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Abstract In this work, we study the existence of mild solutions for the nonlocal integro-
differential equation

⎧
⎨

⎩

x ′(t) = Ax(t) +
∫ t

0
B(t − s)x(s)ds + f (t, xt ) for t ∈ [0, b]

x0 = φ + g(x) ∈ C([−r, 0]; X),

without the assumption of equicontinuity on the resolvent operator and without the assump-
tion of separability on the Banach space X . The nonlocal initial condition is assumed to be
compact. Our main result is new and its proof is based on a measure of noncompactness
developed in Kamenskii et al. (Condensing multivalued maps and semilinear differential
inclusions in Banach spaces. Walter De Gruyter, Berlin, 2001) together with the well-known
Mönch fixed point Theorem. To illustrate our result, we provide an example in which the
resolvent operator is not equicontinuous.
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Introduction

In the present work, we study the existence of mild solutions of the following integro-
differential equation with finite delay and nonlocal initial conditions
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⎧
⎨

⎩

x ′(t) = Ax(t) +
∫ t

0
B(t − s)x(s)ds + f (t, xt ) for t ∈ [0, b]

x0 = φ + g(x) ∈ C([−r, 0]; X),

(1)

where A is the infinitesimal generator of a strongly continuous semigroup (T (t))t≥0 on a
Banach space X with domain D(A), for t ≥ 0, B(t) is a closed linear operator on X with
domain D(B(t)) ⊃ D(A) which is independent of t , C([−r, 0]; X) is the Banach space of
all continuous functions from [−r, 0] to X endowed with the uniform topology, for t ≥ 0,
the history function xt : [−r, 0] → X is defined by xt (θ) = x(t + θ) for θ ∈ [−r, 0], φ ∈
C([−r, 0]; X), f : [0, b] × C([−r, 0]; X) −→ X and g : C([0, b]; X) −→ C([−r, 0]; X)

are two continuous functions.
In physics, nonlocal initial conditions are usually more precise for physical measurements

andhas better effect than the classical initial condition [10]. The problemswith nonlocal initial
conditions have their origins in the works of Byszewski in his classical papers [7,8,10] in
which he studied the existence of mild solutions for the nonlocal Cauchy problem:

{
x ′(t) = Ax(t) + f (t, x(t)) for t ∈ [0, b]
x(0) = g(x),

(2)

where A is the infinitesimal generator of a semigroup (T (t))t≥0 of linear operators defined
on a Banach space X , and the maps f and g are suitable X -valued functions.

In the recent years,many authors have attractedmuch attention to the study of the existence
of mild solutions to the nonlocal initial value problem. We refer to [1,5,7–10,22,27,28,30,
31]. In [5], Benchohra andNtouyas discuss the semilinear differential equationswith nonlocal
conditions under compact conditions. In [7,8,10], Eq. (2) was studied when f and g satisfy
Lipschitz-type conditions. In [9,22,27,28], the authors studied Eq. (2) under conditions of
compactness of (T (t))t≥0. Xue [30,31] studied Eq. (2) when (T (t))t≥0 is equicontinuous.

On the other hand, the resolvent operator plays an important role in solving (1), it plays
the role of the C0-semigroup theory but does not satisfy the algebraic semigroup property
(Remark 4). When (R(t))t≥0 is a resolvent operator for Eq. (1), the mild solutions are given
by the following variation of constants formula

x(t) = R(t)[φ(0) + g(x)(0)] +
∫ t

0
R(t − s) f (s, xs)ds for t ∈ [0, b].

Formore details about resolvent operatorswe refer to [12,13,18–20,25]. A resolvent operator
(R(t))t≥0 is said to be equicontinuous if t �→ R(t)x are equicontinuous at all t > 0 with
respect to x in all bounded subsets.

In this work, we study the existence of mild solutions for Eq. (1) without the assumption of
equicontinuity on the resolvent operator (R(t))t≥0 andwithout the assumption of separability
on theBanach space X . The proof of themain result is based on the application of theMönch’s
fixed point Theorem combined with a measure of noncompactness with values in the cone
R
2+ developed in [21, Example 2.1.4, page 38].
The result obtained in this work generalizes some results developed in [14,23]. In [14],

the authors obtained results on the existence of mild solutions of Eq. (1) where B = 0 under
condition of compactness of the function g and without assuming that the C0-semigroup is
equicontinuous. To achieve their goal, the authors used the theory of C0-semigroup and the
Schauder’s fixed point Theorem combined with the measure of noncompactness defined as
the sum of the Hausdorff measure of noncompactness and the modulus of equicontinuity
(Example 9). In [23], using an adaptation of the methods described in [32], the authors
studied the existence of mild solutions of Eq. (1) without delay (r = 0) under conditions of

123



Differ Equ Dyn Syst (April 2022) 30(2):315–333 317

compactness of the function g and equicontinuity of the resolvent operator. The approach
used in this work is different from [14,23].

The outline of this work is as follows. In the Preliminary Results section, we recall some
preliminaries about resolvent operator and measure of noncompactness, we also give some
lemmas which will be used in the proof of the main result. In the Main Result section, we
establish our main result on the existence of the mild solutions for Eq. (1). We illustrate our
work in the Application section by examining an example in which the resolvent operator is
not equicontinuous.

Preliminary Results

In this section, we first recall some basic results about the concept of resolvent operator and
the concept of measure of noncompactness in Banach spaces. Then we give some lemmas
which will be used in the proof of the main results.

In the following, X is a Banach space, A and B(t) are closed linear operators on X .
Y represents the Banach space D(A) equipped with the graph norm defined by

|y|Y := |Ay| + |y| for y ∈ Y.

Let Z and W be Banach spaces. We denote by L(Z ,W ) the Banach space of all bounded
linear operators from Z toW endowedwith the operator norm andwe abbreviate this notation
to L(Z) when Z = W . The notation C([0,+∞); Y ) stands for the space of all continuous
functions from [0,+∞) into Y . We consider the following integro-differential equation

⎧
⎨

⎩

y′(t) = Ay(t) +
∫ t

0
B(t − s)y(s)ds for t ≥ 0

y(0) = y0 ∈ X.

(3)

Definition 1 ([17]) A resolvent operator for Eq. (3) is a bounded linear operator valued
function R(t) ∈ L(X) for t ≥ 0 having the following properties:

(a) R(0) = I and ‖R(t)‖ ≤ λeβt for some constants λ and β.
(b) The operator R is strongly continuous, i.e. the map t �→ R(t)x is continuous for every

x ∈ X .
(c) R(t) ∈ L(Y ) for t ≥ 0. For x ∈ Y, R(·)x ∈ C1([0,+∞); X) ∩ C([0,+∞); Y ) and

R′(t)x = AR(t)x +
∫ t

0
B(t − s)R(s)xds

= R(t)Ax +
∫ t

0
R(t − s)B(s)xds for t ≥ 0.

For more properties about resolvent operators theory, we refer the readers to [12,13,17]. In
the sequel, we assume that A and (B(t))t≥0 satisfy the following hypotheses.

(H1) A is the infinitesimal generator of a strongly continuous semigroup on X .
(H2) For all t ≥ 0, B(t) is closed linear operator from D(A) to X and B(t) ∈ L(Y, X).

For any y ∈ Y , the map t → B(t)y is bounded, differentiable and the derivative
t → B ′(t)y is bounded uniformly continuous on R+.

The following theorem gives an existence result of the resolvent operator for Eq. (3).

Theorem 2 ([17]) Assume that (H1) and (H2) hold. Then there exists a unique resolvent
operator of Eq. (3).
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Example 3 ([13]) Let X = R, Ay = y, and B(t) = −2y in Eq. (3). Then we have

R(t)x0 = et (cos t + sin t)x0 and T (t)x0 = e2t x0.

Remark 4 The above example also shows that, in general, the resolvent operator (R(t))t≥0

for Eq. (3) does not satisfy the algebraic semigroup property, namely,

R(t + s) �= R(t)R(s) for some t, s ≥ 0.

Definition 5 Let (R(t))t≥0 be a resolvent operator on X .We say that (R(t))t≥0 is equicontin-
uous (we say also norm continuous or immediately norm continuous) if {t → R(t)x : x ∈ B}
is equicontinuous at any t > 0 for all bounded subsets B in X . This is equivalent to say that

lim
t→t ′

‖R(t) − R(t ′)‖ = 0 for t ′ ≥ 0.

In order to give in the last section an example illustrating the theory in which the resolvent
operator is not equicontinuous, we need to use the following theorem.

Theorem 6 ([16]) Let A be the infinitesimal generator of a C0-semigroup (T (t))t≥0 and let
(B(t))t≥0 satisfy (H2). Then the resolvent operator (R(t))t≥0 for Eq. (3) is equicontinuous
for t > 0 if and only if (T (t))t≥0 is equicontinuous for t > 0.

Remark 7 Throughout the remainder of this work, Mb denotes the constant Mb =
supt∈[0,b] ‖R(t)‖.
Next, we give some definitions, properties and examples about measure of noncompactness.
More details about these facts can be found in the monographs [2–4,21].

Definition 8 Let E+ be a positive cone of an ordered Banach space (E,≤). A function �

defined on the set of all bounded subsets of a Banach space X with values in E+ is called a
measure of noncompactness if �(co�) = �(�) for all bounded subset � ⊂ X , where co�
stands for the closed convex hull of �.

A measure of noncompactness � is said to be:

1. monotone if for all bounded subsets �1,�2 of X , �1 ⊂ �2 implies �(�1) ≤ �(�2),
2. nonsingular if�({a}∪�) = �(�) for every a ∈ X and every nonempty subset� ⊂ X ,
3. algebraically semiadditive if �(�1 + �2) ≤ �(�1) + �(�2) for all bounded subsets

�1,�2 of X ,
4. regular if �(�) = 0 if and only if � is relatively compact in X ,
5. semi-homogeneous: if �(t�) = |t |�(�) for every t ∈ R and all bounded subset � of

X .

Example 9 We give some examples of measure of noncompactness.

1. The Hausdorff measure of noncompactness χ(·) defined on each bounded subset of the
Banach space X is given by

χ(�) = inf

{

ε > 0 : � ⊂
n⋃

i=1

B(xi , ε), xi ∈ X for i = 1, . . . , n

}

.

χ is monotone, nonsingular, algebraically semiadditive and regular.
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2. The modulus of fiber noncompactness χ1 defined for bounded set � ⊂ C([a, b]; X) is
given by

χ1(�) = sup
t∈[a,b]

χ(�(t))

where �(t) = {x(t) : x ∈ �} for t ∈ [a, b].
3. The modulus of equicontinuity

modC (�) = lim
δ→0

sup
x∈�

max|t1−t2|≤δ
‖x(t1) − x(t2)‖

where � ⊂ C([a, b]; X) is bounded. Note that modC (�) = 0 if and only if � is
equicontinuous.

The measure of noncompactness χ1 and modC are not regular.

Now, we give another measure of noncompactness in the space C([a, b]; X) with values in
the cone R2+ which is a very powerful tool in this work.

Example 10 ([21, Example 2.1.4, page 38]). We consider the measure of noncompactness

ν(�) = max
D∈�(�)

(

γ (D),modC (D)

)

(4)

in C([a, b]; X) where �(�) is the collection of all countable subsets of �, modC is given in
Example 9 and γ is the measure of noncompactness defined by

γ (D) = sup
t∈[a,b]

e−Ltχ(D(t)) (5)

where L is a constant. The range for the measure of noncompactness ν is the cone R2+, max
is taken in the sense of the ordering induced by this cone. ν is monotone, nonsingular and
regular. Furthermore, there exists D̃ ∈ �(�) such that the maximum on the right-hand side
of (4) is achieved on D̃.

Lemma 11 ([6, page 125]) Let X be a Banach space. If W ⊂ X is a bounded subset, then
for each ε > 0, there exists a sequence {un}+∞

n=1 ⊂ W such that

�(W ) ≤ 2�({un}+∞
n=1) + ε

where � is any measure of noncompactness.

Lemma 12 ([24, Lemma 1.3, page 25]) Suppose that X is a Banach space and f is an
integrable function from J to X. Then

1

b − a

∫ b

a
f (t)ds ∈ co ({ f (t) : t ∈ [a, b]})

for all a, b ∈ J with a < b.

Definition 13 A set of functions { fn}+∞
n=1 ⊂ L1([0, b]; X) is said to be uniformly integrable

(integrably bounded) if there exists a positive function v ∈ L1([0, b];R+) such that for all
n ≥ 1

‖ fn(t)‖ ≤ v(t) a.e. t ∈ [0, b].
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Lemma 14 ([14]) If {un}+∞
n=1 ⊂ L1(a, b, X) is uniformly integrable, then χ({un(t)})+∞

n≥1) is
measurable and

χ

({∫ t

a
un(s)ds

}+∞

n=1

)

≤ 2
∫ t

a
χ

({un(s)}+∞
n=1

)
ds.

For an abstract operator S : L1([0, b]; X) → C([0, b]; X) we consider the following prop-
erties taken from [21].

(S1) There exists N > 0 such that

‖S f (t) − Sg(t)‖ ≤ N
∫ t

0
‖ f (s) − g(s)‖ds

for every f, g ∈ L1([0, b]; X) and t ∈ [0, b].
(S2) For any compact K ⊂ X and sequence { fn}+∞

n=1 ⊂ L1([0, b]; X) such that
{ fn(t)}+∞

n=1 ⊂ K for a.e. t ∈ [0, b] the weak convergence fn ⇀ f0 implies the
strong convergence S fn → S f0.

Consider the operator � : L1([0, b]; X) → C([0, b]; X) defined by

(� f )(t) =
∫ t

0
R(t − s) f (s)ds for t ∈ [0, b]. (6)

The next Lemma plays a key role in this work and it is a generalization of [21, Lemma
4.2.1, page 111]. Note that the proof of [21, Lemma 4.2.1, page 111] is based on the use of
the algebraic semigroup property which is not satisfied, in general, for a resolvent operator
as mentioned in Remark 4.

Lemma 15 The operator � defined by (6) satisfies the conditions (S1) and (S2).

Proof Let f, g ∈ L1([0, b]; X) and t ∈ [0, b]. We have

‖� f (t) − �g(t)‖ =
∥
∥
∥
∥

∫ t

0
R(t − s)( f (s) − g(s))ds

∥
∥
∥
∥

≤ Mb

∫ t

0
‖ f (s) − g(s)‖ds, (7)

which implies that (S1) holds. Now let K ⊂ X be a compact set and { fn}+∞
n=1 ⊂ L1([0, b]; X)

a sequence such that { fn(t)}+∞
n=1 ⊂ K for a.e. t ∈ [0, b]. Then, there exists F > 0 such that

‖ fn(t)‖ ≤ F for n ≥ 1 and a.e. t ∈ [0, b]. By (7), � is a bounded linear operator from the
space L1([0, b]; X) into C([0, b]; X). Consequently, we have

fn ⇀ f0 �⇒ � fn ⇀ � f0. (8)

To end the proof, we claim that the sequence {� fn}+∞
n=1 is relatively compact in C([0, b]; X).

By Arzelà–Ascoli’s Theorem, it suffices to prove that the sequence {� fn}+∞
n=1 ⊂ C([0, b]; X)

is equicontinuous on [0, b] and {� fn(t)}+∞
n=1 is relatively compact in X for each t ∈ [0, b].

For the first assertion, we start by the equicontinuity at 0. For n ≥ 1 and t ∈ [0, b] we have
‖� fn(t) − � fn(0)‖ ≤ MbFt,
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which gives that ‖� fn(t) − � fn(0)‖ → 0 as t → 0 uniformly with respect to n ≥ 1. Now,
let 0 < t1 < t2 ≤ b and n ≥ 1. We have

‖� fn(t2) − � fn(t1)‖ ≤
∫ t2

t1
‖R(t2 − s) fn(s)‖ds

+
∫ t1

0
‖R(t2 − s) fn(s) − R(t1 − s) fn(s)‖ds

≤ (t2 − t1)MbF

+
∫ t1

0
sup
x∈K

∥
∥R(t2 − t1 + u)x − R(u)x

∥
∥du

The strong continuity of the resolvent operator (R(t))t≥0 ensures that

sup
x∈K

∥
∥R(t2 − t1 + u)x − R(u)x

∥
∥ → 0 as t2 → t1.

Since
sup
x∈K

∥
∥R(t2 − t1 + u)x − R(u)x

∥
∥ ≤ 2MbF,

the Lebesgue dominated convergence theorem leads to
∫ t1

0
sup
x∈K

∥
∥R(t2 − t1 + u)x − R(u)x

∥
∥du → 0 as t2 → t1.

We deduce that
lim
t1→t2

‖� fn(t2) − � fn(t1)‖ = 0 (9)

uniformly with respect to n ≥ 1, which means that {� fn}+∞
n=1 is equicontinuous on [0, b].

Now,we prove the second assertion. Let t ∈ [0, b], (σn) ∈ [0, t] and (xn) ∈ K . Sine [0, t] and
K are compact, there exist two subsequences (σnk ) and (xnk ) of (σn) and (xn) respectively
and σ0 ∈ [0, t] and x0 ∈ K such that σnk → σ0 and xnk → x0 as k → ∞. Now we have

‖R(σnk )xnk − R(σ0)x0‖ ≤ ‖R(σnk )xnk − R(σnk )x0‖ + ‖R(σnk )x0 − R(σ0)x0‖
≤ Mb‖xnk − x0‖ + ‖R(σnk )x0 − R(σ0)x0‖.

Using the strong continuity of the resolvent operator (R(t))t≥0, we get that ‖R(σnk )x0 −
R(σ0)x0‖ → 0 as k → ∞. Consequently

lim
k→∞ ‖R(σnk )xnk − R(σ0)x0‖ = 0. (10)

We conclude that the set {R(σ )x : σ ∈ [0, t], x ∈ K } is compact in X . Hence, the set

co

(

R(σ )x : σ ∈ [0, t], x ∈ K

)

(11)

is also compact in X . According to Lemma 12, we have
∫ t

0
R(t − s) fn(s)ds ∈ tco

(

R(σ )x : σ ∈ [0, t], x ∈ K

)

.

Afterwards

{� fn(t)}+∞
n=1 ⊂ tco

(

R(σ )x : σ ∈ [0, t], x ∈ K

)

, (12)
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which implies that the set {� fn(t)}+∞
n=1 is relatively compact in X for each t ∈ [0, b]. Thus,

in view of the Arzelà–Ascoli Theorem, {� fn}+∞
n=1 is relatively compact in C([0, b]; X) and

so the convergence in (8) is strong. i.e., � fn → � f0. ��
Lemma 16 ([21, Theorem 4.2.2, page 112]). Let { fn}+∞

n=1 ⊂ L1([0, b]; X) be uniformly
integrable. Assume that

χ({ fn(t)}+∞
n=1) ≤ q(t)

for a.e. t ∈ [0, b] where q ∈ L1([0, b]). If S satisfies conditions (S1) and (S2) then

χ({(S fn)(t)}+∞
n=1) ≤ 2N

∫ t

0
q(s)ds for t ∈ [0, b], (13)

where N > 0 is the constant in condition (S1).

Definition 17 ([21]) The sequence { fn}+∞
n=1 ⊂ L1([0, b]; X) is semicompact if it is uniformly

integrable and the set { fn(t)}+∞
n=1 is relatively compact for almost every t ∈ [0, b].

Lemma 18 ([21, Theorem 5.1.1, page 122]). Let S : L1([0, b]; X) → C([0, b]; X) be
an operator satisfying the conditions (S1) and (S2). Then for every semicompact sequence
{ fn}+∞

n=1 ⊂ L1([0, b]; X) the sequence {S fn}+∞
n=1 is relatively compact in C([0, b]; X).

Main Result

In this section, we give some existence results for the nonlocal integro-differential equation
(1). Let us first give the definition of the mild solution.

Definition 19 A continuous function x : [−r, b] → X is said to be a mild solution of the
nonlocal Eq. (1) if x0 = φ + g(x) and

x(t) = R(t)[φ(0) + g(x)(0)] +
∫ t

0
R(t − s) f (s, xs)ds for t ∈ [0, b].

Equation (1) will be studied under the hypotheses (H1), (H2) and the following hypotheses.

(H3) (i) f : [0, b] × C([−r, 0]; X) → X satisfies the Carathéodory-type condition,
i.e., f (·, ϕ) : [0, b] → X is measurable for all ϕ ∈ C([−r, 0]; X) and f (t, ·) :
C([−r, 0]; X) → X is continuous for a.e. t ∈ [0, b].

(ii) There exist a function m ∈ L1([0, b];R+) and a nondecreasing continuous function
� : R+ → R

+ such that

‖ f (t, ϕ)‖ ≤ m(t)�(‖ϕ‖) (14)

for a.e. t ∈ [0, b] and all ϕ ∈ C([−r, 0]; X).
(iii) There exists a function η ∈ L1([0, b];R+) such

χ( f (t, D)) ≤ η(t) sup
−r≤θ≤0

χ(D(θ)) (15)

for a.e. t ∈ [0, b] and any bounded subset D ⊂ C([−r, 0]; X).
(H4) g : C([0, b]; X) → C([−r, 0]; X) is continuous, compact. Moreover

‖g(ϕ)‖ ≤ c‖ϕ‖ + d, (16)

for all ϕ ∈ C([0, b]; X).
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The class of the functions satisfying (H3) (iii) is not empty. The next example gives a function
verifying a such hypothesis. A second function will be given in the next section.

Example 20 Let X be a Banach space and f be defined by

f (t, ϕ) = e−t
∫ 0

−r
F(θ, ϕ(θ))dθ

for t ∈ [0, b] and ϕ ∈ C([−r, 0]; X), where F : [−r, 0] × X → X satisfies the following
condition.

(C) (i) There exist α ∈ L1([−r, 0];R+) and β ∈ L1([−r, 0];R+) such that

‖F(θ, x)‖ ≤ α(θ)‖x‖ + β(θ)

for θ ∈ [−r, 0] and x ∈ X .
(ii) There exists ξ > 0 such that for any bounded subset D ⊂ X

χ(F(θ, D)) ≤ ξχ(D) for a.e. θ ∈ [−r, 0].
Then f satisfies Hypothesis (H3) (iii). In fact, let D be a bounded subset of C([−r, 0]; X).
From (C) (ii) we have

χ(F(θ, D(θ))) ≤ ξχ(D(θ)) for a.e. θ ∈ [0, b],
where F(θ, D(θ)) = {F(θ, ϕ(θ)) ∈ X, ϕ ∈ D}. Using (C) (i), we obtain ‖ f (t, ϕ)‖ ≤
‖α‖L1‖ϕ‖ + ‖β‖L1 for all t ∈ [0, b] and ϕ ∈ C([−r, 0]; X). Therefore, for each t ∈ [0, b],
f (t, D) is bounded. Let ε > 0 be fixed. By means of Lemma 11, there exists a sequence
{ϕn}+∞

n=1 ⊂ D such that

χ( f (t, D)) ≤ 2χ( f (t, {ϕn}+∞
n=1)) + ε

= 2χ

(

e−t
∫ 0

−r
F(θ, {ϕn(θ)}+∞

n=1)dθ

)

+ ε.

On the other hand, using again (C) (i), it follows that

‖F(θ, ϕn(θ))‖ ≤ �α(θ) + β(θ) for n ≥ 1 and θ ∈ [−r, 0],
where � = supψ∈D ‖ψ‖. Thus, F(θ, {ϕn(θ)}+∞

n=1) is uniformly integrable. From Lemma 14,
we get

χ( f (t, D)) ≤ 4e−t
∫ 0

−r
χ

(
F(θ, {ϕn(θ)}+∞

n=1)
)
dθ + ε

≤ 4e−t
∫ 0

−r
χ(F(θ, D(θ)))dθ + ε

≤ 4ξe−t
∫ 0

−r
χ(D(θ))dθ + ε

≤ 4ξre−t sup
−r≤θ≤0

χ(D(θ))) + ε

for t ∈ [0, b]. Since ε > 0 is arbitrary, it follows that

χ( f (t, D)) ≤ 4ξre−t sup
−r≤θ≤0

χ(D(θ))).

Hence the function f satisfies Hypothesis (H3) (iii) with η(t) = 4ξre−t for t ∈ [0, b].
The key tool in our approach is the following theorem due to Mönch [26].
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Theorem 21 ([26]) Let D be a closed convex subset of a Banach space E and 0 ∈ D. Assume
that F : D → E is a continuous map which satisfies Mönch’s condition, that is, (M ⊆ D is
countable, M ⊆ co({0} ∪ F(M)) �⇒ M is compact). Then F has a fixed point in D.

The first result of this work is the following.

Theorem 22 Assume that (H1)–(H4) hold. Then, for each φ ∈ C([−r, 0]; X), the nonlocal
problem (1) has at least one mild solution on [−r, b] provided that there exists a constant
R0 > 0 satisfying

Mb
(‖φ‖ + cR0 + d + �(R0)‖m‖L1

) ≤ R0. (17)

Proof For each x ∈ C([−r, b]; X) the restriction of x on [0, b], x |[0,b] ∈ C([0, b]; X).
For simplicity, we write g(x |[0,b]) as g(x). Our goal is to show that the operator solution
K : C([−r, b]; X) → C([−r, b]; X) defined by the following

(Kx)(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φ(t) + g(x)(t)
︸ ︷︷ ︸

=(K1x)(t)

for t ∈ [−r, 0],

R(t)(φ(0) + g(x)(0)) +
∫ t

0
R(t − s) f (s, xs)ds

︸ ︷︷ ︸
=(K2x)(t)

for t ∈ [0, b]

has a fixed point in the closed ball BR0 = {x ∈ C([−r, b]; X) : ‖x‖ ≤ R0} where R0 is the
constant appearing in the inequality (17). In order to apply Theorem 21, we divide the proof
into three steps.
Step 1 We claim that the operator solution K maps BR0 into itself. For every x ∈ BR0 , we
have for t ∈ [−r, 0]

‖(Kx)(t)‖ ≤ ‖φ(t)‖ + ‖g(x)(t)‖
≤ ‖φ‖ + ‖g(x)‖
≤ ‖φ‖ + c‖x‖ + d

≤ Mb (‖φ‖ + cR0 + d) . (18)

For t ∈ [0, b]

‖(Kx)(t)‖ ≤ ‖R(t)(φ(0) + g(x)(0))‖ +
∥
∥
∥
∥

∫ t

0
R(t − s) f (s, xs)

∥
∥
∥
∥

≤ Mb(‖φ‖ + ‖g(x)‖) + Mb

∫ b

0
�(‖xs‖)m(s)ds

≤ Mb(‖φ‖ + c‖x‖ + d) + Mb�(‖x‖)‖m‖L1

≤ Mb
(‖φ‖ + cR0 + d + �(R0)‖m‖L1

)
. (19)

It follows from the inequalities (17)–(19) that KBR0 ⊆ BR0 .
Step 2We claim that the operatorK is continuous on BR0 . Let (x

n)n≥1 be a sequence in BR0

such that
lim

n→+∞ ‖xn − x‖ = 0. (20)
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We have for each s ∈ [0, b]
‖xns − xs‖ = sup

θ∈[−r,0]
‖xns (θ) − xs(θ)‖

= sup
θ∈[−r,0]

‖xn(θ + s) − x(θ + s)‖

≤ sup
θ ′∈[−r,b]

‖xn(θ ′) − x(θ ′)‖

= ‖xn − x‖.
Using (20), we get that

lim
n→+∞ ‖xns − xs‖ = 0 for s ∈ [0, b].

Hypothesis (H3) (i) implies that

lim
n→+∞ ‖ f (s, xns ) − f (s, xs)‖ = 0 for s ∈ [0, b].

Due to (H3) (ii) we get that

‖ f (s, xns ) − f (s, xs)‖ ≤ 2�(R0)m(s) for s ∈ [0, b].
In view of the Lebesgue dominated convergence theorem we have that

lim
n→+∞

∫ t

0
‖ f (s, xns ) − f (s, xs)‖ds = 0 for s ∈ [0, b]. (21)

For t ∈ [0, b] we have

‖(Kxn)(t)− (Kx)(t)‖ ≤ Mb‖g(xn)−g(x)‖C([−r,0];X) +Mb

∫ b

0
‖ f (s, xns )− f (s, xs)‖Xds.

Taking into account (H4) and (21) we get that

lim
n→+∞ ‖Kxn − Kx‖C([0,b];X) = 0.

On the other hand

lim
n→+∞ ‖Kxn − Kx‖C([−r,0];X) = lim

n→+∞ ‖g(xn) − g(x)‖C([−r,0];X) = 0.

The proof of step 2 is now complete.
Step 3 We claim that the solution operator K satisfies Mönch’s condition.
Suppose A ⊂ BR0 is countable and A ⊂ co({0}∪K(A)). We need to show that A is relatively
compact by using themeasure of noncompactness ν defined inExample 10where the constant
L > 0 is chosen such that

2Mb sup
t∈[0,b]

∫ t

0
e−L(t−s)η(s)ds < 1. (22)

Since

ν(K(A)) = max
D∈�(K(A))

(

γ (D),modC (D)

)

, (23)

there exists a countable set {yn}+∞
n=1 such that {yn}+∞

n=1 ⊂ K(A) and {yn}+∞
n=1 achieves the

maximum ν(K(A)), namely,

ν(K(A)) =
(

γ ({yn}+∞
n=1),modC ({yn}+∞

n=1)

)

. (24)
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So, there exists a set {xn}+∞
n=1 ⊂ A such that

yn(t) = (Kxn)(t) for n ≥ 1 and t ∈ [−r, b]. (25)

According to (H3) (iii) and (5) we have for s ∈ [0, b]

χ

(

{ f (s, xns )}+∞
n=1

)

≤ η(s) sup
−r≤θ≤0

χ

(

{xns (θ)}+∞
n=1

)

≤ η(s) sup
−r≤θ≤0

χ

(

{xn(s + θ)}+∞
n=1

)

≤ η(s) sup
−r≤τ≤s

χ

(

{xn(τ )}+∞
n=1

)

≤ η(s) sup
−r≤τ≤s

eLτ γ

(

{xn}+∞
n=1

)

≤ η(s)eLsγ

(

{xn}+∞
n=1

)

. (26)

On the other hand, using (H3) (ii) and the fact that {xn}+∞
n=1 ⊂ A ⊂ BR0 , we get for all n ≥ 1

‖ f (s, xns )‖ ≤ �(R0)m(s) for s ∈ [0, b]. (27)

Thanks to (H3) (ii), (H3) (iii), (26), (27) and Lemma 15, all the assumptions of Lemma 16
hold. Consequently we find that

χ

(

{(� f (•, xn• )(t)}+∞
n=1

)

≤ 2Mbγ
({xn}+∞

n=1

)
∫ t

0
eLsη(s)ds (28)

for t ∈ [0, b]. Since (H4) holds, by the strong continuity of the resolvent operator (R(t))t≥0

and the Arzelà–Ascoli Theorem, we have that the sets

{(K1x
n)(t) : n ≥ 1} = {φ(t) + g(xn)(t) : n ≥ 1} for t ∈ [−r, 0],

and
{φ(0) + g(xn)(0) : n ≥ 1}

are relatively compact in X . Consequently

χ

(

{(K1x
n)(t)}+∞

n=1

)

= 0 for t ∈ [−r, 0], (29)

and

χ

(
{
R(t)

(
φ(0) + g(xn)(0)

)}+∞
n=1

)

= 0 for t ∈ [0, b]. (30)
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Taking into account (25), (28)–(30) we get that

γ

(

{yn}+∞
n=1

)

= sup
t∈[−r,b]

e−Ltχ

(

{yn(t)}+∞
n=1

)

= sup
t∈[0,b]

e−Ltχ

(

{(K2x
n)(t)}+∞

n=1

)

≤ sup
t∈[0,b]

e−Ltχ

(

{R(t)(φ(0) + g({xn}+∞
n=1)(0)

) + (� f (·, xn· )(t))}+∞
n=1

)

≤ sup
t∈[0,b]

e−Lt2Mbγ

(

{xn}+∞
n=1

) ∫ t

0
eLsη(s)ds

≤ γ

(

{xn}+∞
n=1

)

2Mb sup
t∈[0,b]

∫ t

0
e−L(t−s)η(s)ds.

On the other hand

γ

(

{xn}+∞
n=1

)

≤ γ (A) ≤ γ

(

co
({0} ∪ K(A)

)
)

≤ γ

(

{yn}+∞
n=1

)

≤ γ

(

{xn}+∞
n=1

)

2Mb sup
t∈[0,b]

∫ t

0
e−L(t−s)η(s)ds.

The inequality (22) gives

γ

(

{xn}+∞
n=1

)

= 0. (31)

Combining (26) and (31) we get the following

χ

(

{ f (s, xns )}+∞
n=1

)

= 0 for all s ∈ [0, b]. (32)

This gives that the set { f (•, xn• )}+∞
n=1 ⊂ L1([0, b]; X) is semicompact. In view of Lemma

18, the set �({ f (•, xn• )}+∞
n=1) is relatively compact in C([0, b]; X) where � is the operator

defined by (6).
From (H4), the set {K1xn : n ≥ 1} is relatively compact in C([−r, 0]; X). Since {φ(0) +
g(xn)(0) : n ≥ 1} is relatively compact in X , the family of functions {R(·)(φ(0)+g(xn)(0)) :
n ≥ 1} can be shown to be equicontinuous by using the strong continuity of the resolvent
operator (R(t))t≥0. Using (30) together with the Arzelà–Ascoli Theorem, we obtain that
the set {R(•)(φ(0) + g(xn)(0)) : n ≥ 1} is relatively compact in C([0, b]; X). Finally
we get that {K2xn : n ≥ 1} is relatively compact in C([0, b]; X) because (K2xn)(t) =
R(t)(φ(0) + g(xn)(0)) + � f (•, xn• )(t) for t ∈ [0, b].

Now, let us prove that {yn}+∞
n=1 = {Kxn}+∞

n=1 is relatively compact in C([−r, b]; X). To do
this, we use the Arzelà–Ascoli Theorem. That is, we need to prove that for each t ∈ [−r, b],
the set

{
(Kxn)(t), n ≥ 1

}
is relatively compact in X and the set {Kxn}+∞

n=1 is equicontinuous
on [−r, b]. The relative compactness follows by the fact that for t ∈ [−r, b] we have

{
(Kxn)(t), n ≥ 1

} =
{{

(K1xn)(t), n ≥ 1
}

for t ∈ [−r, 0],{
(K2xn)(t), n ≥ 1

}
for t ∈ [0, b].

For the equicontinuity, it suffices to use the equicontinuity of {K1xn}+∞
n=1 and {K2xn}+∞

n=1 and
the fact that (Kxn)(0) = (K1xn)(0) = (K2xn)(0).

It follows that γ ({yn}+∞
n=1) = 0 and modC ({yn}+∞

n=1) = 0.
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From the monotonicity and the nonsingularity of the measure of noncompactness ν and the
condition A ⊂ co

({0} ∪ K(A)
)
we have

ν(A) ≤ ν

(

co
({0} ∪ K(A)

)
)

≤ ν
(
K(A)

) =
(

γ ({yn}+∞
n=1),modC ({yn}+∞

n=1)

)

= (0, 0).

Since ν is regular, A is relatively compact. In view of the Theorem 21, the operator K has at
least one fixed point x ∈ BR0 , which is a mild solution of the nonlocal problem (1). ��
Remark 23 Theorem 22 can be also proved by using the measure of noncompactness defined
in Example 10 together with the condensing operators. For more details, see the proof of
Theorem 3 in [11] when the authors studied the existence of mild solutions of x ′(t) ∈
A(t)x(t) + F(t, x(t)) for t ∈ [0, b] and x(0) = x0.

Now, we give another existence theorem without condition (16). It is a generalization of
Theorem 3.5 given in [14].

Theorem 24 Assume that (H1)–(H4) hold except for condition (16). Then, for each φ ∈
C([−r, 0]; X), the nonlocal problem (1) has at least one mild solution on [−r, b] provided
that

lim sup
k→∞

Mb

k

(

‖φ‖ + gk + �(k)‖m‖L1

)

< 1, (33)

where gk = sup{‖g(ϕ)‖ : ‖ϕ‖ ≤ k}.
Proof We should only find a closed convex subset W ⊂ C([−r, b]; X) such thatKmaps W
into itself and complete the proof similarly to Theorem 22. From the inequality (33), there
exists a constant k > 0 such that

‖φ‖ + gk < k

and

Mb

(

‖φ‖ + gk + �(k)‖m‖L1

)

< k.

Let W = {x ∈ C([−r, b]; X) : ‖x‖} ≤ k}. For every x ∈ W , we have

‖(Kx)(t)‖ ≤ ‖φ(t)‖ + ‖g(x)(t)‖
≤ ‖φ‖ + ‖g(x)‖
≤ ‖φ‖ + gk

≤ k

for t ∈ [−r, 0], and

‖(Kx)(t)‖ ≤ ‖R(t)(φ(0) + g(x)(0))‖ +
∥
∥
∥
∥

∫ t

0
R(t − s) f (s, xs)

∥
∥
∥
∥

≤ Mb(‖φ‖ + ‖g(x)‖) + Mb

∫ b

0
�(‖xs‖)m(s)ds

≤ Mb
(‖φ‖ + gk + �(k)‖m‖L1

)

≤ k

for t ∈ [0, b]. We conclude that K maps W into itself. ��
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Application

In this section, we apply the results obtained in the previous section to the following partial
integro-differential equation:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂

∂t
u(t, y) = ∂

∂y
u(t, y) +

∫ t

0
ζ(t − s)

∂

∂y
u(s, y)ds + κ(t)h(u(t − 1, y))

for t ∈ [0, 1], y ∈ [0, 1],
u(t, 1) = 0 for t ∈ [0, 1],
u(θ, y) = cos

(π

2
y
) + λ

∫ θ

−1
(1 − y) sin(u(0,−η))dη for θ ∈ [−1, 0] and y ∈ [0, 1],

(34)
where λ is a positive constant and ζ , κ and h are functions satisfying the following assump-
tions:

(A1) ζ : R+ → R
+ is bounded and C1 function such that ζ ′ is bounded and uniformly

continuous on R+.
(A2) κ : [0, 1] → R is integrable.
(A3) h : R → R is Lipschitzian with a Lipschitz constant Lh and h(0) = 0.

To rewrite Eq. (34) in the abstract form, we introduce the Banach space X = { f ∈
C([0, 1];R) : f (1) = 0} of continuous functions from [0, 1] to R vanishing at 1, equipped
with the supremum norm.
We define the operator A : D(A) ⊂ X → X by

{
D(A) = { f ∈ C1([0, 1];R) : f ′(1) = f (1) = 0}
A f = f ′.

It is well known from [29, page 44] that A is the generator of the so-called C0- semigroup of
left translations (T (t))t≥0 on X , given by

{
(T (t) f )(s) = f (t + s) for t + s ≤ 1
(T (t) f )(s) = 0 for t + s > 1,

which implies that (H1) is satisfied. Furthermore, from [15, page 120], the C0-semigroup
(T (t))t≥0 is not equicontinuous.
Let B : D(A) ⊂ X → X be the operator defined by

B(t) f = ζ(t)A f for t ∈ [0, 1] and f ∈ D(A).

Then (H2) follows from (A1). Define the functions f : [0, 1] × C([−1, 0]; X) −→ X ,
g : C([0, 1]; X) −→ C([−1, 0]; X) and φ by

f (t, ϕ)(y) = κ(t)h(ϕ(−1)(y)) for t ∈ [0, 1] and y ∈ [0, 1], (35)

g(ψ)(θ)(y) = λ

∫ θ

−1
(1 − y) sin(ψ(0)(−η))dη for θ ∈ [−1, 0] and y ∈ [0, 1],

φ(θ, y) = cos
(π

2
y
)

for θ ∈ [−1, 0] and y ∈ [0, 1]. (36)

If we take x(·)(y) = u(·, y), then Equation (34) takes the following abstract form
⎧
⎨

⎩

x ′(t) = Ax(t) +
∫ t

0
B(t − s)x(s)ds + f (t, xt ) for t ∈ [0, 1]

x0 = φ + g(x) ∈ C([−1, 0]; X).

(37)
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In view of Theorem 2, Eq. (34) has a unique resolvent operator (R(t))t≥0. According to
Theorem 6, the resolvent operator (R(t))t≥0 is not equicontinuous.
The function f is well defined. In fact, let t ∈ [0, 1] and ϕ ∈ C([−1, 0]; X). If yn → y in
[0, 1] thenwehave thatϕ(−1)(yn) → ϕ(−1)(y). From (A3), it follows thath(ϕ(−1)(yn)) →
h(ϕ(−1)(y)). Consequently

f (t, ϕ)(yn) → f (t, ϕ)(y).

Using (A3) (h(0) = 0) we get f (t, ϕ)(1) = κ(t)h(ϕ(−1)(1)) = κ(t)h(0) = 0.We conclude
that f (t, ϕ) ∈ X which means that f is well defined.
Thanks to (A2) and (A3), we can also prove that the function f satisfies (H3) (i).
Assumption (A3) implies for t ∈ [0, 1] and ϕ ∈ C([−1, 0], X) that

‖ f (t, ϕ)‖ = sup
y∈[0,1]

| f (t, ϕ)(y)| ≤ |κ(t)| sup
y∈[0,1]

|h(ϕ(−1)(y))|
= |κ(t)| sup

y∈[0,1]
|h(ϕ(−1)(y)) − h(0)|

≤ |κ(t)|Lh sup
y∈[0,1]

|ϕ(−1)(y)|
= |κ(t)|Lh‖ϕ(−1)‖
≤ |κ(t)|Lh‖ϕ‖.

This means that (H3) (ii) holds with�(z) = Lhz for z ∈ R
+ andm(t) = |κ(t)| for t ∈ [0, 1].

On the other hand, due to (A3), we get

‖ f (t, ϕ) − f (t, ψ)‖ ≤ Lh |κ(t)|‖ϕ(−1) − ψ(−1)‖. (38)

Lemma 25 The function f satisfies Hypothesis (H3) (iii) with η(·) = Lh |κ(·)|.

Proof Let D be a bounded subset of C([−1, 0], X) and t ∈ [0, 1]. Then D(−1) is a
bounded subset of X . Let us pose λ = χ(D(−1)) and fix some ε > 0. Then there exists
{x1, x2, . . . , xn} ⊂ X such that

D(−1) ⊂
n⋃

i=1

B(xi , λ + ε). (39)

We can find {ϕ1, ϕ2, . . . , ϕn} ⊂ C([−1, 0]; X) such that ϕi (−1) = xi for each i ∈
{1, 2, . . . , n}. Put zi = f (t, ϕi ) for i ∈ {1, 2, . . . , n}. Let z ∈ f (t, D). Then there exists
ϕ ∈ D such that z = f (t, ϕ). Since ϕ(−1) ∈ D(−1), by (39) there exists i0 ∈ {1, . . . , n}
such that

‖ϕ(−1) − xi0‖ < λ + ε. (40)

By virtue of (38) and (40), it follows that

‖z − zi0‖ = ‖ f (t, ϕ) − f (t, ϕi0)‖ ≤ Lh |κ(t)|‖ϕ(−1) − ϕi0(−1)‖ = Lh |κ(t)|‖ϕ(−1)

−xi0‖ < Lh |κ(t)|[λ + ε].
We have proved that for each z ∈ f (t, D) there exists i0 ∈ {1, . . . , n} such that z ∈
B(zi0 , Lh |κ(t)|[λ + ε]). Hence we conclude that

f (t, D) ⊂
n⋃

i=1

B (zi , Lh |κ(t)|[λ + ε]) . (41)
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On the basis of the definition of the Hausdorff measure of noncompactness we get

χ( f (t, D)) < Lh |κ(t)|[χ(D(−1)) + ε].
Since ε > 0 is arbitrary, it follows that

χ( f (t, D)) ≤ Lh |κ(t)|χ(D(−1)).

Afterwards
χ( f (t, D)) ≤ Lh |κ(t)| sup

θ∈[−1,0]
χ(D(θ)). (42)

This means that (H3) (iii) is satisfied with η(·) = Lh |κ(·)| and the proof of Lemma 25 is
now complete. ��
Lemma 26 The function g defined by (36) satisfies Hypothesis (H4).

Proof For the sake of convenience, we divide the proof into several steps.

Step 1. We show that the function g is well defined. Let u ∈ C([0, 1], X), θ, θ ′ ∈ [−1, 0]
with θ ′ ≤ θ and y, y′ ∈ [0, 1].
We have

|g(u)(θ)(y) − g(u)(θ)(y′)| ≤ λ

(∫ θ

−1
| sin(u(0)(−η))|dη

)

|y − y′| ≤ λ(θ + 1)|y − y′|
≤ λ|y − y′|. (43)

Clearly, g(u)(θ)(1) = 0which togetherwith the inequality (43) lead to g(u)(θ) ∈ X .
On the other hand

|g(u)(θ)(y) − g(u)(θ ′)(y)| ≤ λ(1 − y)
∫ θ

θ ′
| sin(u(0)(−η))|dη

≤ λ|θ − θ ′|.
Hence

‖g(u)(θ) − g(u)(θ ′)‖ ≤ λ|θ − θ ′|. (44)

We conclude that g(u) ∈ C([−1, 0]; X).
Step 2. We prove that the function g is continuous. Let u, u′ ∈ C([0, 1]; X).

For each θ ∈ [−1, 0] and y ∈ [0, 1] we have

|g(u)(θ)(y) − g(u′)(θ)(y)| ≤ λ(1 − y)
∫ θ

−1
| sin(u(0)(−η)) − sin(u′(0)(−η))|dη

≤ λ(1 − y)
∫ θ

−1
|u(0)(−η) − u′(0)(−η)|dη

≤ λ(1 − y)(θ + 1)‖u − u′‖
≤ λ‖u − u′‖, (45)

which yields that
‖g(u) − g(u′)‖ ≤ λ‖u − u′‖. (46)

We conclude that the function g is continuous on C([0, 1]; X).
Step 3. We prove that the function g satisfies inequality (16).

Observing that g(0) = 0, it follows from inequality (46) that ‖g(u)‖ ≤ λ‖u‖ for
each u ∈ C([0, 1]; X). Hence (16) holds with c = λ and d = 0.

123



332 Differ Equ Dyn Syst (April 2022) 30(2):315–333

Step 4. We show that the function g is compact.
Let B ⊂ C([0, 1]; X) be a bounded subset of diameter δ(B). We have to prove that
g(B) is relatively compact in C([−1, 0]; X). To do this, we must prove that:

(i) The family g(B) is equicontinuous on [−1, 0].
(ii) The family g(B)(θ) is relatively compact in X for each θ ∈ [−1, 0].

Assertion (i) follows from (44). Next, we show that (ii) holds. Firstly, the equicontinuity
of the family g(B)(θ) on [0, 1] follows from (43). Secondly, using (45) we deduce that
δ(g(B)(θ)(y)) ≤ λδ(B) which means that the family g(B)(θ)(y) is bounded. The proof of
Lemma 26 is now complete. ��
Now, the inequality (17) of Theorem 22 is equivalent to the existence of R0 > 0 such that

R0

(

1 − M1(λ + Lh‖κ‖L1
)
)

≥ M1‖φ‖ = M1, (47)

where M1 = supt∈[0,1] ‖R(t)‖. This is equivalent to say that

M1(λ + Lh‖κ‖L1) < 1. (48)

At this point, if we suppose that (48) holds, then all the assumptions of Theorem 22 are
fulfilled. Thus, we have the following result.

Proposition 27 Under the assumptions (A1)–(A3), the nonlocal problem (34) has at least
one mild solution on [−1, 1] provided that (48) holds.
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