.2184418,
first lyapunov coefficient is −0.2869109 < 0, so the system undergoes a supercritical Hopf-
bifurcation.

Between supercritical and subcritical Hopf-bifurcation, we can find a value of S, R where
first lyapunov coefficient is zero. At this point one more codimension two bifurcation occur
and is called Bautin bifurcation. For R = 0.019207, S = 0.2211546, first lyapunov coeffi-
cient is zero.

Theorem 3.6 The interior equilibrium point E3∗ is go through a Bautin bifurcation when it
undergoes Hopf-bifurcation such that first lyapunov coefficient is zero for some R = RGH

and S = SGH .

Theorem 3.7 The unique interior point EBT∗ = (uBT∗, vBT∗) arising through saddle-node
bifurcation, when E2∗ and E3∗ coincide, undergoes Bogdanov–Takens bifurcation at the
threshold (SBT , RBT ) if det JEBT∗ |(SBT ,RBT )= 0 and Tr(JEBT∗) |(SBT ,RBT )= 0.

Proof At the (SBT , RBT ) point in the S − R plane det JEBT∗ |(SBT ,RBT )= 0 and
Tr(JEBT∗) |(SBT ,RBT )= 0. So, we find the expression for (SBT , RBT ) by replacing uSN∗
by uBT∗ in (9)–(10) and (uBT∗, vBT∗) in Tr(J ) = 0. Again since explicit expressions for
the component of the equilibrium points are hard to find out it is quite difficult to determine
the analytical expression for the threshold of the Bogdanov–Takens bifurcation explicitly.We
fix the parameters A = 0.01, B = 0.1, Q = 0.2, α = 1 and for RBT = 0.3649024493, S =
SBT = 0.3223696400, det JEBT∗ |(SBT ,RBT )= 0 and Tr(JEBT∗) |(SBT ,RBT )= 0. Again(
Fuu − Fu Fuv

Fv
+ Guv

)
= −2.10254 and

(
0.5FuFuu − F2

u Fuv

Fv
+ 0.5FvGuu − FuGuv

)
=

−0.385426 prove the transversality conditions [20]. 
�

Global Dynamics

Local bifurcations are already discussed in the previous section under some parametric
restrictions. Here we show the bifurcation diagram in S − R plane to understand different
regions and their dynamic behaviors. Transcritical and saddle-node bifurcation curves divide
the plane into three different domains X , Y and Z amongwhich no interior point for (S, R) ∈
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X , one interior point for (S, R) ∈ Y ≡ ⋃4
i=1 Yi , three interior point for (S, R) ∈ Z ≡⋃3

i=1 Zi (see Fig. 4).
Schematic bifurcation diagram is shown in Fig. 5 and one can check this type of diagram

for the system (3)–(4). Yellow coloured transcritical bifurcation curve TC passing through
the point (Q(1 + A), 0) vertically. In the parametric domain S < Q(1 + A), denoted by X ,
no interior equilibrium point exists. At S = Q(1+ A) one interior point E3∗ appear through
transcritical bifurcation TC as S enters the domain Y . Now if we increase the value of S
still S = SCP the system will continued to have only one interior equilibrium point for any
value of R. Next for fixed R(> RCP ) if we gradually increase the value of S firstly two
more interior equilibrium points E1∗ and E2∗ appear through saddle-node bifurcation (SN2)

(cyan blue curve) as S goes from the region Y to Z . Again if we increase the value of S then
interior equilibrium points E2∗ and E3∗ disappear through saddle-node bifurcation (SN1)

(blue coloured curve) as S enters the domain Y4.
The saddle-node bifurcation curve (SN1) passing through the BT point. The Hopf-

bifurcation curve (green coloured curve) and a red coloured global bifurcation curve starts
from this point. This global bifurcation curve is homoclinic bifurcation curve until it intersects
the saddle-node bifurcation curve (SN2). Four local bifurcation curves (one transcritical, two
saddle-node and one Hopf-bifurcation curves) and global bifurcation curves divide the S− R
plane into several regions and we find different phase portraits for this domains.

Now we discuss the phase portraits and for this we fixed the parameters A = 0.01, B =
0.1, α = 1, Q = 0.2 and varying the parameters S and R. STC = 0.202 is the transcritical
bifurcation threshold and two saddle-node bifurcation curves intersect at the cusp bifurcation
point (SCP , RCP ) = (0.2607806335, 0.1594581749). For fixed S = 0.5, two saddle-node
bifurcation threshold is given by RSN1 = 0.9794387 and RSN2 = 3.243718 respectively. The
Bogdanov–Takens bifurcation(BT )point is (SBT , RBT ) = (0.3223696400, 0.3649024493).
Between supercritical and subcriticalHopf-bifurcation,wefind aBautin bifurcation threshold
RGH = 0.019207, SGH = 0.2211546. Now we choose values of S and R from different
domains in Fig. 5 such that we get different phase portraits (Figs. 6, 7). Number of interior
equilibrium points varies from one to three but only one of them may asymptotically stable.
We summarize existence, stability, limit cycles of the equilibrium points at Table 1.

Comparison with Our System (3)–(4) with [11]

In this subsection we have made the significant comparison of our proposed prey–predator
model (3)–(4) with the model considered by Dimitrov and Kojouharov in [11]. In [11], Dim-
itrov and Kojouharov considered a linear predator–prey model with Beddington–DeAngelis
functional response and linear intrinsic growth rate of the prey population and also neglect
the density dependent death rate of predator. But our proposed model (3)–(4) is a non-linear
predator–prey model with Beddington–DeAngelis functional response, where the density
dependent death rate of predator is considered. We observed that the density dependent
death rate parameter R has significant effects on the dynamics of the system. Comparing the
dynamics of [11] with our proposed model we find the following differences:

1. Dimitrov and Kojouharov [11] has only two equilibria whereas our system has at most
five equilibria.

2. In [11], origin is the only boundary equilibrium point of the system and it is unstable but
our system has two boundary equilibrium points E0(0, 0) and E1(1, 0). In the absence
of interior equilibria in our system, E1(1, 0) is not only locally asymptotically stable but
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S

R

X
Y1
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Y4

Z3

Z1

Z2

Y3

Y Z

GH

CP

BT

S

R

Y1

Y2

Y4

Z3

Z2

Z1

Y3

GH
CP

Fig. 5 Schematic bifurcation diagram in S-R plane (upper) and enlarge version (lower). Vertical yellow line
is the transcritical bifurcation curve. Two saddle-node bifurcation curves (SN2)(cyan blue) and (SN1)(blue)
meet at CP point. The green coloured Hopf-bifurcation curve and red coloured homoclinic bifurcation curve
start from BT point. GH is the Bautin bifurcation point

also globally asymptotically stable, which can be verified from Fig. 6a though the origin
is saddle point.

3. Dimitrov and Kojouharov’s model has unique interior equilibrium point, which may be
stable or unstable depending upon food weighting factor and conversion efficiency. Our
system has at most three interior equilibrium points, one is unstable, one is saddle and
one equilibrium point changes its stability through Hopf-bifurcation. In some regions
stable interior equilibrium point is also globally asymptotically stable (see Fig. 6b). The
Hopf-bifurcation was studied thoroughly in our model though it was not studied in [11].

4. In our model number of interior equilibrium point changes from one to three and again
three to one via saddle-node bifurcation curve 2 (SN2) and saddle-node bifurcation curve
1 (SN1) respectively, and intersection point of this two curves gives cusp bifurcation.
This type of scenario was not seen in [11].

5. In [11], limit cycle may appear around interior equilibrium point depending upon some
parametric conditions but in our model limit cycle is observed clearly and also it is found
that it can change it’s stability through Bautin bifurcation.
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Fig. 6 Phase portrait for α = 1, A = 0.01, B = 0.1, Q = 0.2 and varies S and R. a S = 0.2, R = 1 (domain
X ), b S = 0.22, R = 1 (domain Y1), c S = 0.2449734564, R = 0.1 (domain Y2), d S = 0.2184419, R =
0.01 ( domain Y3), e S = 0.25, R = 0.1 (domain Y4), f S = 0.5, R = 3.2 (domain Z3)

6. In our model solutions of the system (3)–(4) are always bounded but In [11], when
maximum growth rate of predator is very small then all trajectories are unbounded.

7. The existence of more than one interior equilibrium point in our model is due to density
dependent death rate and also when density dependent death rate is very high, we found
stable coexisting steady-state.
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Fig. 7 Phase portrait for α = 1, A = 0.01, B = 0.1, Q = 0.2 and varies S and R. g S = 0.2707212629, R =
0.185 (domain Z1), h S = 0.2707212629, R = 0.18863 (domain Z2)

Table 1 Number and nature of the equilibrium points which described in bifurcation diagram (Fig. 5)

Domain Number of Interior equilibrium point Nature of the phase portrait

X Nil E1 is locally asymptotically stable and E0 is
saddle point

Y1 E3∗ exists E3∗ is locally asymptotically stable, E0 and
E1 are saddle points

Y2 E3∗ exists E3∗ is stable surrounded by an unstable limit
cycle, E0 and E1 are saddle points

Y3 E3∗ exists E3∗ is unstable surrounded by a stable limit
cycle, E0 and E1 are saddle points

Y4 E3∗ exists E3∗ is unstable point, E0 and E1 are saddle
points

Z1 E1∗, E2∗ and E3∗ exist E1∗, E3∗ are unstable points, E2∗ is saddle
point, E0 and E1 are saddle points

Z2 E1∗, E2∗ and E3∗ exist E3∗ is a stable point surrounded by an
unstable limit cycle, E1∗ is unstable, E2∗
is saddle point, E0 and E1 are saddle
points

Z3 E1∗, E2∗ and E3∗ exist E3∗ is a stable point, E1∗ is unstable, E2∗ is
saddle point, E0 and E1 are saddle points

Discussion

In the previous section we have presented the effect of density dependent death rate and
conversion rate in our standard prey–predator model with Beddington–DeAngelis functional
response and logistic growth rate for the prey population. Not only this but also death rate
of predator has a great impact in the system. When death rate of predator is very high and
conversion rate is low then predator can not survive and prey population stabilize globally at
the level of their carrying capacity (Prop. 1-(b)). When death rate of predator is low then the
predator has a chance to survive and both prey and predator populations may coexist (Thm.
3.1). It is very difficult to find the explicit expression for the coexistence of the prey and
predator but bifurcation analysis give us the implicit parametric restrictions to verify both
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coexistence and stability properties. The summarized result are at Table 1. Origin is always
a saddle point. The existence of more than one interior equilibrium points is due to density
dependent death rate but at most one of the interior equilibrium points is stable. Hence the
stable coexisting steady-state is only one and it depends on the initial population densities.
When death rate of predator is not high it may be possible that neither prey population nor
predator species are stable depends upon the density dependent death rate and conversion
rate. When density dependent death rate is very high then we found stable coexisting steady-
state. From the phase portraits in Figs. 6 and 7, it is clear that magnitude of parameters
decide the basin of attraction of the stable equilibrium point. One more important dynamic
is oscillatory coexistence and it is also possible for both populations. Stable coexistence
of both prey and predator populations may be destroyed by increasing the conversion rate.
There exist a balance between prey and predator and we get a periodic behavior for a long
term prediction. When density dependent death rate is very low then we get stable oscillatory
coexistence otherwise we get unstable limit cycle which acts as a separatrix of the domain
of attraction of coexistence state.

A comparison of our proposed prey–predator model (3)–(4) with the model considered
by Dimitrov and Kojouharov in [11] have been discussed in “Comparison with our system
(3)–(4) with [11]” section. We have found that logistic prey growth and density dependent
death rate of predator make the system more complicated. There are several local and global
bifurcations occur, local bifurcation curves in bifurcation diagram describe the change in
number of equilibrium points and their stability and on the other hand global bifurcation
curves describe the extreme change in the system dynamics. When the parameters enters
from domain Z2 to domain Z3 then homoclinic bifurcation occurs and the stable limit cycle
disappears and as a result both the populations stabilize at the interior equilibrium point and
this equilibrium is globally stable.

The present model can be generalized to further complex models which can be studied in
future. Now we discuss some of the issues which may be taken care of to extend the present
model.

Environmental fluctuations or demographic stochasticity into the modelling approach,
which are important components for ecosystems exposed within open environment. In deter-
ministic modelling approach, we always assume that parameters involved in the system
are absolute constant irrespective of the environmental periodicity and fluctuations. But in
reality, parameters involved in the system always fluctuate around some average value due
to continuous fluctuation in the environment. May [25] pointed out that all the parameters
involved in the population model exhibit random fluctuation as the factors controlling them
are not constant. Hence equilibrium distributions obtained from the deterministic analysis
are not realistic rather they fluctuate randomly around some average value. Sometimes, a
large amplitude fluctuation is observed in the population density which leads to extinction
of certain species. Therefore, in order to study the dynamics of interacting population under
realistic situation, we need to corporate the effect of environmental fluctuations in the deter-
ministic model by considering the associated stochastic differential equation model (noise
added model). Hence, it will be interesting to study the effect of environmental fluctuations
in the given ecological model by extending the model into a stochastic differential equation
model in future.

On the other hand, researchers have drawn their attention towards the epidemiological
models including feedback control variables from the last few years [7,32,33,40] as this
variable capture the unpredictable disturbances and uncertain environments in realistic situ-
ations. But very few ecological models have been investigated using such control techniques
[26,40]. Hence, we leave this ecological model with feedback control variable for future
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study. Also we know that time delay plays an important role to stabilize or destabilize the
coexistence steady-state arising in several preypredator models [1,4,15,17,24,31]. Hence, it
would be better to study the proposed prey–predator model with time delay also.
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A Appendix 1

Transversality conditions for transcritical bifurcation: We check the first transversality

condition, F1(u, v) = [F(u, v),G(u, v)]T and F1S(u, v) = [
∂F
∂S (u, v), ∂G

∂S (u, v)
]T =[

0, uv
A+u+Bv

]T
. Now WT F1S(u, v) = (

0 1
) (

0
uv

A+u+Bv

)
= uv

A+u+Bv
. So we get

WT F1S((1, 0); STC ) = 0.
Second transversality condition,

DF1SV =
(

∂FS
∂u v1

∂FS
∂v

v2

∂GS
∂u v1

∂GS
∂v

v2

)
=

(
0

(Av+Bv2)(αQ)

(A+u+Bv)2S
+ (Au+u2)

(A+u+Bv)2

)
.

So DF1S((1, 0); STC )V =
(

0
1

1+A

)
and WT DF1S((1, 0); STC )V = 1

1+A �= 0.

Third condition,

D2F1(V , V ) =
(

Fuuv1v1 + Fuvv1v2 + Fvuv2v1 + Fvvv2v2
Guuv1v1 + Guvv1v2 + Gvuv2v1 + Gvvv2v2

)
,

where V = (v1, v2)
T . At (1, 0) point, Fuu = −2, Fuv = −αA(A+1)

(A+1)3
= Fvu, Fvv = 2αB(A+1)

(A+1)3

and Guu = 0,Guv = SA(A+1)
(A+1)3

= Gvu,Gvv = − 2BS(A+1)
(A+1)3

− 2R.

We find the expression of WT D2F1((1, 0); STC )(V , V ) as

(
0 1

)
⎛
⎝−2 (αQ)2

S2
+ 2 α2QA(A+1)

(A+1)3S
+ 2αB(A+1)

(A+1)3

−2
[

AQα

(1+A)2
+ BQ

(1+A)
+ R

]
⎞
⎠ = −2

[
AQα

(1 + A)2
+ BQ

(1 + A)
+ R

]
< 0.

The system experiences a supercritical transcritical bifurcation and one interior equilibrium
point is generated.

B Appendix 2

Transversality conditions for saddle-node bifurcation are given by
First transversality condition: WT F1S(ESN∗; SSN ) �= 0.

F1S(u, v) =
[
0, uv

A+u+Bv

]T
and WT F1S(ESN∗; SSN ) = uv

A+u+Bv
|ESN∗ �= 0, where W =

(k′′, 1)T and k′′ = Su(A+u)−(Q+2Rv)(A+u+Bv)2

αu(A+u)
.

Second transversality condition: WT D2F1(ESN∗; SSN )(V , V ) �= 0.
Now, F1(u, v) = [F(u, v),G(u, v)]T , where F(u, v) = u(1− u) − αuv

A+u+Bv
,G(u, v) =

Suv
A+u+Bv

− Qv − Rv2.
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D2F1(u, v)(V , V ) =
2∑

i, j=1

∂2F1(u, v)

∂ui∂u j
viv j , where (u, v) = (u1, u2)(say). Then,

D2
(
F(u, v)

G(u, v)

)
(V , V ) =

⎛
⎜⎜⎜⎜⎜⎝

2∑
i, j=1

∂2F(u, v)

∂ui∂u j
viv j

2∑
i, j=1

∂2G(u, v)

∂ui∂u j
viv j

⎞
⎟⎟⎟⎟⎟⎠

=
(

Fu21
v21 + 2Fu1u2v1v2 + Fu22

v22

Gu21
v21 + 2Gu1u2v1v2 + Gu22

v22

)
,

where V = (v1, v2)
T = (1, k′)T and k′ = − Su(A+Bv)

Su(A+u)−(Q+2Rv)(A+u+Bv)2
, Fui u j = ∂2F

∂ui ∂u j

for i, j = 1, 2 and similarly for G. Using the equilibrium relation we get,

D2F1(ESN∗; SSN )(V , V )

=
⎛
⎝ −2 + 2 αv(A+Bv)

(A+u+Bv)3
− 2 α(A+u+Bv)(A+2Bv)−2αBv(A+Bv)

(A+u+Bv)3
k′ + 2 αBu(A+u)

(A+u+Bv)3
k′2

−2 Sv(A+Bv)

(A+u+Bv)3
+ 2 S(A+u+Bv)(A+2Bv)−2SBv(A+Bv)

(A+u+Bv)3
k′ − 2( Su(A+u)

(A+u+Bv)3
+ R)k′2

⎞
⎠ .

We find the expression WT D2F1(ESN∗; SSN )(V , V ) = 2
(A+u+Bv)3

[−(A + u + Bv)3k′′ +
αv(A+ Bv)k′′ −α(A+u+ Bv)(A+2Bv)k′k′′ +αBv(A+ Bv)k′k′′ +αBu(A+u)k′2k′′ −
Sv(A + Bv) + S(A + u + Bv)(A + 2Bv)k′ − SBv(A + Bv)k′ − Su(A + u)k′2 − R(A +
u + Bv)3k′2].

If S �= SCP , R �= RCP thenWT D2F1(ESN∗; SSN )(V , V ) �= 0. So the system undergoes
saddle-node bifurcation.
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