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Abstract
Role of additional food to predators is significant to retain biological balance for an improved
ecosystem.Much attempts have been performed from the aspects of biological control and its
consequences on global warming is investigated. Work has been done exhibiting the impli-
cation of mutual interference in stabilising the prey predator system which has a phenomenal
impact on the dynamics of the system. In the proposed model, dynamics of additional food
to predators on one-prey and two-predator system with Beddington–DeAngelis functional
response is investigated. The proposed system also throws light on the role of mutual inter-
ference in predators and it differentiates the predators on the basis of the characteristic of
consuming the additional food or to be solely dependent on preys for survival. Both local and
global stability analysis of the system has been performed and at the end, numerical simu-
lation is carried out which signifies the effect of changing the additional food parameters on
the dynamics.

Keywords Prey-predator system · Stability · Beddington–DeAngelis response · Additional
food

Introduction

Provision of additional food to predators and its effect on the dynamics of prey predator
system have been a source of interest to many scientists. Much experimental work has been
carried out in the context of biological control phenomenon viz., spreading insecticides,
fungicides or fertilizers that pollute the environment and also it remains as residuum in the
entire ecosystem. Predators are generally carnivores by nature. Due to this fact, it is generally
ignored that these carnivores also require plant derived foods as a source of energy. The degree
of dependence on the primary food by the predators is different. Wackers and van Rijn [1]
distinguish between the various categories of life-history omnivores, temporal omnivores or
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permanent omnivores. Life history omnivores are those natural enemies that derives their
food rigorously from plants during their life time, such as hoverflies. Temporal omnivores
also add the carnivorous diet during their life time and permanent omnivores sustain a mixed
diet throughout their lifetime.

Biological control mechanisms involves the conservation of natural enemies in an envi-
ronment. Over the last forty years, artificial food sprays are used to increase the ratio of
natural enemies of anthropod pests but due to its inconsistent performance, this approach is
not feasible in every biological control program. The mirid predator Macrolophus pygmaeus
uses the eggs of theMediterraneanmoth Ephestia kuehniella for its mass production and con-
sumption of pollen as an additional food by Macrolophus pygmaeus was studied. Different
quantities of Ephestia kuehniella eggs were provided to the predator along with the different
amounts of pollen as an additional food and the changes occured in the developmental period,
survival rate, mortality rate etc. were observed [2–4]. It is assessed that diet consisting of both
eggs and pollen in appropriate manner is much advantageoous for rearing these predators
[1]. Much experimentation has been done to valuate the role of additional food in improving
the biological control programs as can be seen in [5–8].

Some of the experiments conducted have been supported by the theoretical results and they
comprehended over the use of different types of food as an additional source to predators and
their efficiency to attain biological control [1,9–11]. Effort has been made to find resolution
for the control of pests in the field [12–15].

Some natural enemies are adapted to depend entirely on prey as their mode of nutrition but
the importance of non prey food has been acknowledged and attempts are made to examine
the interactions between the natural enemies and non prey foods for underlying its importance
to raise the level of biological pest control [16–19]. It is found that consumption of alternative
food is significant not just in maintaining the ecological balance but also in biological control
programs.

Work has been done in assessing the action of pest for the prey which includes the study
of control and eradication of pest by predators by offering the alternative/additional food
to the predators which has been studied as one predator and two prey mathematical model
[20]. This depicts that supplementing additional food along with the prey food in the diet
of predators has an effect on prey density i.e. focal prey by reducing the population of prey
which results into an interspecific competiton called as apparent competition as it facilitates
by the alternative prey [20,21].

Some theoretical studies concluded that the introduction of alternative prey results in
apparent competition, by which the prey density is restraint but some observational and
experimental evidences show that alternative food not always trail to biological control. It is
found that the success rate of biological control programsdependon the role of additional food
[11,20,22]. Harwood and Obrycki [11] found out that providing non pest food to predators
is significant in ways as it is advantageous to predators for increasing the fertility and the
existence of alternative food results in reduced pest consumption.

In [12], a model has been suggested and made to study the effect of additional food in the
prey predator system. The system has been analysed by taking the holling type II functional
response for predators. It has also been observed that the quantity and quality of additional
food plays a significant role in the system controllability. The analysis in [23] presented an
unbounded growth of predators when they are dependent on additional food only. The model
thus improved by inserting a limiting factor known as mutual interference between predators
which is commonly seen in ecosystem and has a drastic role to play [24–29].

Both the Beddington–DeAngelis form of functional response and ratio-dependent func-
tional response have been widely used in various models and studied in different aspects
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[5,30]. It is similar to the well known Holling type II functional response but it incorpo-
rates mutual interference between predators. Ratio-dependent predator prey models are also
a source of interest to many biologists and it also comprises of mutual interference by preda-
tors, but depicts singular behavior at low densities and has been a source of criticism formany.

In [24], Beddington–DeAngelis functional response has been incorporated and mutual
interference concept is framed within to study the role of additional food in the predator prey
system. Additional food quality is also defined as the ratio of handling times between the
additional food and prey [12].

In this article, Beddington–DeAngelis functional response has been used in the prey preda-
tor system to assess the role of mutual interference between the predators. The present model
is incorporated with two classes of predators; one with the predators who are consuming the
additional food/alternative food along with the prey food and the other class of predators that
are not consuming the additional food and having the only source of nutrition as prey food.
Further, interference within the predators and also between the preys and predators have been
considered.

The present article is as follows: The next section introduces the prey predator model
with two classes of predators along with the additional food concept. Section 3 presents the
conditions for the existence of various equilibrium points. In Sect. 4, local stability analysis
has been done and global analysis is carried out in Sect. 5. Last section comprises of the
discussion and conclusions following the numerical simulations in Sect. 6.

Themodel

The prey-predator dynamics using the Beddington–DeAngelis type of functional response
with mutual interference between predators is given in [5,30] is as follows,{

dN
dT = r N

(
1 − N

K

)
− cN P

a+N+ρP ,

dP
dT = bN P

a+N+ρP − mP,
(2.1)

where, N ≡ N (T ), P ≡ P(T ) are the prey and predator density respectively with N (0) ≥
0, P(0) ≥ 0 and the parameters r, K, m denote the growth rate of prey, carrying capacity of
the prey and mortality rate of predators in the absence of prey respectively.

ρ is the strength of mutual interference between the predators andmathematically, defined
as ρ = ePhP

eN hN
where eP , eN are the constants dependent on the rate of movement of predators

in the search of prey or predators and hN , hP denote the handling time of predator per prey
and interaction time among predators [7]. The prey predator system mentioned in (2.1) has
been considered from many ways and is well studied in literature [9,30–39].

In [24], predators are provided with additional food with quantity A and the prey predator
model takes the following form as:{

dN
dT = r N

(
1 − N

K

)
− cN P

a+αηA+N+ρP ,

dP
dT = b(N+ηA)P

a+N+ρP − mP,
(2.2)

where, N ≡ N (T ), P ≡ P(T ), r, K and m have the same meanings as explained before.
ρ is the strength of mutual interference between the predators. hA is the handling time of

the predator per unit quantity of the additional food and eA is the constant dependent on the
rate of movement of predators in the search of additional food, then α = hA

hN
and η = eA

eN
.

Additional food is said to be of low quality if α is greater than the ratio between the
maximum growth rate and the starvation rate and is said to be of high quality if α is less than
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the ratio between the maximum growth rate and the starvation rate [12,24]. The term ηA is
the effectual additional food level [7,23].

Now, we know that predators can often be distinguished based on their feeding behaviour.
Let us assume that there is a class of predators P1 that consumes both the prey food and
the additional food of biomass A i.e. they are omnivores (both carnivores and herbivores) in
nature whereas P2 is the class of predators that are just dependent on prey food i.e. they are
carnivores and this class doesnot consume the alternative food such as pollen, nectar, grass
etc. Then the above model reduces to the following form as:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dN
dT = r N

(
1 − N

K

)
− c1N P1

a1+αηA+N+ρ1P1
− c2N P2

a1+N+ρ2P2
,

dP1
dT = b1(N+ηA)P1

a1+αηA+N+ρ1P1
− m1P1 − m2P2

1 − γ1P1P2,

dP2
dT = b2N P2

a1+N+ρ2P2
− n1P2 − n2P2

2 − γ2P1P2,

(2.3)

with non negative initial conditions governs the dynamics of additional food on one prey and
two predator system using Beddington–DeAngelis functional response.

Here c1 and c2 represents the highest rate of predation by class P1 and P2 respectively. b1
and b2 represents the highest growth rate of predators P1 and P2 respectively. m2 and n2 are
the rate of interaction among the predators P1 and P2 respectively. Similarly, γ1 and γ2 are
the rate of interaction between the predators P1 and P2 respectively.

Now, the model given by (2.3) can be reduced in the following form using the conversions
as:

x = N

a1
, y1 = c1P1

ra1
, y2 = c2P2

ra1
, t = rT , ε1 = rρ1

c1
,

ε2 = rρ2
c2

, α0 = γ1a1
c2

, δ1 = m1

r
,

δ2 = m2a1
c1

, μ1 = n1
r

, μ2 = n2a1
c2

, β0 = γ2a1
c1

, L = K

a1
,

ξ1 = ηA

a1
, β1 = b1

r
, β2 = b2

r
,

and the system becomes:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dx
dt = x

(
1 − x

L

)
− xy1

1+αξ1+x+ε1 y1
− xy2

1+x+ε2 y2
,

dy1
dt = β1(x+ξ1)y1

1+αξ1+x+ε1 y1
− δ1y1 − δ2y21 − α0y1y2,

dy2
dt = β2xy2

1+x+ε2 y2
− μ1y2 − μ2y22 − β0y1y2.

(2.4)

The following are the two lemma proving the positivity and boundedness of solutions of
the system (2.8).

Lemma 1 Every solution of the system (2.4) w.r.t the non negative initial conditions, remain
positive ∀ t > 0.

Proof The system (2.4) with the imposed initial conditions can be written in the matrix
equation form as:

dX

dt
= G(X(t)), (2.5)
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where, X(t) = (x, y1, y2)T , X(0) = (x(0), y1(0), y2(0))T ∈ R3+ and

G(X(t)) =
⎛
⎝G1(X(t))
G2(X(t))
G3(X(t))

⎞
⎠ =

⎛
⎜⎜⎝
x
(
1 − x

L

)
− xy1

1+αξ1+x+ε1 y1
− xy2

1+x+ε2 y2
β1(x+ξ1)y1

1+αξ1+x+ε1 y1
− δ1y1 − δ2y21 − α0y1y2

β2xy2
1+x+ε2 y2

− μ1y2 − μ2y22 − β0y1y2

⎞
⎟⎟⎠ ,

where,
G : C∞(R3) → R3+ and G ∈ C∞(R3). It is clear that, whenever X(0) ∈ R3+, then using

classical theorem by Nagumo [40], the solution of matrix equation with initial condition
X0 ∈ R3+, say X(t) = X(t, X0) is positive for all finite and positive time t.

Indeed, from the first equation of system (2.4), we have,

dx

dt
= x

(
1 − x

L

)
− xy1

1 + αξ1 + x + ε1y1
− xy2

1 + x + ε2y2
,

= x

((
1 − x

L

)
− y1

1 + αξ1 + x + ε1y1
− y2

1 + x + ε2y2

)
.

So, x = x(0) exp

(
(1 − x

L ) − y1
1+αξ1+x+ε1 y1

− y2
1+x+ε2 y2

)
> 0 ∀ t ≥ 0.

Similarly, we may proceed for other equations as well of system (2.4) which confirms the
positivity of solution of system. �	
Lemma 2 All solutions of the system (2.4) starting in the interior of the positive quadrant
are bounded.

Proof We define w = x + 1
β1
y1 + 1

β2
y2.

Now we consider for η > 0,

dw

dt
+ ηw = dx

dt
+ 1

β1

dy1
dt

+ 1

β2

dy2
dt

+ ηx + η

β1
y1 + η

β2
y2,

= x
(
1 − x

L

)
+ ξ1y1

1 + αξ1 + x + ε1y1
− δ1y1

β1
− δ2y21

β1
− α0y1y2

β1

−μ1y2
β2

− μ2y22
β2

− β0y1y2
β2

+ ηx + η

β1
y1 + η

β2
y2,

=
(
1 − x

L
+ η

)
x −

(δ − η

β1

)
y1 −

(μ1 − η

β2

)
y2 − δ2y21

β1
− α0y1y2

β1

−β0y1y2
β2

− μ2y22
β2

+ ξ1y1
1 + αξ1 + x + ε1y1

,

≤ x
(
1 − x

L
+ η

)
+ ξ1y1

1 + αξ1 + x + ε1y1
,

≤ x
(
1 − x

L
+ η

)
+ ξ1

ε1
,

≤ L(1 + η) + ξ1

ε1
.

Hence, we obtain,

dw

dt
+ ηw ≤ P

(
= L(1 + η) + ξ1

ε1

)
.
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By the application of differential inequality [41], we get,

0 ≤ w(t) ≤ P

η
(1 − e−ηt ) + w(0)e−ηt .

So, as t → ∞, we have 0 < w(t) < P
η
which implies that the solutions of system (2.4)

are bounded. �	

Existence of equilibria

System (2.4) has six possible non-negative equilibria, namely,

E0(0, 0, 0), E1(L, 0, 0), E2(0, y1, 0), E3(̃x, ỹ1, 0), E4(̂x, 0, ŷ2), E5(x
∗, y∗

1 , y
∗
2 ).

The equilibrium points E0 and E1 obviously exist. We now show the existence of other
equilibrium points as follows.

Existence of E2(0, y1, 0)

y1 is the positive solution of the equation,

β1ξ1y1
1 + αξ1 + ε1y1

− δ1y1 − δ2y
2
1 = 0,

⇒ β1ξ1 − δ2(1 + αξ1 + ε1y1)y1 = δ(1 + αξ1 + ε1y1).

On further solving, we get a quadratic equation in y1 as follows.

A1y
2
1 + B1y1 − H1 = 0.

Taking only the positive root, we have,

y1 = y1 =
−B1 +

√
B2
1 + 4A1H1

2A1
,

where,
A1 = δ2ε1, B1 = δ2 + αξ1δ2 + ε1δ1, H1 = β1ξ1 − δ1 − αξ1δ1.
Thus, the equilibrium point E2(0, y1, 0) exists if β1ξ1 > δ1(1 + αξ1).

Existence of E3(x̃, ỹ1, 0)

x̃, ỹ1 is the positive solution of the system of equations as follows,(
1 − x

L

)
− y1

1 + αξ1 + x + ε1y1
= 0, (3.1)

β1(x + ξ1)

1 + αξ1 + x + ε1y1
− δ1 − δ2y1 = 0. (3.2)

To show the existence of the equilibrium point E3(̃x, ỹ1, 0), we proceed by proving the
intersection of isoclines at a unique point which is as follows.

In eq. (3.1), if x → 0, then, y1 → y1a ,
where, y1a = 1+αξ1

1−ε1
and y1a > 0, provided ε1 < 1.
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Similarly, if y1 → 0, then, x → x1a, where, x1a = L .
Now, using eq. (3.1), we get,

dy1
dx

|̃x,ỹ1 = C1

D1
,

where, C1 = −(1 + αξ1 + x̃ + ε1 ỹ1)2 + L ỹ1, D1 = L(1 + αε1 + x̃).
Now, for dy1

dx |̃x,ỹ1 < 0,
(1 + αξ1 + x̃ + ε1 ỹ1)2 > L ỹ1 must hold.
Similarly, in eq. (3.2).

If x → 0, then y1 → y1b, where, y1b = −q+
√

q2−4pr
2p ,

where,

q = δ1ε1 + δ2(1 + αξ1), p = δ2ε1, r = δ1(1 + αξ1) − β1ξ1.

Now, y1b > 0, provided, r < 0.
Similarly, in eq. (3.2), when, y1 → 0, then, x → x1b,

where, x1b = δ1+δ1αξ1−β1ξ1
β1−δ1

.
Now, using eq. (3.2), we get,
dy1
dx |̃x,ỹ1 = C2

D2
, where, C2 = β1(1 + αξ1 + x̃ + ε1 ỹ1) − (β1 x̃ + β1ξ1), D2 = (β1 x̃ +

β1ξ1)ε1 + δ2(1 + αξ1 + x̃ + ε1 ỹ1)2.
For, dy1

dx |̃x,ỹ1 < 0 ,
(1 + αξ1 + x̃ + ε1 ỹ1) < (̃x + ξ1) must hold.
From the analysis done above, it can be concluded that the isoclines given by (3.1) and

(3.2) intersect at a unique point (̃x, ỹ1), provided the above conditions are satisfied along
with the inequality as;

y1a > y1b and x1b > x1a or y1a < y1b and x1b < x1a . This completes the existence of
E3.

In a very similarway, existence conditions of the equilibria E4 (̂x, 0, ŷ2) can be determined.

Existence of E5(x∗, y∗
1, y

∗
2)

x∗, y∗
1 and y∗

2 is the positive solution of the system of equations given as follows.(
1 − x

L

)
− y1

1 + αξ1 + x + ε1y1
− y2

1 + x + ε2y2
= 0, (3.3)

β1(x + ξ1)

1 + αξ1 + x + ε1y1
− δ1 − δ2y1 − α0y2 = 0, (3.4)

β2x

1 + x + ε2y2
− μ1 − μ2y2 − β0y1 = 0. (3.5)

Solving (3.4) and (3.5), we get,
f (y1, y2) = [y2(α0 + α0αξ1) + δ1 + δ1αξ1 − β1ξ1 + y1δ1ε1 − y1δ2 − y1δ2αξ1 − y21δ2ε1 +
α0ε1y2y1][β2−μ1−μ2y2−β0y1]−[β0y1+μ1+ y2(ε2μ1+μ2+ε2μ2y2+β0y1ε2)][β1−
δ1 − δ2y1 − α0y2].
In f (y1, y2) = 0.
If y1 → 0, then, y2 → y2c,
where, y2c is a unique positive real root of the equation given by,
(y2(α0+α0αξ1)+δ1+δ1αξ1−β1ξ1)(β2−μ1−μ2y2)−(μ1+y2(ε2μ1+μ2+ε2μ2y2))(β1−
δ1 − α0y2) = 0.
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Similarly, as y2 → 0, then, y1 → y1c,
where, y1c is a unique positive real root of the equation,
(δ1 + δ1αξ1 − β1ξ1 + y1δ1ε1 − y1δ2 − y1δ2αξ1 − y21δ2ε1)(β2 − μ1 − β0y1) − (β0y1 +
μ1)(β1 − δ1 − δ2y1) = 0.
Using above,
dy2
dy1

|(y∗
1 ,y∗

2 ) = −C3
D3

,
where, C3 = (δ1ε1 − δ2 − δ2αξ1 − 2y∗

1δ2ε1 + α0ε1y∗
2 )(β2 − μ1 − μ2y∗

2 − β0y∗
1 ) − (β0 +

β0ε2y∗
2 )(β1 − δ1 − δ2y∗

1 −α0y∗
2 )+ (y∗

2 (α0 +α0αξ1)+ δ1 + δ1αξ1 −β1ξ1 + y∗
1δ1ε1 − y∗

1δ2 −
y∗
1δ2αξ1− y∗

1
2δ2ε1+α0ε1y∗

2 y
∗
1 )(−β0)+(β0y∗

1 +μ1+ y∗
2 (ε2μ1+μ2+ε2μ2y∗

2 +β0y∗
1ε2)δ2)

and D3 = (((α0+α0αξ1)+α0ε1y∗
1 )(β2−μ1−μ2y∗

2−β0y∗
1 )+(y∗

2 (α0+α0αξ1)+δ1+δ1αξ1−
β1ξ1+ y∗

1 δ1ε1− y∗
1 δ2− y∗

1δ2αξ1− y∗
1
2δ2ε1+α0ε1y∗

1 y
∗
2 )(−μ2))−((ε2μ1+μ2+2ε2μ2y∗

2 +
β0y∗

1ε2)(β1−δ1−δ2y∗
1 −α0y∗

2 )+(β0y∗
1 +μ1+ y∗

2 (ε2μ1+μ2+ε2μ2y∗
2 +β0y∗

1ε2))(−α0)).

For dy2
dy1

|(y∗
1 ,y∗

2 ) < 0,
Either, C3 > 0 and D3 > 0 or C3 < 0 and D3 < 0 hold.
Now using, eq. (3.4) and eq. (3.5) in eq. (3.3) and on simplifying, we get,

g(y1, y2) = L

[
1 − y1(δ1 + δ2y1 + α0y2)(β2 − μ1 − μ2y2 − β0y∗

1 )

β1ξ1(β2 − μ1 − μ2y2 − β0y1) + β1(1 + ε2y2)(μ1 + μ2y2 + β0y1)

− y2(μ1 + μ2y2 + β0y1)(β2 − μ1 − μ2y2 − β0y1)

β2(1 + ε2y2)(μ1 + μ2y2 + β0y1)

]
.

In g(y1, y2) = 0,
If y1 → 0, then, y2 → y2d ,
where, y2d is a positive real root of the equation given by,

L
(
1 − y2(β2−μ1−μ2 y2)

β2(1+ε2 y2)

)
.

Similarly, if y2 → 0, then, y1 → y1d , where, y1d is given by the positive root of the following
equation,

L
(
1 − y1(δ1+δ2 y1)(β2−μ1−β0 y1)

β1ξ1(β2−μ1−β0 y1)+β1(μ1+β0 y1)

)
.

Using above,

dy2
dy1

|(y∗
1 ,y∗

2 ) = −C4

D4
,

where,

C4 = L

[
(−(δ1 + 2δ2 y

∗
1 + α0 y

∗
2 )(β2 − μ1 − μ2 y

∗
2 − β0 y

∗
1 ) + y∗

1 (δ1 + δ2 y
∗
1 + α0 y

∗
2 )β0)(E) − F((−β0β1ξ1) + β1β0)

E2

− (((y∗
2β0(β2 − μ1 − μ2 y

∗
2 − β0 y

∗
1 ) + y∗

2 (μ1 + μ2 y
∗
2 + β0 y

∗
1 )(−β0))(G) − H(β2(1 + ε2 y

∗
2 )β0)

P2

]
.

D4 = L

[
((α0 y

∗
1 (β2 − μ1 − μ2 y

∗
2 − β0 y

∗
1 ) − μ2 y

∗
1 (δ1 + δ2 y

∗
1 + α0 y

∗
2 ))E + Bμ2β1ξ1)

E2

−β1ε2(μ1 + μ2 y
∗
2 + β0 y

∗
1 ) − β1μ2(1 + ε2 y

∗
2 ))

E2

− ((μ1 + μ2 y
∗
2 + β0 y

∗
1 )(β2 − μ1 − μ2 y

∗
2 − β0 y

∗
1 ) + μ2 y

∗
2 (β2 − μ1 − μ2 y

∗
2 − β0 y

∗
1 ))P

E2
+

(y∗
2 (μ1 + μ2 y

∗
2 + β0 y

∗
1 )(−μ2))P − H(ε2β2(μ1 + μ2 y

∗
2 + β0 y

∗
1 ) + β2(1 + ε2 y

∗
2 )μ2))

P2

]
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and E, F, H , P are given by,

E = β1ξ1(β2 − μ1 − μ2y
∗
2 − β0y

∗
1 ) + β1(1 + ε2y

∗
2 )(μ1 + μ2y

∗
2 + β0y

∗
1 ),

F = y∗
1 (δ1 + δ2y

∗
1 + α0y

∗
2 )(β2 − μ1 − μ2y

∗
2 − β0y

∗
1 ),

H = y∗
2 (μ1 + μ2y

∗
2 + β0y

∗
1 )(β2 − μ1 − μ2y

∗
2 − β0y

∗
1 ),

P = β2(1 + ε2y
∗
2 )(μ1 + μ2y

∗
2 + β0y

∗
1 ).

For dy2
dy1

|(y∗
1 ,y∗

2 ) < 0,
Either, C4 > 0 and D4 > 0 or C4 < 0 and D4 < 0.

Based on the analysis done above, it is to be noted that f (y1, y2) and g(y1, y2) intersect at
a unique point (y1, y2) provided the above conditions are satisfied along with the inequalities
y1c > y1d and x1c < x1d or y1c < y1d and x1c > x1d .

On knowing the values of y∗
1 and y∗

2 , we can find the value of x
∗ as follows.

x∗ = (β0y∗
1 + μ1) + y∗

2 (ε2μ1 + μ2 + ε2μ2y2 + β0y∗
1ε2)

(β2 − μ1 − μ2y∗
2 − β0y∗

1 )
,

and x∗ exists provided β2 > (μ1 + μ2y∗
2 + β0y∗

1 ).

Local stability analysis

The variational matrix of the system (2.4) is given by,

J =
⎛
⎝m11 m12 m13

m21 m22 m23

m31 m32 m33

⎞
⎠ ,

where,

m11 =
(
1 − 2x

L

)
− y1(1 + αξ1 + x + ε1y1) − xy1

(1 + αξ1 + x + ε1y1)2
− y2(1 + x + ε2y2) − xy2

(1 + x + ε2y2)2
,

m12 = −x(1 + αξ1 + x + ε1y1) + xy1ε1
(1 + αξ1 + x + ε1y1)2

,

m13 = −x(1 + x + ε2y2) + xy2ε2
(1 + x + ε2y2)2

,m21 = β1y1(1 + αξ1 + x + ε1y1) − β1y1(x + ξ1)

(1 + αξ1 + x + ε1y1)2
,

m22 = β1(x + ξ1)(1 + αξ1 + x + ε1y1) − β1(x + ξ1)y1ε1
(1 + αξ1 + x + ε1y1)2

− δ1 − 2y1δ2 − α0y2,

m23 = −α0y1,

m31 = β2y2(1 + x + ε2y2) − β2xy2
(1 + x + ε2y2)2

,m32 = −β0y2,

m33 = β2x(1 + x + ε2y2) − β2xy2ε2
(1 + x + ε2y2)2

− μ1 − 2y2μ2 − β0y1.

(a). At the equilibria E0(0, 0, 0), eigenvalues of the abovematrix corresponding to the system
(2.4) is given by,

1,
β1ξ1

(1 + αξ1)
− δ1,−μ1.

It is always an unstable equilibrium point.
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(b). At the equilibria E1(L, 0, 0), eigenvalues of the matrix J corresponding to the system
(2.4) is given by,

−1,
β1(L + ξ1)

1 + αξ1 + L
− δ1,

β2L

(1 + L) − μ1
.

So, the equilibrium solution E1(L, 0, 0) is locally asymptotically stable under the condi-
tion,

β1(L + ξ1)

1 + αξ1 + L
< δ1 and (1 + L) < μ1.

(c). At the equilibria E2(0, y1, 0), conditions for the locally asymptotically stable become as
follows,

1 <
y1

(1 + αξ1 + ε1y1)
and δ1 + 2δ2y1 <

β1ξ1(1 + αξ1)

(1 + αξ1 + ε1y1)2
.

(d). The equilibrium point E3(̃x, ỹ1, 0) is locally asymptotically stable if,
st > pq , s + t < 0 and n < 0 where,

s =
(
1 − 2x̃

L

)
− ỹ1(1 + αξ1 + x̃ + ε1 ỹ1) − x̃ ỹ1

(1 + αξ1 + x̃ + ε1 ỹ1)2
, p = −x̃(1 + αξ1 + x̃)

(1 + αξ1 + x̃ + ε1 ỹ1)2
,

q = β1 ỹ1(1 + αξ1 + ε1 ỹ1) − β1 ỹ1ξ1
(1 + αξ1 + x̃ε1 ỹ1)2

,

t = β1(̃x + ξ1)(1 + αξ1 + x̃)

(1 + αξ1 + x̃ + ε1 ỹ1)2
− δ1 − 2 ỹ1δ2, n = β2 x̃

(1 + x̃)
− μ1 − β0 ỹ1.

(e). The equilibrium point E4(̂x, 0, ŷ2) is locally asymptotically stable using Routh Hurwitz
criteria if the following conditions are satisfied.

(i). PRQ − MQT > 0,
(ii). QT + MQ + MT − PR > 0,
(iii). (QT + QM + MT − PR)(Q − T − M) > (PRQ − MQT ),

where,

P = −x̂(1 + x̂)

(1 + x̂ + ε2 ŷ2)2
,

R = β2 ŷ2(1 + ε2 ŷ2)

(1 + x̂ + ε2 ŷ2)2
,

M =
(
1 − 2x̂

L

)
− ŷ2(1 + ε2 ŷ2)

(1 + x̂ + ε2 ŷ2)2
,

T = β2 x̂(1 + x̂)

(1 + x̂ + ε2 ŷ2)2
− μ1 − 2μ2 ŷ2,

Q = β1(̂x + ξ1)

(1 + αξ1 + x̂)
− δ1 − α0 ŷ2.

(f). The equilibrium point E5(x∗, y∗
1 , y

∗
2 ) is locally asymptotically stable under the following

conditions as,
(i). (M∗R∗ + M∗V + R∗V − NQ∗ +US∗ − T ∗P∗) > 0,
(ii). (M∗US∗ + NQ∗V + R∗T ∗P∗ − S∗T ∗N − Q∗U P∗ − M∗R∗V ) > 0,
(iii). −(V + R∗ + M∗)(M∗R∗ + M∗V + R∗V − NQ∗ + US∗ − T P∗) > (M∗US∗ +

N∗Q∗V + R∗T P∗ − S∗T ∗N − Q∗U P∗ − M∗R∗V ).
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Where,

M∗ =
(
1 − 2x∗

L

)
− y∗

1 (1 + αξ1 + x∗ + ε1y∗
1 ) − x∗y∗

1

(1 + αξ1 + x∗ + ε1y∗
1 )

2 − y∗
2 (1 + x∗ + ε2y∗

2 ) − x∗y∗
2

(1 + x∗ + ε2y∗
2 )

2 ,

R∗ = β1(x∗ + ξ1)(1 + αξ1 + x∗ + ε1y∗
1 ) − β1(x∗ + ξ1)y∗

1ε1

(1 + αξ1 + x∗ + ε1y∗
1 )

2 − δ1 − 2y∗
1δ2 − α0y

∗
2 ,

V = β2x∗(1 + x∗ + ε2y∗
2 ) − β2x∗y∗

2ε2

(1 + x∗ + ε2y∗
2 )

2 − μ1 − 2y∗
2μ2 − β0y

∗
1 ,

N = −x∗(1 + αξ1 + x∗ + ε1y∗
1 ) + x∗y∗

1ε1

(1 + αξ1 + x∗ + ε1y∗
1 )

2 ,

Q∗ = β1y∗
1 (1 + αξ1 + x∗ + ε1y∗

1 ) − β1y∗
1 (x

∗ + ξ1)

(1 + αξ1 + x∗ + ε1y∗
1 )

2 ,

S∗ = −α0y
∗
1 , T

∗ = β2y∗
2 (1 + x∗ + ε2y∗

2 ) − β2x∗y∗
2

(1 + x∗ + ε2y∗
2 )

2 ,

U = −β0y
∗
2 , P

∗ = −x∗(1 + x∗ + ε2y∗
2 ) + x∗y∗

2ε2

(1 + x∗ + ε2y∗
2 )

2 .

Global stability analysis

In this section, we prove the equilibrium point E∗ to be globally stable using the method of
Lyapunov function and the result can be stated as follows.

The positive equilibrium E∗ is globally asymptotically stable for all solutions starting in
the interior of the positive region if the following conditions hold.

(a)
(
1+αξ1+x∗

M1
+ k1β1(1+αξ1)−ξ1k1β1+k1β1ε1 y∗

1
M1

)2
<

(
1
L + y∗

1
M1

+ y∗
2

M2

)(
k1δ2 + ε1ξ1k1β1

M1
+

ε1k1β1x∗
M1

)
,

(b)
(
1+x∗
M2

+ k2β2+k2β2ε2 y∗
2

M2

)2
<

(
1
L + y∗

1
M1

+ y∗
2

M2

)(
k2μ2 + k2β2ε2x∗

M2

)
,

(c)
(

− k1α0 − k2β0

)2
<

(
k1δ2 + ε1ξ1k1β1

M1
+ ε1k1β1x∗

M1

)(
k2μ2 + k2β2ε2x∗

M2

)
,

where,

M1 =
(
1 + αξ1 + x∗ + ε1y

∗
1

)(
1 + αξ1 + x∗ + ε1y

∗
1

)
,

M2 =
(
1 + x∗ + ε2y

∗
2

)(
1 + x∗ + ε2y

∗
2

)
.

It can be proved by considering the following positive definite function about E∗ as.

V (x, y1, y2) =
(
x − x∗ − x∗ln

( x

x∗ )
)

+ k1

(
y1 − y∗

1 − y∗
1 ln

(
y1
y∗
1

))

+k2(y2 − y∗
2 − y∗

2 ln

(
y2
y∗
2

))
,

where k1 and k2 are the positive arbitrary constants to be chosen mutually.
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Differentiating V with respect to t , we get,

V̇ = −1

L
(x − x∗)2 − (x − x∗)

[
y1

1 + αξ1 + x + ε1y1
− y∗

1

1 + αξ1 + x∗ + ε1y∗
1

]

−(x − x∗)
[

y2
1 + x + ε2y2

− y∗
2

1 + x∗ + ε2y∗
2

]
− k1δ2(y1 − y∗

1 )
2

−k1α0(y1 − y∗
1 )(y2 − y∗

2 )

+k1β1(y1 − y∗
1 )

[
x + ξ1

1 + αξ1 + x + ε1y1
− x∗ + ξ1

1 + αξ1 + x∗ + ε1y∗
1

]

−k2μ2(y2 − y∗
2 )

2 − k2β0(y1 − y∗
1 )(y2 − y∗

2 )

−k2β2(y2 − y∗
2 )

[
x

1 + x + ε2y2
− x∗

1 + x∗ + ε2y∗
2

]
,

after simplifying the above expression, we get,

V̇ = −
(
1

L
+ y∗

1

M1
+ y∗

2

M2

)
(x − x∗)2 −

(
k1δ2 + ε1ξ1k1β1

M1
+ ε1k1β1x∗

M1

)
(y1 − y∗

1 )
2

−
(
k2μ2 + k2β2ε2x∗

M2

)
(y2 − y∗

2 )
2

+(x − x∗)(y1 − y∗
1 )

[
1 + αξ1 + x∗

M1
+ k1β1(1 + αξ1) − ξ1k1β1 + k1β1ε1y∗

1

M1

]

+(x − x∗)(y2 − y∗
2 )

[
1 + x∗

M2
+ k2β2 + k2β2ε2y∗

2

M2

]

+(y1 − y∗
1 )(y2 − y∗

2 )
[

− k1α0 − k2β0

]
.

This is equivalent to the following as,

V̇ = −1

2
a11(x − x∗)2 + a12(x − x∗)(y1 − y∗

1 ) − 1

2
a22(y1 − y∗

1 )
2 − 1

2
a11(x − x∗)2

+a13(x − x∗)(y2 − y∗
2 ) − 1

2
a33(y2 − y∗

2 )
2 − 1

2
a22(y1 − y∗

1 )
2

+a23(y1 − y∗
1 )(y2 − y∗

2 ) − 1

2
a33(y2 − y∗

2 )
2,

where,

a11 =
(
1

L
+ y∗

1

M1
+ y∗

2

M2

)
,

a12 =
[
1 + αξ1 + x∗

M1
+ k1β1(1 + αξ1) − ξ1k1β1 + k1β1ε1y∗

1

M1

]
,

a22 =
(
k1δ2 + ε1ξ1k1β1

M1
+ ε1k1β1x∗

M1

)
,

a33 =
(
k2μ2 + k2β2ε2x∗

M2

)
,
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a13 =
[
1 + x∗

M2
+ k2β2 + k2β2ε2y∗

2

M2

]
,

a23 =
[

− k1α0 − k2β0

]
.

So, the sufficient condition for V̇ to be negative definite are as follows,
a212 < a11a22, a213 < a11a33, a223 < a22a33,

where, a11, a12, a13, a22, a33 and a23 have same meanings as described above.

Numerical simulations

This section deals with the numerical simulations of the system by taking the assumed values
for the parameters. By assuming the values of the parameters as L = 20, α = 0.8, ξ1 =
25, ε1 = 0.4, ε2 = 0.5, β1 = 0.6, β2 = 0.4, μ1 = 0.3, μ2 = 0.5, β0 = 0.2, δ1 = 0.6, δ2 =
0.4, α0 = 0.2. System becomes:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

dx
dt = x

(
1 − x

20

)
− xy1

1+20+x+0.4y1
− xy2

1+x+0.5y2
,

dy1
dt = 0.6(x+25)y1

1+20+x+0.4y1
− 0.6y1 − 0.4y21 − 0.2y1y2,

dy2
dt = 0.4xy2

1+x+0.5y2
− 0.3y2 − 0.5y22 − 0.2y1y2.

(6.1)

Now the system (6.1) has the trivial equilibrium points as E0(0, 0, 0), E1(20, 0, 0). The
existence condition for the equilibrium point E2 is satisfied and (0, 0.267179, 0) is one
of the equilibrium point satisfying condition H1(= 2.4) > 0. Existence conditions of the
equilibrium point E3 isC2(= −2.357) < 0 which is satisfied by taking the above parameters
and so the equilibrium point E3(19.9296, 0.144275, 0) exists. Also, for the system (6.1),
equilibrium point E4(19.8483, 0, 0.158739) exists. Now, by substituting the values of the
parameters in the eqs. (3.4) and (3.5), we get the values of y∗

1 and y
∗
2 as 0.0824207 and 0.12634

respectively. Also, β2 = 0.4 and (μ1 +μ2y∗
2 +β0y∗

1 ) = 0.3+ 0.06317+ 0.032 = 0.39517.
So, the condition β2 > (μ1+μ2y∗

2 +β0y∗
1 ) is valid and the equilibrium point x∗ is a positive

value. So, the nonzero equilibrium point E5(x∗, y∗
1 , y

∗
2 ) exists.

Further, the dynamics of the system is studied by taking some fixed parameters and some
varying control parameters as given in Tables 1 and 2. Predator population shows different
behaviour when the quantity of additional food is changed i.e when α = 0.8 and ξ1 = 25.
It is to be noted that there is a stable coexistence between the three species population when
the system has additional food as its component and there is comparatively higher growth
rate of predators consuming additional food as compared to the other class (Fig. 1).

When the control parameters α and ξ are changed to increase the quantity of additional
food, then a drastic change in the behaviour of predators population is seen. Population of
predators show high growth rate with the increase in additional food and as a result, prey
population decreases due to high predation and the mutual interference between predators
with high strength but less than one results in the low density of predators that are not
consuming additional food (Fig. 2).

In Fig. 4, where a tremendous decrease in the population of predators in the absence of
prey population coincides with the ecological aspect and as the prey population increases,
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Table 1 Numerical Values of Parameters

Parameter values

Symbol Representation Dimension Numerical value

L K
a1

Dimensionless 20

α0
γ1a1
c2

Biomass 0.02

β1
b1
r Dimensionless 0.6

β2
b2
r Dimensionless 0.4

β0
γ2a1
c1

Biomass 0.02

μ1
n1
r Dimensionless 0.3

μ2
n2a1
c2

Biomass 0.005

δ1
m1
r Dimensionless 0.6

δ2
m2a1
c2

Biomass 0.004

Table 2 Parameter values of α, ξ, ε1, ε2

Parameter values

Symbol Numerical
Value
for
Fig. 2

Numerical
Value
for
Fig. 3

Numerical
Value
for
Fig. 4

Numerical
Value
for
Fig. 5

Numerical
Value
for
Fig. 6

Numerical
Value
for
Fig. 7

Numerical
Value for
Fig. 8

α 0.8 2/25 2/25 4/5 2 2 2

ξ1 25 250 25 25 25 250 25

ε1 0.4 0.4 0.004 7 0.4 0.4 0.004

ε2 0.5 0.5 0.005 7 0.5 0.5 0.005

there is variability in the abundance of predators in the presence of low additional food
which conveys the ecological meaning that predators will be solely dependent on preys for
the survival but because of the additional food their population existed even when there were
no preys.

In Figs. 2 and 4, there is difference in the strength ofmutual interference i.e. Fig. 2with high
strength and Fig. 4 with low but both the systems with strength less than 1. Due to lowmutual
interference in the presence of additional food, the predators consuming food suppresses the
prey and other class of predator population. It supports in the eradication of prey population
and other predator population. Unlike, in Fig. 5 when the strength of mutual interference
is high, greater than 1, keeping all other parameters as same results in supporting the prey
population and the population of predators suppresses. It can be concluded that additional
food availability along with the strength of mutual interference has an important role in the
dynamics of the system and hence useful in biological control.

Also, it is to be pointed out that when the strength of mutual interference is high, then both
the families of predators show similar behavior in the presence of additional food (Fig. 5).
Thus, it can be concluded that high level ofmutual interference represses the role of additional
food in predators.

Further, when the value of α increases from 1 and rest all parameters same as in Fig. 2, we
observe that the class of predators not consuming the additional food(z axis) shows higher
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Fig. 1 Numerical solution for the model 5.1
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Fig. 2 Numerical solution with parameter set in Table 1 for the model with α = 4/5, ξ1 = 25, αξ1 = 20

population rate as compared to other class of predators(y axis) with the case α > 1 which
conveys the meaning that when handling time towards additional food is greater than the
time taken to handle preys, then the family of predators(z) is behaving in a different way as
compared to other systemswhenα < 1. In this case, the other class of predators(z) suppresses
the predators class(y) which is true from the ecological point of view as the suppressed class
is dependent on additional food as well (Fig. 7). Also, it is to be noted that when the value of α
is increased to 2 with the low level mutual interference, then it leads to an unstable behaviour
of the system due to the high level of additional food and low interference among predators
which results in the rise of predator population. As an outcome, prey density decreases and
the predators completely dependent on preys for food will suffer. In due course of time,
predators population will also decline and ultimately disturbs the ecosystem.
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Fig. 3 Numerical solution with parameter set in Table 1 for the model with α = 2/25, ξ1 = 250, αξ1 = 20
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Fig. 4 Numerical solution with parameter set in Table 1 for the model with α = 4/5, ξ1 = 25, αξ1 = 20, ε1 =
0.004, ε2 = 0.005

Conclusions

The consequences of providing additional food to predators has long been studied both
theoretically and experimentally [12–15,22]. This study has been a source of interest to
researchers from the point of view of biological control by controlling pests by means of
natural ways. It has also been studied that both the quality and quantity of additional food
plays a vital role in controlling the prey [16–18]. Work has been done in improving the model
based on additional food by incorporating themutual interference between the predators along
with the use of Beddington–DeAngelis functional response and significant results have been
obtained [24,38].

In [42], a prey predator model in which the effects of additional food and the harvest-
ing efforts are discussed. It has been studied in the paper that the alternative food does not
always lead to benefit the system. The final amount of both prey and predator biomass has
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Fig. 5 Numerical solution with parameter set in Table 1 for the model with α = 4/5, ξ1 = 25, αξ1 = 20, ε1 =
7, ε2 = 7
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Fig. 6 Numerical solution with parameter set in Table 1 for the model with α = 2, ξ1 = 25, αξ1 = 50

been examined through the optimal control theory. In [43], a predator prey system has been
investigated where population of the top level predators is provided with the alternative food.
Thereafter, the model is examined by the local stability analysis of the various equilibrium
points and optimal control of harvesting is acknowledged using Pontryagins maximum prin-
ciple. The analysis carried out shows that the provision of alternative food, population of
predator species can be prevented from extinction at the higher rate of harvesting. Study has
been performed to demonstrate the significance of alternative food in the disease induced
prey predator model and the analysis is done in regard to local stability, persistence and
bifurcation. Results are illustrated by the way of numerical simulation to depict the role of
alternative food in the disease free system [44].

The predator’s functional response can be defined as the characterisation of predators
per capita feeding rate which is considered to be a function of prey density say ’N’(Holling
1959). Holling type II functional response states that the average feeding rate of predators

123



428 Differential Equations and Dynamical Systems (April 2022) 30(2):411–431

0 5 10 15 20 25 30

0

2

4

6

8

10

12

14

16

18

20

t

x,
 y

1, 
an

d 
y 2

x

y
1

y
2

10

15

20

0
5

10
15

20

5

10

15

20

xy1

y 2
Fig. 7 Numerical solution with parameter set in Table 1 for the model with α = 2, ξ1 = 250, αξ1 = 500
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Fig. 8 Numerical solution with parameter set in Table 1 for the model with α = 2, ξ1 = 25, αξ1 = 50, ε1 =
0.004, ε2 = 0.005

is dependent on the searching time for prey and the handling time(includes the processing
time) by predators. It takes the form as:

f = a′N
1 + b′N

,

where, a’ and b’ specifies the influence of capturing rate and handling time on the feeding
rate of predators. This functional response ignores the influence of interference among the
predators and presumes that depletion in the prey density is a means by which competition
occurs in predators. Beddington [5] and DeAngelis et al. [30] proposed a functional response
which exhibits the aspect of interference in predators and assumes that predator population
allocates time not only in the quest of prey and in processing prey but also time is expended
in encountering with other predators which determines an another functional called as Bed-
dington functional response. The Beddington DeAngelis functional response relies on the
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fact that handling and interfering are the two exclusive behaviour but Crowley and Martin in
1989 removed this presumption and acknowledged for admitting the interference in predators
irrespective of whether a predator is handling prey or searching for prey. The Beddington
DeAngelis model envisages that under high prey density, the impact of predator interference
on feeding rate gets insignificant but Crowley–Martin model anticipates that interference role
on feeding rate is significant under same conditions [45].

In this paper, an attempt has been made to further improve the prey- predator dynam-
ical model incorporating the concept of additional food with the distinction being made
in the class of predators. There are carnivorous predators and omnivorous predators exist-
ing in the ecosystem with discrimination being done on the basis of consuming the type
of food. Proposed model consists of two classes of predators and role of additional food
has been considered a significant factor along with the mutual interference factor. In this
paper, Beddington–DeAngelis functional response has been considered due to the presence
of mutual interference between the predators with ρ1 and ρ2 being the mutual interference
factor between the class P1 and P2 of the predators. The growth rate of the predator class
P1 is demonstrated with the functional response b1(N+ηA)P1

a1+αηA+N+ρ1P1
and the growth of predator

class P2 with
b2N P2

a1+N+ρ2P2
. It is to be noted that the additional food term ηA is induced in the

growth rate of predator class P1 only. Thereafter, the dynamic behaviour of the system has
been analysed and various conditions of stability have been derived.

Global stability analysis has been performed in the present article using Lyapunov func-
tional method. The interior unique equilibrium point E∗(x∗, y∗

1 , y
∗
2 ) is globally stable under

the conditions a212 < a11a22, a213 < a11a33, a223 < a22a33. Although the formation of Lya-
punov function is not an easy task but the approach is extensively used in many studies as it
facilitates the global stability study [46–48]. Numerical simulations to support the theoretical
results are done.

Acknowledgements Authors are grateful to Professor BalramDubey, BITSPilani for the valuable suggestions
and constant inspiration while preparing this paper.
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