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Abstract
This paper is concerned with the problem of generalized exponential stability of impulsive
neural networks with a proportional delay. More specifically, the considered network models
are subject to both time-varying impulses, whose strengths are in a type of periodic distribu-
tions, and a special kind of unbounded time-varying delays called proportional delays. Based
on the comparison principle, a unified delay-independent stability criterion is first derived.
As an application of the derived stability conditions, the problem of designing a local state
feedback control law with bounded controller gains is addressed. Finally, three examples
with numerical simulations are given to demonstrate the effectiveness and advantages of the
results.
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Introduction

Neural networks (NNs) and, in particular, artificial neural networks (ANNs) have found
applications in variety of disciplines. For instance, by their pattern-matching and learning
capabilities, ANNs can be used to solve many problems in image realization, speech recog-
nition, ecosystem evaluation or natural language processing which are difficult to solve by
standard computational and statistical methods. Other applications of NNs can also be found
in signal processing, control and monitoring, associative memory and computer security [1–
3]. To the design of NNs subject to practical applications, stability and performance analysis
is an essential and fundamental problem. On the other hand, in practical implementation of
NNs, time-delay is frequently encountered as an inherent issue. The presence of time-delay
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typically makes the system behaviors more complicated and unpredictable [4,5]. Thus, the
problems of analysis and design of NNs bothwith andwithout delays have attracted consider-
able research attention in the past few decades. To mention a few results concerning stability
of various types of neural network models, we refer the reader to recent works [6–12] and
the references therein.

Typically, a model of neural networks is composed of layers with a large number of cells
and connections. This fact reveals that NNs usually have a spatial nature due to the number
of parallel pathways, axon sizes and lengths. Thus, time delays encountered in the practical
implementation of NNs are usually time-varying [8,9]. Proportional delays form a particular
type of unbounded time-varying delays, which are widely used in modeling various mod-
els in the field of networking [13–15]. It is realized that proportional delay provides most
well-known quality of service (QoS) models because of its controllable and predictable char-
acteristics. Specifically, when a network with proportional delays is utilized to represent an
applied model, dynamics of the system at time t is determined by its states x(t) and x(qt),
where 0 < q < 1 is a constant representing the ratio of time between current states and his-
torical states. Thus, the network’s running time can be controlled by the proportional factor q .
Recently, the problem of stability of various neural network models with proportional delays
has attracted considerably increasing research attention and, consequently, a large number
of interesting results have been reported in the literature. For example, the problem of finite-
time stability was first studied for a class of time-varying neural networks with heterogeneous
proportional delays in [16]. The results of [16] were later extended to the case of oscillating
leakage coefficients in [17]. Exponential convergence and stability [18–21], passivity and
dissipativity [22,23] or synchronization [24,25] problems were considered for Hopfield-type
neural networks with proportional delays. Some problems involving periodic solutions or
adaptive synchronization were also investigated for shunting inhibitory cellular neural net-
works or Cohen–Grossberg model with proportional delays in [26–28]. Besides practical
meanings as mentioned before, the study of neural network models with proportional delays
is typically more challenging in comparison to similar problems of neural networks with
other types of delays. For example, due to the occurrence of a transformation coefficient in
the time scale, the Lyapunov-Krasovskii function method, which is widely utilized for neural
networks with time-varying delays [6,7], is very hard to appy for similar network models
with proportional delays. In the later situation, a suitable modification from the comparison
principle, which has been successfully applied to many delay-differential equations [29–31],
proves to be an effective approach.

On the other hand, impulsive dynamical systems (IDSs), in general, and impulsive neu-
ral networks with delays (IDNNs) have received considerable research attention in recent
years [32–37]. It is because that, in many real-world systems and natural processes such as
BNNs, bursting rhythm models in pathology, optimal control in economic or electronic and
telecommunication networks, the system states are often subject to instantaneous perturba-
tions and abrupt changes at certain instants. These may arise from switching phenomena or
frequency changes which usually exhibit impulsive effects [35]. The presence of impulsive
effects usually makes the system performance and behavior complex and unpredictable. For
instance, even when the normal system (without impulses) is stable the corresponding impul-
sive system may be unstable. Vice versa, impulsive effects can stabilize the system. Besides
that dealing with the problem of analysis and synthesis of IDSs require specific tools and
techniques since the processes that represent the state and impulsive jumping trajectories are
simultaneously coupled in the system. Thus, together with the effect of delays, impulsive
effect has also significantly impact on the performance of IDSs. According to their strength,
impulsive effects can be classified into two types named as stabilizing impulses (SI) and
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destabilizing impulses (DI). An impulsive sequence is said to be destabilizing if its effect can
suppress the stability of dynamical systems while SI can enhance the stability of dynamical
systems. In most of the existing works concerning stability of impulsive systems, SI and DI
are considered separately. For example, the derived conditions for stability/synchronization
of IDNNs in [33–35] are restricted to SI. Based on some comparison techniques and M-
matrix theory, exponential stability conditions were derived in [38] for non-autonomous
NNs with heterogeneous delays and destabilizing time-varying impulses. There are only a
few results concerning unified criteria for stability or synchronization of IDSs where both SI
and DI are taken into account simultaneously. In [39], by using the concept of average impul-
sive interval, a similar concept of average dwell-time which is widely used in the category
of switched systems, a unified exponential synchronization criterion was derived for linear
complex dynamical networks with a constant impulse. The problem of exponential stability
was studied in [40] for a class of NNs with a bounded delay and time-varying impulses.
Based on the Lyapunov function method, a unified algebraic stability condition was derived
by utilizing some impulsive differential inequalities. Unfortulately, the results of [40] cannot
be extended directly to impulsive neural networks (INNs) with proportional delays. Never-
theless, despite of potential applications in various areas, the problem of stability of INNs
with proportional delays has received considerably less attention. Very recently, in [41], the
problem of global asymptotic stability was studied for Hopfield-type INNs with multiple
proportional delays. Based on an exponential transformation in time scale [18], the consid-
ered model is transformed to IDNNs with a constant delay. Then, by using a concept of
nonlinear function measure combining with Halanay inequality, sufficient conditions were
derived for the existence, uniqueness, and global asymptotic stability of an equilibrium point.
The problem of exponential stability of impulsive recurrent neural networks (IRNNs) with
proportional delays was considered in [42]. By using an explicit form of solutions resulted
from the constant variation formula and by utilizing the fixed point theorem for contraction
mappings, algebraic conditions ensuring exponential stability of the system were derived.
It should be pointed out that the results of [41,42] are only applicable to the case of SI. In
addition, due to the diversity, and even randomness, of impulsive effects, it is interesting and
relevant to study the problem of asymptotic behavior of INNs without the restriction that
all impulsive effects are subject to SI. Up to date there has been no result in the literature
dealing with this problem for INNs with proportional delays in the presence of SI and DI are
simultaneously. This motivates the present study.

In this paper, the problem of generalized exponential stability of INNs with a proportional
delay is considered. Both stabilizing and destabilizing impulsive effects are introduced in the
model simultaneously. Based on the comparison principle, a unified stability criterion is first
derived. Then, on the basis of the derived stability conditions, the problem of designing a
local state feedback control lawwith bounded controller gains is addressed. The effectiveness
and advantages of the obtained results is demonstrated by numerical examples.

Preliminaries

Notation. N is the set of natural numbers, N0 = N ∪ {0} and [n] � {1, 2, . . . , n} for an
n ∈ N. R

n and R
n×m denote the n-dimensional vector space and the set of n × m-matrices,

respectively. For a matrix M ∈ R
n×n , λmax(M) and λmin(M) denote the maximum and

minimum real part of eigenvalues of M . sym(M) = M + M�. The notation M < 0 means
that M is symmetric (M = M�) and negative definite (x�Mx < 0 for all x ∈ R

n , x �= 0)
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whereas semi-negative definite matrix (x�Mx ≤ 0, ∀x ∈ R
n) will be denoted as M ≤ 0.

The upper right Dini derivative of a continuous function v(t) is denoted as D+v(t).
Consider a neural network model with a proportional delay described as
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x ′
i (t) = −di xi (t) +

n∑

j=1
ai j f j (x j (t)) +

n∑

j=1
bi j g j (x j (qt)) + ui (t), t0 ≤ t �= tk,

�xi (tk) = xi (t
+
k ) − xi (t

−
k ) = −σik xi (t

−
k ),

xi (t) = x0i , t ∈ [qt0, t0], i ∈ [n],
(1)

where n is the number of neurons, xi (t) and ui (t) are the state variable and control input of
i th neuron at time t , respectively; xi (t

−
k ) = limε↓0 xi (tk − ε) and xi (t

+
k ) = limε↓0 xi (tk + ε)

denote the left- and right-hand limits of xi (t) at time t = tk ; di > 0 is the self-inhibition
coefficient (i.e. the rate at which the i th neuron will reset its potential to the resting state in
isolation when disconnected from the network and external input); ai j and bi j , i, j ∈ [n],
are the connection weights between neurons; x0 = (x01 , x

0
2 , . . . , x

0
n )

� ∈ R
n is the initial

vector specifying initial states of neurons and f j (.), g j (.), j ∈ [n], are neuron activation
functions. The factor q ∈ (0, 1) is a constant involving history time. More specifically, in
the interpretation of model (1), dynamics of i th neuron at time t is determined by the current
states x j (t), j ∈ [n], and the states x j (qt) at history time qt which is proportional to current
time t with a constant rate q . In this meaning, the constant q is referred to as proportional
delay. Since qt = t − τ(t), where τ(t) = (1 − q)t → ∞ as t → ∞, proportional delays
form a class of unbounded time-varying delays. In model (1), (tk)k∈N is a strictly increasing
sequence of impulsive moments, limk→∞ tk = ∞ and, for each k ∈ N, σik , i ∈ [n], are real
scalars related to strength of abrupt changes of the state vector at impulsive time tk .

Assumption (A1): The neuron activation functions f j (.), g j (.), j ∈ [n], are continuous on
R, f j (0) = g j (0) = 0 and there exist constants l−j f , l

+
j f , l

−
jg and l+jg , j ∈ [n], such that the

following conditions hold for all a, b ∈ R, a �= b,

l−j f ≤ f j (a) − f j (b)

a − b
≤ l+j f , l−jg ≤ g j (a) − g j (b)

a − b
≤ l+jg. (2)

Assumption (A2): There exists a sequence of positive numbers (γk)k∈N such that

1 − γk ≤ σik ≤ 1 + γk, ∀i ∈ [n], k ∈ N. (3)

Proposition 1 Under Assumptions (A1)–(A2), for any initial condition x0 ∈ R
n, there exists

a unique solution x(t) = x(t; x0) of (1) which is piecewise continuous on [1,∞) with
possible discontinuities at t = tk .

Proof The proof is similar to that of Theorem 1.17 in [43]. Thus, we omit it here. �
Remark 1 It follows from (2) that

| f j (a) − f j (b)| ≤ Fj |a − b|, |g j (a) − g j (b)| ≤ G j |a − b|,
where Fj = max{l+j f ,−l−j f } and G j = max{l+jg,−l−jg}. In the following, we denote F =
diag(Fi ) and G = diag(Gi ).

Remark 2 According to (1) and (3), |xi (t+k )| = |1 − σik ||x(t−k )| ≤ γk |x(t−k )|. Thus, γk
determines the impulsive strength at tk . When γk > 1, the absolute value of the state vector
can be enlarged by impulsive perturbations and the impulses potentially destroy stability
of system (1) [38]. This type of impulses are called destabilizing impulses since they can
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suppress stability of the system. When γk < 1, the impulses are stabilizing impulses since
impulsive effects can enhance stability of the system.

In this paper, stabilizing impulses and destabilizing impulses are taken into account simul-
taneously. More specifically, the strengths of SI and DI are assumed to take values in finite
sets I

s = {ρ1, ρ2, . . . , ρM } and I
u = {μ1, μ2, . . . , μN }, where 0 < ρi < 1 for i ∈ [M]

and μ j > 1 for j ∈ [N ]. In addition, we denote as t sik and tujk the impulsive instances of
stabilizing impulses with strength ρi and the impulsive instances of destabilizing impulses
with strength μ j , respectively. That means, for any i ∈ [M] and j ∈ [N ], t sik = tk if γk = ρi
and tujk = tk if γk = μ j .

Remark 3 For general IDSs and, in particular, neural networksmodel (1), not only the strength
of impulses but also the frequency of impulses are essential factors affecting stability of the
system [38,39]. To deal with stability problem of IDSs, where both SI and DI are introduced
simultaneously as in model (1), we use a type of average impulsive interval conditions as the
following assumption.

Assumption (A3): There exist positive numbers τ si , τ uj , and integers qi ∈ N0, r j ∈ N0,
i ∈ [M], j ∈ [N ], satisfying the following conditions for any t > s ≥ t0

t − s

τ si
− qi ≤ Nρi (t, s) ≤ t − s

τ si
+ qi ,

t − s

τ uj
− r j ≤ Nμ j (t, s) ≤ t − s

τ uj
+ r j , (4)

where Nρi (t, s) and Nμ j (t, s) present the frequencies of impulsive strengths ρi and μ j on
interval (s, t), respectively.

In this paper, we also design a local state feedback control law (LSFCL) of the form

ui (t) = −ki xi (t), i ∈ [n], (5)

to stabilize system (1), where ki , i ∈ [n], are controller gains. Due to practical configurations
of the inputs, we assume the controller gains ki , i ∈ [n], are confined in intervals [kli , kui ],
where kli , k

u
i , i ∈ [n], are known constants. Under the LSFCL (5), the closed-loop system of

(1) can be written as
{
x ′(t) = −Dcx(t) + A f (x(t)) + Bg(x(qt)), t �= tk,

x(t+k ) = Jkx(t
−
k ), k ∈ N,

(6)

where Dc = diag(di + ki ), A = (ai j ), B = (bi j ), f (x(t)) = ( f j (x j (t))), g(x(qt)) =
(g j (x j (qt))) and Jk = diag(1 − σik).

Similar to [30], we give the following definition.

Definition 1 System (6) is said to be generalized globally exponentially stable (GGES) if
there exist a positive scalar κ and an increasing function σ(t) > 0, σ(t) → ∞ as t → ∞,
such that any solution x(t) = x(t, x0) of (6) satisfies the following estimation

‖x(t)‖ ≤ κ‖x0‖e−σ(t), t ≥ t0.

Themain objective of this paper is to derive conditions for the existence of a controller gain
matrix Kc = diag(ki ) in (5) that makes the closed-loop system (6) GGES. In the remaining
of this section, we introduce the following auxiliary result which can be formulated by a
similar proof presented in [30,32].
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Lemma 1 Let u(t), v(t), t ∈ [q,∞), be piecewise continuous functions satisfying
{
D+u(t) ≤ F(t, u(t), u(qt)), t �= tk,

u(t+k ) ≤ Ik(u(t−k )),
(7)

and
{
D+v(t) > F(t, v(t), v(qt)), t �= tk,

v(t+k ) ≥ Ik(v(t−k )),
(8)

where F : R
+ × R

2 → R and Ik : R → R are given functions. Assume that, for any (t, u),
F(t, u, v) and Ik(v) are nondecreasing with respect to v. Then u(t) ≤ v(t) for all t ≥ t0
provided that u(t) ≤ v(t) for t ∈ [qt0, t0].

Main Results

In this section, we first derive conditions to ensure the closed-loop system (6) is GGES. To
facilitate in presenting stability conditions of system (6),we denote thematrices |A| = (|ai j |),
|B| = (|bi j |) and

M = −2Dc + sym(|A|F) + θ−1|B|GG�|B|�, θ > 0,

where F = diag(Fi ) and G = diag(Gi ).

Theorem 1 Let Assumptions (A1)–(A3) hold. Assume that there exist positive scalars α and
θ satisfying the following conditions

M + α I ≤ 0, (9a)

α > pθ, (9b)

M∑

i=1

ln(ρi )

τ si
+

N∑

j=1

ln(μ j )

τ uj
= 0, (9c)

where p = ∏M
i=1

∏N
j=1 μ

2r j
j ρ

−2qi
i . Then, system (6) is GGES. More precisely, there exists a

constant σ > 0 such that any solution x(t) = x(t, x0) of (6) satisfies

‖x(t)‖ ≤
√
p√

(1 + qt0)σ
‖x0‖e−1/2σ ln(1+t), t ≥ t0. (10)

Proof We devide the proof into three parts.

(a) Let x(t) = (xi (t)), t ≥ t0, be a solution of (6) with initial condition x(t) = x0 ∈ R
n ,

t ∈ [qt0, t0]. Then, we have

D+|xi (t)| ≤ −(di + ki )|xi (t)| +
n∑

j=1

Fj |ai j ||x j (t)|

+
n∑

j=1

G j |bi j ||x j (qt)|, t ∈ [tk−1, tk), k ∈ N. (11)

At impulsive moment t = tk , from (6) and (A2), we have

|xi (t+k )| = |1 − σik ||xi (t−k )| ≤ γk |xi (t−k )|. (12)
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As revealed by (11) and (12), we consider the following impulsive scaled system
⎧
⎪⎨

⎪⎩

x̂ ′(t) = (−Dc + |A|F) x̂(t) + |B|Gx̂(qt), t �= tk,

x̂(tk) = γk x̂(t
−
k ),

x̂(t) = |x0|, t ∈ [qt0, t0].
(13)

By Proposition 1, system (13) has a unique solution x̂(t) on [1,∞). On the other hand,
since−Dc +|A|F is a Metzler matrix and |B|G is nonnegative, system (13) is a positive
system. Thus, x̂i (t) ≥ 0 for all t ≥ q , i ∈ [n]. Furthermore, by similar arguments used
in the proof of Lemma 2.1 in [30], it is found that |xi (t)| ≤ x̂i (t), ∀t ≥ qt0, i ∈ [n].
Consider the function V (t) = x̂�(t)x̂(t), t ≥ t0. The derivative of V (t) on each interval
[tk−1, tk), k ∈ N, with respect to system (13) is given by

D+V (t) = 2x̂�(t)x̂ ′(t)
= 2x̂�(t)

[
(−Dc + |A|F)x̂(t) + |B|Gx̂(qt)

]
. (14)

By the Cauchy-Schwarz inequality,

2u�v ≤ θ−1u�u + θv�v

holds for any u, v ∈ R
n . Therefore,

2x̂�(t)|B|Gx̂(qt) ≤ θ−1 x̂�(t)|B|GG�|B|� x̂(t) + θ x̂�(qt)x̂(qt). (15)

Combining (14) and (15) gives

D+V (t) ≤ x̂�(t)
(

− 2Dc + sym(|A|F) + θ−1|B|GG�|B|�
)
x̂(t) + θ x̂�(qt)x̂(qt)

≤ −αV (t) + θV (qt), t ∈ [tk−1, tk). (16)

At t = tk , from (13), we have

V (t+k ) = γ 2
k V (t−k ), k ∈ N. (17)

Now, for any 0 < ε < 1
2

(
α
pθ − 1

)
, consider the following auxiliary system

⎧
⎪⎨

⎪⎩

ϕ′(t) = −αϕ(t) + βϕ(qt), t0 ≤ t �= tk,

ϕ(t+k ) = γ 2
k ϕ(t−k ),

ϕ(t) = ‖x0‖2, t ∈ [qt0, t0],
(18)

where β = θ(1 + ε). By Lemma 1, from (16)–(18), we have

0 ≤ V (t) ≤ ϕ(t), t ∈ [qt0,∞). (19)

(b) Next, we will show that there exists a σ > 0 such that

ϕ(t) ≤ p

T0
‖x0‖2e−σ ln(1+t), ∀t ≥ qt0, (20)

where p = ∏M
i=1

∏N
j=1 μ

2r j
j ρ

−2qi
i and T0 = 1

(1+qt0)σ
. For this, by condition (9b), there

exists a scalar σ > 0 such that

α >
α + pθ

2qσ
. (21)
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It is clear from (21) that the inequality α >
pβ
qσ holds for all 0 < ε < 1

2

(
α
pθ − 1

)
. Now,

for any fixed δ > 0, from (20), we have

ϕ(t) <
1 + δ

T0
‖x0‖2e−σ ln(1+t), ∀t ∈ [qt0, t0]. (22)

If (22) does not hold for t ∈ (t0, t1) then, by the continuity of ϕ(t) on [t0, t1), there exists
a t f ∈ (t0, t1) such that ϕ(t f ) = 1+δ

T0
‖x0‖2e−σ ln(1+t f ) and (22) holds for t ∈ [qt0, t f ).

By using the fact that �(t) = 1+t
1+qt is an increasing function on [t0,∞), �(t) ↑ 1

q as
t → ∞, it is found that

ϕ(qt f ) ≤ 1 + δ

T0
‖x0‖2e−σ ln(1+qt f )

≤
(

1 + t f
1 + qt f

)σ

ϕ(t f )

≤ 1

qσ
ϕ(t f ).

Combining with (18) we have

ϕ′(t f ) ≤
(

− α + β

qσ

)
ϕ(t f )

<
(

− α + pβ

qσ

)
ϕ(t f ) < 0,

which clearly raises a contradiction since ϕ′(t f ) ≥ 0. Therefore, inequality (22) holds
for t ∈ [qt0, t1). Let δ ↓ 0 in (22) we obtain

ϕ(t) ≤ 1

T0
‖x0‖2e−σ ln(1+t), ∀t ∈ [qt0, t1),

and hence,

ϕ(t+1 ) ≤ γ 2
1

T0
‖x0‖2e−σ ln(1+t1). (23)

(c) Motivated by the proof in part (b), we will prove by utilizing the mathematical induction
method that

ϕ(t) ≤ 1

T0
‖x0‖2Γ (t, t0)e

−σ ln(1+t), t ≥ t0, (24)

where the function Γ (t, s), t > s ≥ qt0, is defined as

Γ (t, s) =
⎧
⎨

⎩

∏

k∈I (t,s)
γ 2
k ifI (t, s) �= ∅,

1 if I (t, s) = ∅,

(25)

where I (t, s) = {k : s < tk < t}.
By virtue of the inductionmethod, it suffices to prove that (24) holds for all t ∈ [tk−1, tk),
k ≥ 1. To this end, it is noted that estimate (24) holds for k = 1. Assume (24) holds for
t ∈ [tk−1, tk), k ≥ 1. Then, we have
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ϕ(t+k ) ≤ 1

T0
‖x0‖2γ 2

k Γ (tk, t0)e
−σ ln(1+tk )

<
1 + δ

T0
‖x0‖2γ 2

k Γ (tk, t0)e
−σ ln(1+tk ) (26)

for any fixed δ > 0. Assume that there exists a t f ∈ (tk, tk+1) such that ϕ(t f ) =
1+δ
T0

‖x0‖2Γ (t f , t0)e−σ ln(1+t f ) and

ϕ(t) <
1 + δ

T0
‖x0‖2Γ (t f , t0)e

−σ ln(1+t), ∀t ∈ [tk, t f ). (27)

Then, by (27) and the induction hypothesis in (24), we have

ϕ(qt f ) <
( 1 + t f
1 + qt f

)σ ϕ(t f )

Γ (t f , qt f )

≤ ϕ(t f )

qσ Γ (t f , qt f )
. (28)

For any t > s ≥ qt0, as defined in (25), we have

Γ (t, s) =
∏

k∈I (t,s)

γ 2
k =

M∏

i=1

ρ
2n(ρi )
i

N∏

j=1

μ
2n(μ j )

j , (29)

where n(ρi ) = Nρi (t, s) and n(μ j ) = Nμ j (t, s). By Assumption (A3), we have

c(t, s) �
M∑

i=1

n(ρi ) ln(ρi ) +
N∑

j=1

n(μ j ) ln(μ j )

≤
M∑

i=1

( t − s

τ si
− qi

)
ln(ρi ) +

N∑

j=1

( t − s

τ uj
+ r j

)
ln(μ j )

≤
N∑

j=1

r j ln(μ j ) −
M∑

i=1

qi ln(ρi ). (30)

Similarly, we also have

c(t, s) ≥
M∑

i=1

qi ln(ρi ) −
N∑

j=1

r j ln(μ j ). (31)

Taking (29) and (30) into account, we obtain

Γ (t, s) = ec(t,s)

≤ e
∑N

j=1 r j ln(μ j )−∑M
i=1 qi ln(ρi ) = p.

(32)

Similar to (32), we also have

Γ (t, s) ≥ e− ∑N
j=1 r j ln(μ j )+∑M

i=1 qi ln(ρi ) = 1

p
. (33)

It follows from (28) and (33) that

ϕ(qt f ) ≤ p

qσ
ϕ(t f ),

123



816 Differential Equations and Dynamical Systems (October 2021) 29(4):807–823

and therefore,

ϕ′(t f ) ≤
(

− α + pβ

qσ

)

ϕ(t f ) < 0

which contradicts with the fact that ϕ′(t f ) ≥ 0 by the definition of t f . This shows that
the estimate

ϕ(t) <
1 + δ

T0
‖x0‖2Γ (t, t0)e

−σ ln(1+t) (34)

holds for all t ∈ (tk, tk+1). Let δ ↓ 0, it can be deduced from (34) that (24) holds for
t ∈ [tk, tk+1).
Finally, from (19), (24), and (32), we readily obtain

V (t) ≤ ϕ(t) ≤ p

T0
‖x0‖2e−σ ln(1+t), t ≥ t0,

which yields the estimation (10) ensuring GGES of the closed-loop system (6). The
proof is completed.

�
Remark 4 It is necessary to mention here that existing methods proposed in the literature for
IDNNs with bounded time-varying delays, where both SI and DI are encountered simulta-
neously, e.g. [40] cannot be adaptive or extended to INNs as described in (1). The key point
obscured behind existing stability conditions is the structure of decaying solutions of the
associated differential inequalities.

Remark 5 In regard to Remark 4, let us consider the following inequality

ϕ′(t) ≤ −aϕ(t) + bϕ(t − τ(t)), t ≥ t0, (35)

where 0 ≤ τ(t) ≤ τ ∗ < ∞ is a bounded time-varying delay. If a > b > 0 then there
exists a λ > 0 such that any solution of (35) satisfies ϕ(t) ≤ ‖ϕ0‖e−λ(t−t0), where ‖ϕ0‖ =
supt0−τ∗≤t≤t0 |ϕ(t)| [30,44]. Unfortunately, the estimatingmethods developed for differential
inequalities in the form of (35) are not applicable to the case of proportional delay since the
equation

ϕ′(t) = −aϕ(t) + bϕ(qt), t ≥ t0, 0 < q < 1, (36)

does not admit any exponential decaying solution. Thus, in comparison to the case of bounded
time-varying delay, it is much more difficult and challenging to derive exponential stability
conditions for IDNNs as model (1).

Remark 6 By the Schur complement lemma, conditions (9a) and (9b) can be recast into the
following linear matrix inequalities (LMIs)

(−2Dc + sym(|A|F) + α In |B|G
G|B|� −θ In

)

< 0, (37a)

pθ − α < 0. (37b)

Remark 7 By similar arguments used in the proof of Theorem 1, exponential stability con-
ditions for IRNNs described in the form

{
ẋ(t) = −Dx(t) + A f (x(t)) + Bg(x(t − τ(t))), t �= tk,

x(t+k ) = Jkx(t
−
k ),

(38)
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can be obtained, where τ(t) is unbounded time-varying delay.

As a special case of model (1), let us consider the following neural network model with
alternatively impulsive effects

{
ẋ(t) = −Dx(t) + A f (x(t)) + Bg(x(qt)), t �= kTs,

x(t+k ) = γk x(t
−
k ),

(39)

where Ts > 0 is a sampling time. Assume that there exists a scalar γ∗, 0 < |γ∗| �= 1, such
that γ2k+1 = γ∗ and γ2k+2 = γ −1∗ for any k ∈ N0. It is clear that

t − s

2Ts
− 1 ≤ Nγ∗(t, s) ≤ t − s

2Ts
+ 1,

t − s

2Ts
− 1 ≤ N

γ −1∗ (t, s) ≤ t − s

2Ts
+ 1.

By Theorem 1, we have the following result.

Corollary 1 Under Assumptions (A1)–(A3), system (39) is GGES if there exists a scalar
θ > 0 satisfying the following condition

θ max
{
γ 2∗ ,

1

γ 2∗

}
+ m < 0, (40)

where m = λmax
(−2D + sym(|A|F) + θ−1|B|GG�|B|�)

.

Proof The proof is straightforward to that of Theorem 1 with τ si = τ uj = 2Ts and p =
max{γ 2∗ , 1

γ 2∗
}. �

Based on condition (37), the problem of designing a LSFCL (5) thatmakes the closed-loop
system (6) GGES is presented in the following theorem.

Theorem 2 Under Assumptions (A1)–(A3), assume that condition (9c) is satisfied. Then,
system (1) is exponentially stabilizable under LSFCL (5) if the following LMIs are feasible
for scalar α > 0, θ > 0, and a diagonal matrix Z = diag(zi ) ∈ R

n×n

(−2D + sym(|A|F) + α In + Z |B|G
G|B|� −θ In

)

< 0, (41a)

Z + 2diag(kui ) ≥ 0, Z + 2diag(kli ) ≤ 0, (41b)

α > pθ. (41c)

Moreover, the controller gain matrix is given by

Kc = −1

2
Z . (42)

Proof The proof of Theorem 2 is straightforward from that of Theorem 1 and Remark 7.
Thus, we omit it here. �
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Illustrative Examples

In this section, three numerical examples are given to illustrate the effectiveness of the
obtained results.

Example 1 Consider system (6) without control input (i.e. ki = 0). The system parameters
are given by

A =
⎛

⎝
1.15 0.86 0.75
0.36 1.2 1.35
0.57 1.0 1.25

⎞

⎠ , B =
⎛

⎝
0.48 0.64 0.25
0.36 0.57 0.22
0.36 0.16 0.42

⎞

⎠ ,

D = diag(3.5, 4.0, 4.0), q = 0.5,

f j (s) = g j (s) = 1

4
(|s + 1| − |s − 1|) , j = 1, 2, 3.

The impulsive effect is specified as follows
{

γ1 = 1
2 , γ2 = √

2, γ3 = 2,

γk+3 = γk, k ≥ 1.

Clearly, γk ∈ I
s ∪ I

u , ∀k ≥ 1, where I
s = {0.5} and I

u = {√2, 2}. According to a
proportional delay and the presence of stabilizing and destabilizing impulses simultaneously,
the results of [38,40,42] cannot be applied to access stability of the system. We now apply
Theorem 1 in this paper with ρ = γ1, μ1 = γ2, μ2 = γ3, p = (μ1μ2)

2ρ−2 = 16, and
Fj = G j = 1/2, j = 1, 2, 3. We assume that the distributions of ρ, μ1 and μ2 are defined
by (4) with qi = r j = 1, i, j = 1, 2. Let τ s = 0.25, τ u1 = 0.25 and τ u2 = 0.5, then we have

ln(ρ)

τ s
+ ln(μ1)

τ u1
+ ln(μ2)

τ u2
= 0.

Thus, condition (9c) is satisfied. By using the LMI Toolbox of Matlab to solve LMIs in (37),
a feasible solution (α, θ) is obtained as

α = 2.3977, θ = 0.1482.

By Theorem 1, system (6) with the above parameters and impulsive effects is GGES. More-
over, by (21), we have

0 < σ <
α + pθ

2α ln 2
� 1.4345.

For σ = 1, any solution x(t) of (6) satisfies

‖x(t)‖ ≤ 4√
1 + 0.5t0

‖x0‖e−0.5 ln(1+t), t ≥ t0.

Example 2 Consider system (39) with the following parameters taken from [42]

D =
(
6 0
0 6

)

, A =
(

1 −1
−1 1

)

, B =
(
1 −2
0 −1

)

,

f j (s) = g j (s) = 1

4
(|s + 1| − |s − 1|), q = 0.5, Ts = 0.5.

By Theorem 3.1 in [42], system (39) is globally exponentially stable if the following
condition is satisfied
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Fig. 1 State trajectories of system (39) with γ∗ = 4

2∑

i=1

1

di
max
j=1,2

(|ai j |Fj + |bi j |G j
) + 1

Ts
max

{

|γ∗|
( 1

di
+ Ts

)
,

1

|γ∗|
( 1

di
+ Ts

)}

< 1.

(43)

Since Fj = G j = 1/2, j = 1, 2, condition (43) is satisfied if and only if 5
12 +

4
3 max{|γ∗|, 1

|γ∗| } < 1, which is equivalent to the condition that

max
{
|γ∗|, 1

|γ∗|
}

<
7

16
. (44)

Clearly, condition (44) does not give any feasible solution since max
{
|γ∗|, 1

|γ∗|
}

> 1 for any

0 < |γ∗| �= 1. Thus, we cannot access stability of the system utilizing Theorem 3.1 in [42].
We now apply Corollary 1. Let α = θ max{γ 2∗ , 1

γ 2∗
} then condition (40) is transformed to

the following LMIs
(−2D + α In + sym(|A|F) |B|G

G|B|� −θ In

)

< 0, (45a)

α − λθ > 0, (45b)

max
{
γ 2∗ ,

1

γ 2∗

}
< λ. (45c)

By iteratively solving LMIs (45) using Matlab LMI Toolbox, we obtain λ = 17.9046, which
gives 0.2363 < |γ∗| < 4.2314, |λ∗| �= 1. Thus, by Corollary 1, system (39) is GGES. To
simulate the result, we fix γ∗ = 4. In Fig. 1, the solid line represents state trajectories of
x1(t) and the dot-dashed line represents state trajectories of x2(t). It can be seen that all
sample state trajectories converge to zero as revealed by the theoretical result. This shows
the effectiveness of the obtained results.

Example 3 This example is to illustrate the effectiveness of our control design given in The-
orem 2. Consider system (1) with impulsive effects determined by strengths γ2k−1 = γ∗,
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Fig. 2 Unstable open-loop system with Ts = 0.5 and γ∗ = 0.8
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Fig. 3 Stable closed-loop system with Ts = 0.5 and γ∗ = 0.8

γ2k = γ −1∗ , where 0 < |γ∗| �= 1, and impulsive time sequence tk = kTs . The system
parameters are given as

D =
(
0.8 0
0 0.9

)

, A =
(
1.25 1.42
0.98 1.55

)

, B =
(
0.52 0.68
0 0.84

)

,

f j (s) = g j (s) = 1

4
(|s + 1| − |s − 1|), j = 1, 2, q = 0.5.

For illustrative purpose, let Ts = 0.5 and γ∗ = 0.8. The simulation result given in Fig. 2
shows that the impulsive open-loop system is unstable.

We employ the result of Theorem 2 in this paper to design a stabilizing LSFCL (5).
Let Kl = diag(kli ) = diag(0.2, 0.3) and Ku = diag(kui ) = diag(2.5, 1.5). Note also that
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F = G = 1/2I2 and p = γ −4∗ � 2.4414. By using the Matlab LMI Toolbox to solve
(41a)–(41c), we obtain

α = 1.5692, θ = 0.5191, Z = diag(−4.3907,−2.6566),

and the controller gain Kc = diag(2.1954, 1.3283) according to (42). With the above con-
troller gain, we have

M =
(−4.3878 1.4751

1.4751 −2.5668

)

,

and thus, m = λmax(M ) = −1.7438 < −α. By Theorem 2, the closed-loop system (6) is
GGES. A simulation result with Ts = 0.5 and γ∗ = 0.8 is presented in Fig. 3, where the
solid line presents state trajectories of x1(t) and the dot-dashed line presents state trajectories
of x2(t). Clearly, all state trajectories of the closed-loop system converge to zero, which
demonstrates the effectiveness of the design scheme.

Conclusion

This paper has dealt with the problem of generalized exponential stability of neural networks
with a proportional delay and time-varying impulsive effects. A unified delay-independent
stability criterion has been derived based on an assumption of periodic-type distribution of
impulsive strengths. On the basis of the derived stability conditions, LMI-based conditions
have also been formulated to address the problem of designing a LSFCL with bounded
controller gains to make the closed-loop system stable. Three numerical examples have been
given to demonstrate the effecacy of the obtained results.
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