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Abstract

This paper studies the limit cycles produced by small perturbations of certain planar Hamil-
tonian systems. The limit cycles under consideration correspond to critical levels of the
Hamiltonian, that is they are located in a small vicinity of a separatrix contour or a critical
point. Two most interesting facts in the paper are that the Hamiltonian function is not a
polynomial and that the system under consideration comes from a model of oscillator with
a pair of irrational nonlinearities, which implies the transition from smooth to discontinuous
dynamics. This model has been proposed recently by Han et al. in a paper published in 2012.

Keywords Limit cycle - Non-polynomial - Hamiltonian system - Melnikov function -
Asymptotic expansion

Introduction

One of the old problems in the theory of dynamical systems is to find an upper bound for the
number of limit cycles in polynomial vector fields defined in the plane, and investigate their

relative positions. This problem is as know Hilbert’s 16th problem. More precisely, consider
a near-Hamiltonian system

X:Hy—i-sp(x,y,é), y:_HX +5¢1(X7y,3), (1)

where p, ¢ and H are real analytic functions, ¢ is a small positive parameter and § € D is a
vector parameter that D is a compact subset of R". Assume that the unperturbed system

i=Hy,, j=-H, )
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has a continuous family of ovals L, defined by H(x,y) = h for h € (hy, hy). Then,
associated to perturbed system (1), we define an Abelian integral of the form

M(h, §) :% qdx — pdy.
Ly

By Poincaré—Pontryagin Theorem [11], the number of isolated zeros of M (h, §), counted
with multiplicity, gives an upper bound for the number of limit cycles of (1). Hence, Abelian
integral plays an important role in the study of bifurcation of limit cycles from system
(1). The study of the asymptotic expansion of M (h, §) near critical values of H, in order
to study the isolated zeros of Abelian integrals, is a valuable problem. There have been
many studies on the limit cycle bifurcations studying the asymptotic expansion of M (h, §)
when H being a polynomial e.g. [4,8-10] and the references contained in those papers.
But when the Hamiltonian function H is not a polynomial, there are very few results on
this area. For instance, the authors of [3] studied the number of limit cycles for perturbed
pendulum-like equations on the cylinder, in which the associated Hamiltonian is given by

H(x,y) = % + 1 — cos(x). An excellent work is done by Villadelprat et al. in [2] based
on a “computer assisted proof” using interval arithmetic. Also, the authors of [7] considered
a non-polynomial potential system that the associated Hamiltonian is given by H(x, y) =
33?4+ 3(e7* + 1) — e~*. By Chebyshev criterion, they showed that the cyclicity of the
period annulus of this system under the small perturbation is at most two.

Han et al. [6] proposed a novel nonlinear oscillator with strong irrational nonlineari-
ties having smooth and discontinuous characteristics depending on the values of a smooth
parameter. In fact, they considered

1 1
i+t |l-—m —— |+ ) [ 1 - —— ] =0, @
e a)( \/(x+ot)2+/32> . a)( \/(x—a)2+ﬂz> ®

where o, 8 > 0 are real numbers. By letting x = y, Eq. (3) can be written in the following
form:
x=y, y=-Fkx ap), “)

where

1 1
Fx,a,p) = l - —— — l - —=.
(x,a, B) (x+oz)( —(x—i—a)z—i—ﬁz) + a)( (x—a)2+/32>

System (4) is a Hamiltonian system with the Hamiltonian function

1 1
H(x,y) = 5 a7 \/(x +a)?+ g2 \/(x — )+ 2420 + B2 = o v+ Ho(x).
%)
We see that although the above Hamiltonian is not a polynomial, its level curves are anyway
branches of an algebraic curve of degree 8. More explicitly, it is

1 4 1 2
<5y2+x2—h> —4(x2+a2+/32)(§y2+x2—h> +160*x> =0, a, B >0.

52, 52) and

The phase portraits of system (4) are shown in Fig. 1, where C := (
V5

8
A= {(a,ﬂ) [3x, @), B> =

,st. F=F,=0¢,
25

@ Springer



Differential Equations and Dynamical Systems (October 2022) 30(4):969-994 971

o 05

7
" m A
| “ @ O | “
5 Bl H H T v T

1] T

Fig. 1 Bifurcation diagram and phase portraits of system (4)

NG

)\'2 = [(avﬂ) | H(X,(X), :3 < %

2 ={(apB) ]I, a), st. F=F, =0, i =1,2}.

,s.t.F=Fx=0],

Since Hy(x) in (5) is an even function and Hp(x) ~ Ax?+ Bx*+ ... near zero, where

g2 (B —da?) e .

A =1—- ———= and B = ===—=~, then a double homoclinic loop through a triple
@477 4@>+p2)2

critical point exists if and only if A = 0, B < 0. An easy calculation yields the conditions

o+ g% - ,B% =0, a? < a? + B2 < 5a2. Therefore, A, is the simple curve

2 8
V1—83, 0,—|.
b ﬂe( 5J§>

Along the curve Aj, the phase portrait of system (4) is shown in Fig. 2.
The explicit expressions for the algebraic curves A1 and A3 are the following:

I

a=p

A1 a® 430?84+ 3a? 8 4+ B — gt =0,
A3 1 25608 + 76820 8% + 7680 B4
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+25602 8% — 768a° + 27840 % + 960> B* + 7680t — 96’ B>
—27B% = 2560% = 0.

In this paper, we take a codimension one case from the bifurcation diagram of the model,
which corresponds to double cuspidal loop in the phase portrait. In fact, we will focus on
the case (o, B) € Ay. Our aim is to study the limit cycles generated by small perturbations
of the non-polynomial planar Hamiltonian system (4) when («, 8) € A2. The limit cycles
under consideration correspond to critical levels of the Hamiltonian, that is they are located
in a small vicinity of a separatrix contour or a critical point.

The core of the present paper consists of extensive asymptotic calculations of the related
line integrals which appear in the first-order approximation of the displacement map near the
critical levels of the Hamiltonian. Most of the formulas are generated by computer manipu-
lation programs such as Maple. We follow the ideas and use formulas from the paper [5] by
Han Maoan et al. published in 2012, too. In Sect. 2, we perturb system (4) with («, B) € Az,
and then, we study the generated limit cycles by using the asymptotic expansions of the
associated Melnikov functions. The formulation of the main result of the paper is given in
Theorem 2.6 (see Sect. 2.4).

We illustrate our results on the example when o = §; see Sect. 3.

Study of System (4) Under Small Perturbations

In this section, we consider the following perturbed system

X=y+epx,y,9),
y=—Fx,a,pB)+eq(x,y,8), (6)

where p, g are C® functions, ¢ is a small parameter and § € D C R™ with D a compact set.
Our system is a perturbation of the Hamiltonian system (4) with the Hamiltonian function

(5).

System (4) with & = B3\/1— B3, B € (0, 2. has a nilpotent saddle at A(0,0),
two centers at Cq(x*, 0) and Co(—x*, 0) in which the value of x* is implicitly obtained
from the equation F(x, o, f) = 0 and a double homoclinic loop L¢ passing through the
nilpotent saddle A. Also, system (4) has three families L1, L, and L3 of periodic orbits near
Ly : H(x,y) = 0, which yield three Melnikov functions as follows :

M (h, 8) :i qgdx — pdy, for 0<—-h<«k1
1
M(h, 5) :?§L gdx — pdy, for 0<—h<1
2
M*(h,8) = ﬁ qdx — pdy for 0 <h<k1.
3
Our main goal in this section is to study the expansions of these Melnikov functions and use
the first nonvanishing coefficients of the expansions to give a lower bound of the number of

limit cycles produced near the double homoclinic loop Ly.
Before continuing the discussion, let’s remind that we can write

M(h, 5) =¢ qdx — pdy = // (px +qy)dxdy =¢ G(x,y,8)dx,
H=h H<h H=h
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Fig.2 Phase portrait of system (4) when («, B) € Ay

where y
‘i(xsy,fs):fZ(x’%‘s)_CI(x,Oa‘s)"‘/(; Px(X,Ms(S)du

satisfies gy = px + gy and g(x,0,8) = 0. Then g(x, y, ) = ijl q;(x) y/, where

19
. _ (e + 4y _ 7
gj+1(x) G+ D1y (p q})‘s=y=0 )

Asymptotic Expansions of the Melnikov Functions M and m

In this section, we calculate the expansions of M (h, §) and M (h, 8). First, we start by writting

M(h,(S):% c}(x,y,S)dx:/ c}dx—i—/ z}dx:]l(h,S)—l-/ gdx,
Ly L L—L®P

1 Ll_L(ll)
M(h,&):% c}(x,y,&)dx:/ 1 zjdx—i—/ ] zjdx:lz(h,(S)—i—/ Gdx,
Ly L L—L) L)

2
®

Where Ly := {(x,y) | H(x,y) = %yz 4+ Ho(x) = h, x >0, 0 < —h < 1}, Ly :=
(L) [H@,y) = 3y +Ho) =h, x <0, 0 < —h < Vand L{" = {(x, y) [H(x. y) =
hon(h) < x < xo), LY = {(x, y) | Hx,y) = h,x{, < x < n/(h)} (for the definitions of
X0, x(’), n(h) and n’(h) see Fig. 3), and the second terms in M (h, §) and M (h, §) are analytic
functions in & for 0 < —h < 1.

To study the analytical properties of I;(h, §) and I>(h, §) at h = 0, we note that for |A|
small enough the equation H (x, y) = h has two C® solutions yt = +V2w(l+ O(|x, w)),
where w = +/h — Ho(x). Denote u = ¥ (x) = &/—Hy(x) and ug = ¥ (xg) > 0. Then, we

have the following result on the expansion of the functions 7 (%, §) and I>(h, §) near h = 0.
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L (k)
N'(h
Q) (h)
{x=x'} x=x}

Fig.3 Position of n(h), ¢(h) and x|

Lemma 2.1 The functions 11 (h, 8) and I>(h, 8) introduced in (8), for 0 < —h < 1, can be
written as

3
Li(h,8) = x1(h,uo) + Y If . (h) I.o(h, uo),
r=0
3
D(h, 8) = xa(h, uo) + Y (=1 If .(h) I o(h, uo),
r=0

where x1(h, uo), x2(h, ug) are analytic functions in h, I, o(h, ug) = f”ol u"~/h +u*du,
' ||
and Il*.,r(h) = Zm,/ZO r4m+r»jazm+r,j'3:m+rh]+m forr =0,1,2,3, with

2J (2j+D!
a,f = 4j+k+3)@j+k—1)...(k+7)
1

k=0, j=1;
k>0, j=0,

(=D)" (r+1)(r+5)...(r +4m—3)
*
Bipir = | D G+1D)...(r+dm+3)

m=>1, 0<r<3;
m=0, 0<r <3.

Here, the coefficients ry j are given by the Taylor expansion coefficients of the functions

oG Nk
=90 g~ 25

in u, which appear along the proof.

Proof We have that

X0
Il(h,6>=/mq*dx=f G0y 8) = x, v, 8) dx
Ly n

=z/

X0 _ . _ 3
(h)q,(x)wzf“dx, where Gj(x) =2/ gy 41(x). )
j=071

Therefore,

uo )
Ii(h,8) = th RAOUSATED DN
7|

j=0 k=0
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where w = vh 4+ u* and
q;(x)
Y (x)

qj(u) =

ug .
= Zrk,juk, I :/ i Wk w L dqy. (10)
=y~lw >0 |hl4

Similarly, we have that

' (h)
Iz(h,rS):/(l)édx:/ GG yT8) = G(x,y7, 8) dx
L, X}

0

I
—|h%

= 2/ Gjw* du =Y (=Drre I 5.

j=0v 4o k>0
To calculate I ;, by using the formula (27) given in [5], namely,

WL+ utyi T A+ L)n
4j+k+3 4j+k+3

/ Wk (h 4 u)+? du = / W (h 4 u*) =t du,

we have that

4(j+3)h
Ik,j(h7 up) = <Pk,j(”0, h) + m Ik,j—l(hy up),
where .
k+1 4yj+1
Uy (h+up)/ T2
@.j (o, h) 4 +k+3
It follows that .
Ij = @r,j + o jh! o, k=0, j=>1, (11)
where ¢ ; € C, and
- Qj+D! .
o = Y ammaenwrn kz0 iz
J 1 k>0, j=0.

Further, using the formula (29) given in [5], namely,

k-3 443 _
/uk(h+u4)%du: uhtunz k= Dk /uk_4(h+u4)%du,

k+3 k+3

we have that

k-3
Ivo = — ——hl_49, k=>4, c C?.
k0 = Yk i3 et > Yk
It follows that 3
I4m+r,0 = 1p[/4m+r + ﬂIerrhm Ir,O, k>0, ] > 1, (12)

where 1/}4m+r € C? and

D" HDE4S)...(r+4m—=3) .
Bimir = { D +1D)...(r+dm+3) m>1, 0<r=<3;
1

m=0, 0<r <3.

By (11) and (12), we get that

Iy, j = ¢r,j +a,f’j1/~/khj + o i B R Lo, for k=4m+r, m>0, 0<r<3.
(13)
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Hence, by (9), (11) and (13) we get
Ii(h, ) =Zrk,01k,0+ Z rkj Ik,j + Z rkj k.

k>0 0<k<3 k=4m+r
j>1 0<r<3
m,j>1

3 3
= Z r4m+r,0&4m+r + Z Z r4m+r,0,3j;m+r " Ir,O + Z Z rk,j@k,j

m>1 r=0 \m>0 k=0 j>1
0<r<3
3 3
Y D e b o+ Y] Y Famr (@4m+r,j+Oth+r,j¢4m+rh’)
k=0 \ j>1 r=0m,j>1

3
* * j+m
+ Z Z r4m+"*ja4m+r,j'84m+rhj Iy .

r=0 \m,j>1
Thus,
3
Ii(h, &) = x1(h, uo) + Z I, (h) I o (h, ug), (14)
r=0
and in a similar way,
3
Iy(h, 8) = xa(h, uo) + Z(—l)’ 15, () Iy 0 (h, uo), (15)
r=0

with x1 (2, uo), x2(h,uo) € C¥and If' . (h) = 3., o Famtr, j %y, By, BT forr =
0,1,2,3. o

To gain the analytical properties of the functions I, o(h), we let v = |h|% /u in (10) for
(k, j) = (r, 0), and obtain

I o(h) = |h|5T3

1
/ CovTTTRI — vt dv,
|

h| 4 Jug
Note that for 0 < v < 1 we have the following convergent series
4 8 12
- v v v
V1—vt = =1 — - — — — 40 (v'9).
vi=D e 7 "% 160w
j=0
Then, for r = 1, we have
1 R 1 .
Do o) = [l er (=10 AT +1nfuol ) + 1 (h o) = —2hIn k] + G1(h. o), (16)

where
4(0=j) 4 i
¢j (Il = g™~ 1ni7)

. 1
G1(h, o) = = |hlInJuo| + 3

=0 4G -1
Jj#1
For r # 1, we have
1
IroGh,ug) = [h]F5 Y ¢, vy = A BT 4 G (huo), (17)

1
=0
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r—4j+3
- o . coul )
where Ar = ijo 4/_71_3 and (pr(l’l, uo) = — ijo 2”27’__3“’”]
Furthermore, for the constants A, in (17), since A, is independent of uo, we can take
ug = 1. Then
1 i

Ci .
7 (h, 1) = — L —n)y = O(h%).
@r(h, 1) ;4j_r_3|| 3ty T o)

Thus, by (10), for 0 < —h < 1 we have

01, 0(h, up) roo3\ s 1
— == -+ - h|a73 O (|h)). 18
o <4+4> i oqn) ()
On the other hand, by (10), we have that
1 r 1 —r
a1 0(h, up) :1/ 1 u" du :1|h|5*4l/ | v du. (19)
oh 2Jwa Vh+ut 2 ha V1 —v4
e For r = 0, comparing (18) and (19) gives
g mHate oy,
Ag = —= lim ——— = —— ———— = —0.8740191850.
3 h—0 |h|~3 3 Jo 1 —v?

e Forr = 2, note that

1 -2 1
v 1
7dv=/ u_2|:1+<7—1>] dv
/\h|4l V1 =04 it V1=t

——d |h|;)+/‘ v
B it VT — oA (1 + VT — %)

Therefore, by substituting the above into (19), we get

a1 o(h, 1 1 1 1 24
Mz_?hl%—i_ 4 |h|%/ v-dv
|

oh 2727 i VT VI = o)
Consequently,
01r,0(h,uo) 1 2
i} 4 Unolhuo) 47 1 1 d
Ay= > fim —on__ % [_7 n 7/ v v } = 0.2396280472.
5 h—0 |h|3 5 2 2 \/]—v4(1+x/1—v4)

Proposition 2.2 Let Lo = Lo U Lo be a double homoclinic loop defined by H(x,y) =0,
where Lo = Lo|y=0 and Lo = Lo|x<o. Then for the functions M (h, §) and M (h, §) given in
(8), we have

3 5 7
M(h,8) =co+cilh|? +cahln|h| + c3h + calh|? + cslh|F + ce k> In |h] + O(|h|?),
M(h,8) =& +cilhl? —cahIn|h] + & h+ calhl? + cslh|F — cg B2 In k| + O(h[?),

(20)
in which
co = M(0,9) =?§_ gdx — pdyleo, = (0,8 =y§ gdx — pdyleo,
Lo Lo
_ 1
c1=Aoron, 2= —g o
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3= %i [(Px + qy)le=0 —ao — a x] dt + Oi(c1) + Oi(c2),
Lo

3= ?g [(Px + @y)|e=0 — ap — a1 x| dt + O1(c1) + O1(c2),
Lo

_ - (6 1 1
cg = Az, ¢5=—Ap (7 o= o 1’40) , 6= —5(3 11— 150), 2D

withay = (px +qy)le=x=y=0, @1 = (Pxx +qyx)le=x=y=0, O1(c) denotes c times a constant,
and rij will be introduced in the proof.

Proof By (8), (14), (15), (16) and (17), for 0 < —h <« 1 we have
_ 1 _
M(h, 8) = g1(h, 8) + Ao Ily(h)|h]3 — I HIORS Ay I (h) |3,

~ - 3 1 - 5
M(h, 8) = @a(h, 8) + Ao I{y(h)|h|* + 3 hin|h| If(h) + Ao Iy (W) |R|*,  (22)

where
Iy = rooagoBg + (raoaioBs + rorag B3) b+ O (),
Ify = rioaioBi + (rsoa3oBt + rinaf BY) h+ O,
1Ty = raoazpB5 + O(h),
and
6 3
agy = ajy =y =gy =asy =1, ag = 7 =g
1 1

Therefore, we can obtain the expansion of M (f}, 8) by inserting the above into (22) with
co = ¢1(0,8) = M(0, §) and ¢o = ¢2(0,§) = M(0, §) given by (21), and

_ 1 _
c1 =Agrp, €2 = g, = Ap 10,

- (6 1 1
cs = —Ag (7 ro1 — 7r4o> , C6= —33(3r11 — 150).
Note that, by Taylor expansion, we obtain x = vl w) = ou + 11 w4+ nud 4+ 0w,
where

\/E\VB 21,311/3+8ﬂ7/3*28/33

0= , T = 3 s
v =5 /32/3 +4 (_2 /—ﬁ2/3 (5 }32/3 _ 4)ﬁ)2/2 }32/3 (5 ﬂ2/3 _ 4)

0= —% -2 \/—,32/3 (5823 — 4)ﬂ\/—ﬁ2/3 (5823 — 4) (40125 BT —192300 % + 379440 p!

31 » 9 2 3 3 4
385664 8% + 198592 BF — 33024 8% — 11264 85 + 4096 B3 ) (78125,3 5 _ 437500 8%
g 2 S 2 13 ™!
—1400000 8% + 1120000 8% + 143360 B3 — 16384 83 + 1050000 B'% — 537600 B ) ,

and m = A0+ A1 Xz + A X4 + O(x6)a where
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3 V2823 (105 B33 — 224 B2 + 152 p*/3 — 32 2/3)

A ;
8 (5823 —4)* J—=p% (5572 - 4)
2
A2 = V2 862125 '3 — 4313100 8143 4 9080880 *
128

—10357888 B'9/3 1 6830528 B3/3 — 2545920 82

_1
+472004 4% — 28672 7% ( (-5B+4 3/E)2 (567 - 4)3 Jp% (5823 - 4)) _

Suppose that p(x, y) = 3., ;¢ aij x'y/ and g(x,y) = Yitj=0 bij x' y/. Now, we cal-
culate r;; in (10). Note that, by (7), we have

o0
o =2v2q1 =22 (p: +qy) L—y—O =2v2 ) [+ Daiyro+ ba] x',
e i=0
_ 2 4 e ;
q1 = 4\/5513 = *\/E(pxyy +CIyyy) ’ = *\/E Z [(l +Dajt12 + 3bi3] X .
3 e=y=0 3 i
Then
700 = Go(0) = 2+/2 Ao (a0 + bor) , r10 = 2v2 10 0 (2ax + bi1),

ra0 = 23212 (ho (3azo + ba1) + A1 (aro + boy))

ra0 = 232 (ko (2 B azo + ba1) Tot1 + (Saso + bar) 1) + 2170* (Bazo + bay)
+ ()»2704 +2117071) (@10 + bor))

rso = 2v2 (Ao ((2612 +b11) 12+ 3 (4aso + b31) 0’71 + (6ago + bs) 105) + M10° (Qazo + bi) 7
+ (@ ag +b3) 10°) + (Aato* + 211 70T1) (2az0 + bi1) 7).

4 4
rol = g\/zko (ay2 + 3bo3), rng = gﬁko 0 (2axn + 3b13). (23)

To prove the formulas of ¢3 and ¢3 in (21) see [5]. ]

Asymptotic Expansion of the Melnikov Function M*

In this section, we calculate the expansion of M*(h, §). We start by writting

M*(h,é):% c}(x,y,&)dx:/ c}dx—l—/ c]dx—l—/ gdx
L3 Ly Ly L3-L" -1

—_ 7 (2 ~
SCRCUR IR IR 222 24)
37h3 7R3

where L3 = {(x, ) | H(x,y) = }y*+Ho(x) =h, 0 < h < 1}, L5 = {(x, y) | H(x, y) =
hoxy < x < x0,y > 0)and LY = {(x,y) | H(x,y) = h,x{ < x < x0,y < 0} (for the
definitions of xp and x6 see Fig. 4) and the third term in M*(h, §) is an analytic function in
hforO <h < 1.

To study the analytical properties of the functions 13(1)(h, ) and 13(2) (h,8) ath =0, we
have the following result.
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N | 5]

a
\
[N

{x= x'o} {x=x}

(22

Fig.4 The line segment {x = xo} and {x = x{}

Lemma 2.3 Suppose that u = (x) = /—Hy(x), up = ¥(xg) > 0 and w = vh + u*.
Then,

1

150 (h, o) = x3(h, o) + Y I, () I 1 (h, o),
r=0
1

1P (h, uo) = xa(h,uo) + Y 17, (h) I 1 (1, uo).
r=0

where x3(h, uo), xa(h, ug) are some analytic functions in h, I~r,1(h, ug) =f0”0 u? h+utdu,
[~ ~ o~ = I .
and If ,(h) =Y k=omyr  Frjlh B "2 forr =0, 1, with

m=0, j=1 odd

610 2] . ,

G = | AN QkF2/+D) k=0, j=z3odd;
/ 1 k>0, j=1,

(=) (2k—3)(2k—T7)...2k+1—dm) . _ .
B = Ch3)2k—1)...2k—dm+7) k=2m+r, m=1, r=01;
k=0,1.
Here, the coefficients ry j are given by the Taylor expansion coefficients of the functions
o0
Gjw) +Gj(—uy =Y ju,
k=0

in u, which appear along the proof.

Proof In view of (24), we can write

X0 X0 . uo .
I;l)(h,S):/(])ijdx:// z}(x,y+,8) dx:Z// éjwjdx:Z// qj(u) w! du
L3 X0 Xo Uy

j=l1 jzl

uo . -
= () +Gj(—w)] w/ du = i1k, s 25)
0

j=>1 Jj=1,k=0
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where
3 Gi (x) s N = . - uo :
Giw =1 C G+ Gi(—uw) =Y R, D= / wwl du. (26)
¥ (x) x=v~1(u) =0 0

In the same way, we get,

/

X, X/
©) _ T PSP =3 S Vel
I3 (h,é)—ﬁgz)qu—/x qx,y ,8)dx = /):O (=D'q; w’ dx

0 jEI
uy . .
:—Z/ (=17 qjw) w’ du
=174
uo . . . ~
=—Z/ =17 (3 + G (—w] widu=— > (~D/F I .
j=170 Jz1k=0

To calculate ik,j, we see that by (26) fk,j € C® for j > 0 and even. For j > 3 and odd,
similar to (11), we obtain that

T = duj+ah i, k=0, @7
where ¢y, ; € C* and
G = { (2k+7)(22.—:(1).1')“..A.2(ék+2j+1) k=0, j=z3odd;
1 k>0, j=1.
Also, similar to (12), we get that
Ty = v+ Bl Iy, (28)

for 2k = 4m +2r withr =0,1, m > 1 and

3 " Qh=BCh=T)..Cht1dm) o _n S =]
G = , =1, 1

k+3)2k—1)..2k—4m+T7)
k=0,1.

Therefore, by (25), (27) and (28), we have that

. . - -
1" (h, up) = Z rk,jlk,j+"'=zrk,llk,l+ Z Fj i+

k=0 k=0 k=0
j>1o0dd j>3odd
U AT AT
=> Rl + Y e h 4= Y R i g+
k>0 k=0 k=0
jz3o0dd j=Todd
T . -z i3
= D Ak o+ Y g T
0<k<1 k=2m+r
j=1odd m=1, 0=r<1
j>1odd
L - is
= > FjaBhm T+
k=2m—+r
m>0, 0<r<l1
j=10dd

1
:Z [y Iy (howg) + -+
r=0
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where “---” in each equation denotes a C* function and I{', (h) = Y k=om+r Tk, jOk,;
m=>0, j>1 odd

Brh™ 5] Hence,
1

1P (h, o) = x3(h, uo) + >0y ) I 1 G o), 29)
r=0

where x3(4, ug) € C®. Similarly, we have that

1

1P (h, o) = xa(h,uo) + Y It . (h) &1 (h, uo), (30)
r=0

where x4(h, ug) € C®. m]

To obtain the analytical properties of the functions IN,, 1(h, ugp), welet v = u/h% in (26) for
k=rand j =1, and we get

~ . uph % ,
Lo (hyug) = hE+ / v (1 4% dv = h5F3 [By, + ¥, (h, up)]
0
where

r

N
By :/ v2r(1+v4)%dv, N > 1,
0

1/N

v 71+ vt do.

Note that for 0 < v < 1 we have the following convergent series

wo/h1/4 .
¥, (h, uo) =f v (1 + v do = /
N

h1/4/u()

4 8 12

~ i v v v
Thvt=) Gt =14 5 =t qg +0(").
j=0
So,
YN o
h,u :E 5'/ v T T do,
va( v ! R4 fug

Jj=0
Let jr =5+ 3. Then4j — 2r — 4 =4(j — j,) — 1 and

N4(jr—j) 4Gjr—J)

- . u
I 1(h,up) = h'" | By, +ZC~’,/% —25,/'%
= U= i AU =D

hl =i A, + @, (h, ug),

3D
where ¢, is analytic for 0 < h < 1. _
To determine the constants A, in (31), as A, is independent of u(, we can take ug = 1.
Thus, by (31), we get
hi 1 h
5r(h, 1) ==Y & = 0 (h?).
@r(h. 1) ;06’4@—];) o e S U

Then, by (26), for 0 < h < 1 we have

olr1(h uo) _

o JrAr Il 4

yr— + O(h). (32)
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On the other hand, by (26), we have

- 1
al,.1(h, ug) =1/1 u® du L /h Y v du . 33)
oh 2 h4+u* 2 0o A1+vt
e For r = 0, comparing (32) and (33) gives
3l 00
_ 1 . 2 dv
Ag = lim 2 =Z / ———— = 1.236049785
OT 2 0T T3 )y JTr ot

e Forr =1, by using % =1- m it follows from (33) that

- _1
a1, 1(h, up) B 1 lh% /h 4 dv
dh 2 2 Jo T+ R+ V1409
Comparing the above with (32) we obtain
- 2 (X d
A= _7/ 0 — —0.3388852337.
5Jo V1402 4+ V1 +0v%)

Proposition 2.4 For the functions M*(h, §) given in (24), we have the following expansion:
M*(h,8) = ¢ + T hi + 3 h+ ¢S hi +cf he + O(h?), (34)
where

cg = M*(0,6) :f qgdx — pdy|.—o = co + Co,
Lo

- ~ - 1. 6 _
CT =2Ao 701, C§< =2A17r1, CZ =2Ay (—; 1 + 7r03> s

7
o = 7{ [(px + @y)lemo — a0] d1 + 01 (c}). (35)
Lo
Proof By (24), (29), (30), and (31) for 0 < h <« 1 we have
M (1, 8) = ¢ (1, 8) + 203 [Ag Ty + A1 ¥ T )] (36)
where
» B T E A B I T 2
Iiy(h) = Z T, j@k, j Bh™ ™20 = ro1a01 Bo + (Fa1021 B2 + Fozao3 Bo) h + O (h”),
k=2m
m=>0, j>1 odd
IHIOE Y Fr. jun,j Beh™ 2 = Fyan Br + 0,
k=2m+1
m=>0, j>1 odd
with
- ~ ~ - - ~ 1 N 6
apr=Po=p1 =1, anp=ay =1, /322—7, %03 = -

Therefore, we can obtain the given expansion for M*(h, §) by inserting the above into (34)
with ¢ = M*(0, 8) = co + Co, and

- - ~ 1 6
CT:ZA();O], C;::ZA]F“, CI:2A0<—?721+?703>,
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To calculate 7;;, as before assume that x = vl w) = wou + 1w + nu’ + O@w’) and

x///l(;o = Ao + A1 X% + A2 x* 4+ O(x). Then we observe that

2v/2 %0 (a1o + bot) »
= 2«5%2(?»0 Bazo + ba1) + A1 (aio + bo1)) ,

Y
e
I

a1 = 272 (R0 (2 Baso + ba1) ToT1 + (Saso + bar) 10*) + ri7o* Bazo + bar)
+ ()QTO4 +2117071) (a10 + bor)) »
- 4
Fos = V20 (@2 + 3bos). 37
To prove the formula of cg‘ in (35) see [5]. ]

Remark 2.5 Under the conditions of Propositions 2.2 and 2.4, it is easy to see that

Asymptotic Expansion of the Melnikov Function Near the Centers

In this section, we calculate the expansions of M (h, ) and M (h, §) near the centers Cy and
C,, respectively. First, we calculate the expansion of M| (h, §). By introducing the transfor-
mation (x, y) = (X — x*, Y), we shift C;(x*, 0) to the origin. Then (rewriting again X as x
and Y as y) we get

X=y+epx,y,98),
x+x*4+a) x+x*—a)

y=—2(x+x7) +
’ SV rarea ey e gy

+eq(x,y,6),

(38)
where
Py 8 =ple+x*y.8) = Y ayx'y, G, y8)=qx+x*y,80= Y bjx'y.
i+j20 i+j=0

For ¢ = 0 the Hamiltonian function of system (38) is

2 2
Hx.y) = y?+(x+x*)2—\/(x+x*+a)2+ﬁ2—\/(x+x* — a2+ B2 +e = S+ Ho),

where ¢ = —x*? + \/(x* +a)?+ B2+ \/(x* — «)? + B2 is a constant. Recall that o =

B3J1— B3 and B € (0, 2o

The Hamiltonian system (38)|.=o has a family of periodic orbits I';, : H(x, y) = h for
h > 0 small, surrounding the origin. So, we have

Mﬂh,ﬁ):% édx_ﬁdy://_ (ﬁx""éy)dXdy:% C?(x,yﬂs)dx,
'y H<h 'y

where y
Gx,y,8) =qx,y,8) —q(x,0, 5)+/ Px(x,u,8)du
0
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verifies Gy = px + @y and §(x,0,8) = 0.1f pr(x, y,8) 4+ Gy(x, y,8) = 21y jogcij ¥ ¥/,
theng(x,y,8) = y 3 iy js0bijx' ¥/ =321 q;(x)y/, where

— —Zbux j=0

i>1

1 kY
G+Dloy

‘?j+1(x) (Px +Qy

Note that the equation I-_I(x, y) = h has two C¢ solutions yi = :i:\[2w(1 + O(|x, wl)),

where w = Vh — Hy(x). Let z1(h) < 0 and £2(h) > O be the solutions of the equation
Hop(x) = h. Then

Mﬂh"”:f dar= "Gt -y a»dx—Z/ gt (0wt dx,
Ty &1

Jj=0

where ¢} = 23j+%q}j+l- Let u? = Ho(x). Then, by introducing the variable u = v (x) =
sgn(x)(Hoy(x))?, we obtain

Mi(h,8) = Z/ gy w* du = Z/ (G + g (—w) w¥t du =Y 7l

j=0 j=0 i+j>0

where w = vh — u?, ¢;(u) = %
fox/ﬁ W2 Wit g

LG + Gi(—u) = Y o Fiju? and Ij =

x=y~!(u)
. . o
u. By introducing v = T we get

1 . o
Lj = h”’J'H/ vi (11— vz)/ V1—v2dy =hH g
0
Therefore,

Mi(h,8)=h Y Fij iy h'™ =Y b ", where bi8)= Y FijJij. (39)
i+j20 k=0 i+j=k

For computing {b}, note that, by Taylor expansion, we obtain x = W’l () =viu+v u?+
vsud + O, ﬁ =9+ y1 x +y2x2 4+ 0(x3), where

v = (6x*2\/ot2 +2ax*+ B2 +x*2\/oz2 —2ax* 4 B2+ x*2 + 4oy + 4202 4 axt

+ /a2 —2ax* + B2 +x*2a% +2,/a? —2ax*+ﬂ2+x*2x*oz+\/oz2 —2ax*+ B2+ x*2p?

—3x*2\/a2 —2ax* + B2+ x4 \Ja? +2ax* + B2+ x*2a? —2\/a? + 20 x* + B2 + x*2x*a

+\/a2+2ax* + B% + x*28? 73x*2\/a2+2ax* + B2 4 x*2

- a2+2ax*+ﬁ2+x*2\/a272ax*+ﬂ2+x*2+a27ﬂ2 7x*2> i

X (\/az—Zax* + B2 +x%20” +2,/a? —2ax*+ﬂ2+x*2x*a+\/a2 —2ax* + B2+ x¥282

+x*2\/a2 72ax*+ﬁ2+x*2+\/a2+2ax*+[32+x*20(2 72\/a2+2ax*+ﬁ2+x*2x*0[
1

2
+y/a? 4+ 2 x* + B2 4 x*2 82 +x*2\/a2 +2ax* + B2 +x*2>

Yo = («/E\/ot“ +20282 —202x*2 4 B4 42 B2x*2 4 x*4 (—8 a2 — 2x*a + B2 + x*2x*4
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+4\/a2 +2x*a + B2 +x*2\/oz2 —2x*a + B2 + a2 p% — 9\/012 +2x%a + B2 + x*2 B2k

+2\/012 +2x*a + B2 +x*2\/oz2 —2x*(x+ﬂ2+x*2ﬂ4+6\/(x2 +2x*a 4 B2 4 x*2a f2x*

+18/a? + 2 x*a + B2 +x*2\/a2 —2x*a + B2 + 2 — 8 a2 + 2 x*a + B2 + x*2aPx*

— \/ot2 +2x%a + B2 + x* 2022 4+ 8,/ + 2x*a + B2 4 x*2aPx* — \/ot2 + 2 x*a 4 B2 4+ x*2*

+ 8\/052 +2x%a + B2 + x*2a x*° —20,/02 + 2 x*a + B2 +x*2\/oz2 —2x%a + B2 + x*2a2x*?

+20/a? +2x*a + B2 +x*2\/a2 —2x*a + B2 + x*28%x*F 48, /a? — 2x*a + B2 4 x*2adx*

—Ja? = 2x*a + B2 + x*2a2B% + 8\ /a2 — 2x*a + B2 + x*2a2x*? — B/ a2 — 2x*a + B2 4 x*2

- 6\/012 —2x*a + B2 + x*2a f2x* — 8 /a2 — 2x*a + B2 + x*2ax* — 9\/012 —2x*a + B2 + x*2p2x*?

1
2
+2\/a? +2x%a + B2 +x*2\/a2 —2x*a + B2 +x*2a4) )

X (\4/012 +2x*a + B2 +x*2</a2 —2x*a + B2 4+ x*? (2a4+4a2,32 —8a2x*? 4284 + 8822 4 61+

+2a\/ot2+2x*a+ﬂ2 + x*2x* —\/otz +2x%a 4 B2 + x*2 2 —2x*2\/a2 +2x*a + B2 + x#2

-1
—201\/012 —2x%a 4 B2 4+ x*2x* —\Ja? — 2x*a + B2 + x*2 B2 —2x*2\/a2 —2x*a + B2 +x*2> ,

where o = 8 3 vV1-— ﬂ% and the other coefficients have long terms that can be easily calcu-
lated by using the Taylor expansion. Also,

o0
45(x) = 2V241 = 2V2(px + Gy)le=y=0 = 2¥2 ) _ (bi1 + (i + Daiy1.0) x'

i=1
. R } 16 ~on, - , _ ;
47 (0 = 16V243 = 2V2Buyy +dy)le=y=0 = T V23 (3his + (i + Dais12) x'.
i=1
Thus,
- _ — _ 32 _ -
Foo =4v/2 o (aio +bo1), For = ?ﬁyo (a2 + 3 bo3),
Flo =42 [yo (v2 (2a20 + b11) + vi? (3as0 + ba1)) + yivi? (2az0 + b1y
+ (V2v12 + y1v2) (ai + 501)] .

Therefore,
bo(8) = roo Joo, b1(8) =110 J10 + For1 Jor, (40)
where
1 1 1
Joo :/ V1= vZdv = %, Tio :/ V1= 2dv = %, Joi =/ -1 - u%v:%.
0 0 0

Now, we calculate the expansion of M (h, §). First, by introducing the transformation
(x,y) = (X + x*,Y), we shift Co(—x*, 0) to the origin. Then (rewriting again X as x
and Y as y) we get

X=y+eplx,y,9), 41)
x—x*"4+a) x—x*—a)

\/(x—x*—i—ot)2+ﬂ2 \/(x—x*—a)z—l—ﬂz

y=—-2(x—x*+ +eq(x,y,9),
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where

Py, 8) = ple—x*,y,8) = Y ayxyl, 4x,y.8) =qx—x",y.8) = Y bjx'yl.
i+j=0 i+j=0

For ¢ = 0 the Hamiltonian function of system (41) is

2 2
I:[(x,y)zy?+(xfx*)27\/(xfx*+a)2+ﬁ27\/(xfx*foc)2+,32+c=y?+l:lo(x),

where ¢ = —x*? 4+ \/(—x* + )% + B2 + /(—x* — a)? + B2 is a constant.
. The Hamiltonian system (41)|.—0 has a continuous family of periodic orbits yy
H(x,y) = h for h > 0 small, surrounding the origin. So, similar to M1, we have

Mz(h,a>=f édx—ﬁdysz <ﬁx+«§y>dxdy=y§ G(x. . 8) dx,
Yh H<h Vi

where y
é(-xayv(s):q(-xvy’s)_é(xvoss)—'_/(‘) ﬁx(xvuss)du

verifies Gy = px + Gy and ¢(x,0,8) = 0. If p(x, y,8) + Gy(x,y,8) = >i j=0Cij x* ¥/,
theng(x,y,8) = y 3 iy js0bijx' ¥/ =321 q;(x)y/, where

(px +qy)‘ —Zl;ij.xi, ]20

. 1
gj+1(x) =
( + 1)' 9yl =

Note that the equation I:I(x, y) = h has two C¢ solutions yi = :i:\[2w(1 + O(|x, wl)),
where w = /h — I-AIO (x). Let El (h) < 0 and 52 (h) > 0 be the solutions of the equation
Ho(x) = h. Then

M;(h, 8) =% gdx = | (q(x ¥y 8 =g, y7,8)dx —Z/ 4 () w1 dx,
Yh &

Jj=0

where §; = 2%+3Gy; 1. Let u? = Ho(x). Then, by introducing the variable u = p(x) =
sgn(x)(Ho(x))?, we obtain

Mo 5 =Y f g du =Y / @5 + g o w i  du= 3 iy,

j=0 j=0 i+j>0

where w = vh — u? qj(u) q’(x)
fofu w2j+l

A 2 o
gy 40+ @f () =Yg Fiju and 1 =
du. By introducing v = ﬁ’ we get,

1
I,'j = I,'j = hl+/+1 / Uzl (1 — Uz)j\/ 11— vzdv = hH_J-H J
0
Thus,

My(h.8) = h Y Fij Jijh'* = h Y be(8) h*, where bi(8) = Y FijJij. (42)
i+j>0 k=0 i+j=k
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For computing {br}, we see that x = p~ ' (u) = viu — v u?® + v3u® —vau® + O(u) and
=y — y1 X + 2 x% + O(x?), because of symmetry. Then

P7(x)
o R ~ R 32 R ~
Foo = 4210 (alo + bm) , o1 = ?ﬁyo (alz + 3b03),
Flo= 42 [Vo (—Vz (2&20 +1311) +v? (3&30 +l321)>
—yi? (2 aoo + 1311) + (r2v1? + y110) (&10 + 1301)] :
Therefore,

bo(8) = Foo Joo, b1(8) = F10 Jio + For Jor. (43)

Limit Cycle Bifurcation

In this section, by using the first nonvanishing coefficients of the expansions obtained in the
previous sections, we discuss about the number of limit cycles which can be generated from
system (6).

Let Lo = Lo U ZO be a double homoclinic loop defined by H (x, y) = 0. Assume that
H(x*,0) = h¢, and H(—x"*, 0) = h,,. Consider the expantions of M, M, M*, M and M>,
then we have the following theorems.

Theorem 2.6 Under the above conditions, If there exists some &g € R™ such that

¢0(80) = co(80) = c1(80) = c2(80) = ¢3(80) = c3(80) =0, c4(8p) # O,

bo(80) = b1(80) = -+ = by, —1(80) =0, by, (8p) #0,
bo(80) = b1(80) = -+ = b,—1(80) = 0, by, (80) # 0,
and
3(co, ¢ &3, bo, b1, ..., be—1,bo, b1, ..., b
rank (co, €o, 1, €2, ¢3,C3, b0, b1, ..., b —1,bo, b1, ..., b, ]):6+k1+k2, (44)
(01, ..., 8k)

then (6) can have 8 + ki + ky + ‘=M G200 M (1.0 1 =san a3 My thad0) gy
cycles for some (g, §) near (0, 8g) from which 8 limit cycles are near the double homo-
clinic loop, ky limit cycles are near the center Cy, ky limit cycles are near the center Cs,

1=sgn(M, (h 12’8°)M(h2’50)) limit cycle is located between Cy and Lo and lf‘vg"(M(h“’f(’)Mz (h3,%))

limit cycle is located between C and I:o, where hy = h¢, +¢e1, hp =0—¢2, hs = h¢, 4¢3,
ha = 0 — g4 with 1, €2, €3 and €4 are positive and very small.

Proof Since c4(8p) # 0, in the same way as in Theorem 3.1 in [5], we can conclude
that 8 limit cycles occur near the double homoclinic loop Lo. By (44), we know that
by, by, ..., bg -1, l;o, 51, o 5/(2—1 can be taken as free parameters. Now, we change the
sign of these parameter to obtain the zeros of M;(h, 8) for j =1, 2. If

bj1b; <0, j=1,... ki, 0<lb| < |0] K ... < |byl,
then we can find k; limit cycles are near the center Cy. If
bioibj <0, j=1,....k2, 0<lbo| < Ib1| < ... < lb,l,

then we can find k> limit cycles are near the center C5.
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It is clear that if there exists 71 = h., + &1 and i = 0 — & with &1 and &; positive and
very small such that M (hy, 80).M (ha, 89)) < 0, then we have 1=282(M1(k '2’5°)M(h2’5°)) =1
limit cycle is located between C; and Lo. Similarly, for 73 = he, + 63 and hy = 0 — &4

with &3 and &4 positive and very small, we have 1_Sg"(M(h4’28°)M2 (h3:%) Jimit cycle is located
between C; and I:o. O

The next two theorems can be proved similarly.

Theorem 2.7 Under the conditions of Theorem 2.6, if there exists some 8o € R™ such that

c0(80) = ¢o(8p) = c1(80) = c2(80) = ¢3(8p) = ¢3(8p) = c4(dp) =0, ¢5(8) # 0,

bo(80) = b1(80) = -+ = b, -1(80) =0, by, (8p) # 0,
bo(80) = b1(80) = -+ = br,—1(80) = 0, bk, (80) # 0,
and
3 (co, ¢ ¢ bo, b1, ..., be—1,bo, b1, ..., b,
rank (co, o, 1, €2, ¢3,€3, ¢4, b0, b1, ..., b, —1,bo, b1, ..., bi,—1) — Tk 4k
(81, ..., 8)

then (6) can have 10 + ky + ky + ‘=221 02.00M (1,00 1 =sgn W ha.Bo)Mals.30)) g
cycles for some (e, 8) near (0, 8o) from which 10 limit cycles are near the double homo-
clinic loop, ky limit cycles are near the center Cy, ky limit cycles are near the center Ca,

1=sgn(M(hy ,280)M1 B1:80) it cycle is lo~cated between Cy and Lo and l_sg"(M(h“’;O)MZ(M‘SO))
limit cycle is located between C and Lo, where hy = h¢| +¢€1, ho = 0— g3, h3 = hc, +¢€3,
hga = 0 — g4 with 1, €2, €3 and €4 are positive and very small.

Theorem 2.8 Under the conditions of Theorem 2.6, if there exists some §o € R™ such that
M*(hg, 8) # 0 for some hg and,

¢0(80) = co(80) = c1(80) = c2(80) = ¢3(80) = ¢3(80p) = c4(8p) = ¢5(80) =0, c6(8p) %O,

bo(80) = b1(80) = -+ = by, —1(80) =0, by, (8p) # 0,
bo(80) = b1(80) = -+ = br,—1(80) = 0, by, (80) # 0,
and,
d(co, o, c1, 2, €3, &3, ¢4, b0, b1, ..., br,—1, bo, b1, . .., by,—
rank (co, Co, c1, €2, €3, C3, ¢4, by, by ki—1, bo, D ks 1):8+k1+k2,
(81, ..., 8)

then (6) can have 12 + kl + k2 + 1*58”(M(h2,250)M1(hlsﬁo)) + 17‘an(1\71(h4,280)M2(h3,80)) limit
cycles for some (g, §) near (0, §o) from which 12 limit cycles are near the double homo-
clinic loop, ki limit cycles are near the center Cy, ky limit cycles are near the center C,
1—sgn(M(hy ’Q‘SO)M' B180)) Jiir cycle is located between Cy and L and 1_Sgn(M(h“’;O)MQ(M"SO))
limit cycle is located between C and Lo, where hy = hey +é€1, hy =0—62, h3 = he, 4¢3,
hy = 0 — g4 with €1, €2, €3 and €4 are positive and very small.
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Application
In this section, we provide an example as an application of our main results. Let § = ﬁ,
then o = ﬁ%\/ 1—p3 3 and system (4) becomes,
X =y,
i ax eal 242+ 8x 1 22438« ’ 5)
4VoxV2+4x2 41 4V 202442241

with the Hamiltonian function,

H(x,y) = y +x? 2xf+4x2+1—7\/ 2xvV24+4x2 4141, (46)

We Consider the following perturbation,

X =Y,
) 1 V2+4x 1 —2+4x
y=-2x+ = + = +ef(x,8)y, @47
2 /2x/2+4x241  2V/2xV/2+4x2+1
wheref(x,é):ao+a1x+~-~+a7x7+a8x8 and § = (ag, ai, ..., ag) € RY.

We have the following theorem.

Theorem 3.1 System (47) can have 13 limit cycles.

Proof System (45) has a nilpotent saddle at A(0, 0), two centers at Cy (x 0) and Cp(—x*, 0)
with x* = 0.9013700925, and a double homoclinic loop Loy = LoU Ly passing through the
nilpotent saddle A, defined by H(x, y) = 0, where Ly = Lo|x>0 and Lo = Lo|x<0. Note
that, by (46), we have that

iozy2:—2x2+\/2xf2+4x2+1+\/—Zx«/i+4x2+1—2, 0<x <3

io;y2:—2x2+\/2xf2+4x2+1+\/—2xﬁ+4x2+1—2, ~V3<x<0.

From Proposition 2.2, we know that
8 ; 8 .
co(8) = M(0,98) = 7{ fx)ydx = Z aj I, ¢o(8) = M(0,8) = f f)ydx = Z a; 1j,
Lo i=0 Lo i=0

8
c3(8) = %Za,x dt = Zaifi, &3(8) = %Za,x dt = Za;fi,
i=2

Lo j— i=2 Lo j—

where

_ f/g
Ii:ﬁ x’ydx=2 xy=2x \/Zx\/i+4x2+1+\/—2xxf2+4x2+l—2dX,
Lo 0

0
ii:jﬁ x’ydx:Z 4fx\/ 2x +\/2xf+4x2+1+\/ 2xv2+4x2+1-2dx,
Lo 3
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xl

, A
J,’:ﬁ x’dt:Z/
Lo 0 \/—2x2+ V2xV24+4x2 414+ V-2x/2+4x2+1-2
~ . 0 .xi
J,»:y{ x’dt=2/4 dx.
Lo VAN v, S v N yov, s sy g

Using Maple we find that

dx,

Ip = Ip = 0.8520193230, I; = —I; = 0.6927396352, I, = I, = 0.6267093568,
Iy = —I; = 0.6080411464, I, = Iy = 0.6195116802, Is = —Is = 0.6542775182,
Ie = Is = 0.7101531116, I; = —I7 = 0.7875161356, Iy = Iz = 0.8884959544,

and

D= Jp = 4.774680819, J3 = —Jz = 4.715807320, J4 = J4 = 5.253456626,
Js = —Js = 6.124821684 Js = Jo = 7.321105054, J; = —J7 = 8.892929226,
Jg = Jg = 10.92543392.

Consequently, we obtain that

o = 0.8520193230 ag + 0.6927396352 a; + 0.6267093568 a -+ 0.6080411464 a3 + 0.6195116802 ay
+0.6542775182 a5 + 0.7101531116 ag + 0.7875161356 a7 + 0.8884959544 ag,

G0 = 0.8520193230 ag — 0.6927396352 a; + 0.6267093568 ap — 0.6080411464 a3 + 0.6195116802 ay
—0.6542775182 a5 + 0.7101531116 ag — 0.7875161356 a7 + 0.8884959544 ag,

3 = 4.774680819 ay + 4.715807320 a3 + 5.253456626 a4 + 6.124821684 a5 + 7.321105054 ag
+8.892929226 a7 + 10.92543392 ag,

&3 = 4.774680819 ay — 4.715807320 a3 + 5.253456626 a4 — 6.124821684 a5 + 7.321105054 ag
— 8.892929226 a7 + 10.92543392 ag.

Furthermore, from Proposition 2.2, we get that,

1
c1 = —2.233794126 ap, ¢ = ~5 3ay, c4=0.3750381616 ap + 0.5000508821 as,

cs = 1.650968872 ap 4 0.2659278720 ax + 0.2127422976 ag,
ce = 0.4570689630 a; + 0.7216878361 a3 + 0.4811252243 as.

Finally, we calculate the coefficients b;, j = 0,1, ---, in (39). First, by introducing the
transformation (x, y) = (X —x*, Y), we shift C;(x*, 0) to the origin. Then (rewriting again
X asx and Y as y) we get,
X =y,
, 1 2248 (x +x*
\/2(x FxV2+H4(x+x%) + 1

+1 —22+8(x + x*) +ef oy, 48)

4 \/—2(x+x*)ﬁ+4(x+x*)2+1

where

f(x):f(x—l—x*,(S)=&0+&1x+~~+&8x8.
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For ¢ = 0 the Hamiltonian function of system (48) is,

_ 1 1
H(x,y) = §y2+(x +x*)2—E\/Z(x+x*)\f2+4(x+x*)2+l

1
—5 \/—2 (x + x*)\/i—l— 4 (x + x*)2 + 14 1.1433077145.
By the formulas of b;, in (40) for j = 0, 1, we obtain

by = 1.157557250 v/2 7 (ag+0.9013700925 a1 + 0.8124680437 ap+0.7323343957 a3 +0.6601043220 a4
+0.5949982938 a5 + 0.5363136671 ag + 0.4834170997 a7 + 0.4357377159 ag) ,

by = 7 (1.783836705 ag — 0.4279155516 a; + 1.031864517 ap + 5.139643557 a3 4+ 11.06971485 ay
+18.16201114 a5 + 25.89465002 ag + 33.86056122 a7 + 41.74763006 ag ) .

By introducing the transformation (x, y) = (X + x*, Y), we shift Co(—x*, 0) to the origin.
Then (rewriting again X as x and Y as y) we get,

x =y,
y_=_2(x_x*)+% 2V2 4+ 8(x —x*)
\/2(x—x*)\f2+4(x—x*)2+1
1 22486 ) +ef(0)y, (49)

4 \/—2(x—x*)\/§+4(x—x*)2+l

where, B
fx)=f(x—x*8) =ap+arx+---+agx®.

For ¢ = 0 the Hamiltonian function of system (49) is,

I-_I(x,y)=%y2+(x—x*)2—%\/Z(X—x*)«/i+4(x—x*)2+1

1
-5 \/—2 (x —x)V2+4(x — x*)% + 1 + 1.1433077145.
By the formulas of b}, in (40) for j = 0, 1, we obtain

by = 1.157557248 /2 7 (ag — 0.9013700925 a1 + 0.8124680437 ay —0.7323343957 a3 +0.6601043220 a4
—0.5949982938 a5 + 0.5363136671 ag — 0.4834170997 a7 + 0.4357377159 ag) ,

by = 7 (—0.1663960129 a1 + 0.3889846550 a; — 1.060341107 a3 + 2.041024002 a4 — 3.219541028 a5
+4.507717919 ag — 5.836755818 a7 4+ 7.153881753 ag + 0.5653947622 a) .

(i) Wecan find 8o = (0,0, a3, a3, af, af, ag, a7, ag) with

a5 = —1.462202842ag, a5 = —0.4461010105ag, aj = 3.733915692 ag,
a¥ =0.7592286090as, a; = —3.218072410as, a7 = —0.2863413586 as,

such that (co, ¢o, c1, ¢2, 3, €3, by, Eo)(ﬁo) =(0,0,0,0,0,0,0,0), and

ca(80) = —0.7311758210ag, b1 (89) = 0.041997177 wag, b1(89) = —0.600087669 7 as.
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(i)

(iii)

Hence, for hy = —1.143307714 4+ €1, hp = 0 + &, hy = —1.143307714 + &3,
hg = 0+ &4 with g1, &2, €3 and &4 positive and sufficiently small, we have

3 7

My, 80) = i)kt + O (1) > 0, M(h2, 80) = ca(@o)lhal® + O (IhalF) <0,
- ~ 5 7

Ma(h3, 80) = b1(80) h3 + O (h3) < 0, M(ha, 80) = ca(80)lhal® + O <|h4|z> <0.

L—sgn(M;(h1,80)M(h2,80)) __ 1—sgn(Ma (h3.80) M (h4.80))
Therefore, ) 0’ =1 and 5

computation shows that

= 0. Also, an easy

anka(CO(S)’ ¢0(8), c1(8), c2(8), €3(8), &3(8), bo(8), bo(8)) _3
d(ao, a1, az, a3, as, as, ag, az) 5=

Thus, by Theorem 2.6 there exists some (ag, a1, a2, as, a4, as, ag, a7, ag) near do such
that system (47) has 11 limit cycles, from which eight limit cycles are near the double
homoclinic loop Lo, one limit cycle is near the center Cy, one limit cycle is near the
center C» and one limit cycle lies between C; and Lo.

We can find 6y = (0,0, 0, a3, a}, aZ, ag, a7, ag) with

a; = —2.130496054 ag, aj = 1.55819359ag, ai = 3.625935646ag,
ag = —2.610444224 ag, a5 = —1.367513456 ag,

such that (co, co, c1, 2, €3, €3, ¢4, bg) (89) = (0, 0,0,0,0,0,0,0), and

¢5(80) = 0.3314936861 ag, by (50) = —0.00063048 7w ag, bo(50) = 0.1483763082 +/2 7 as.

Thus, forh; = —1.143307714+¢1,hy = 04e2,h3 = —1.1433077144e3,hqy = O+¢4
with €1, 2, €3 and &4 positive and sufficiently small, we have

7

Mi(hy, 80) = b1(80)h} + O (h3) <0, M(h2,80) = c5(80)|h2|% + O (|h2)* In|ha]) > 0,
— ~ 7

M>(h3, 80) = bo(80) h3 + O (h3) < 0,  M(ha, 80) = c5(80)|hal® + O (Ihal*In |ha]) > O.

Hence, 1=820hb0Mtn.d0) _ 1 g 1=sen(hs(rs.b0)Ths.30)

computation shows that
9(co(8), co(d), c1(8), c2(8), €3(8), €3(8), c4(8), bo(8))

ank = 8.
d(ao, a1, az, az, as, as, ag, ay) 5=80

= 1. Also, an easy

Therefore, by Theorem 2.7, there exists some (ag, a1, az, a3, as, as, ag, a7, ag) near &g
such that system (47) has 13 limit cycles, from which ten limit cycles are near the double
homoclinic loop Lo, one limit cycle is near the center Cy, one limit cycle lies between
C) and Lg and one limit cycle lies between C, and I:o.

We can find 6o = (0,0, 0, a3, a}, aZ, ag, a7, ag) with

a; =2.14389217ag, aj = 1.558193598ag, ai = —3.648734787 ag,
ag = —2.610444224 ag, a5 = 1.376112101 ag,

such that (co, &, c1, €2, €3, &3, ¢4, bp)(80) = (0,0, 0,0, 0,0, 0,0), and

¢5(80) = 0.3314936861 ag, bo(89) = —10.45484998 /2w ag, b1 () = 0.009010108 7 ag.
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In consequently, for iy = —1.143307714+¢1, hy = 0+&2, h3 = —1.143307714 €3,
hg = 0+ &4 with g1, &2, €3 and &4 positive and sufficiently small, we have

7

M (h1, 80) = bo(Bp)h1 + O (k) > 0, M(ha,80) = c5(80)hal* + O (Jha)* In|hal) > O,
- ~ 7

My (h3, 80) = b1 (80) h3 + O (hg) >0, M(hg,d0) = cs5(80)|ha|? + O (|h4\21n |h4l) > 0.

Then (=100 G d)Mtade) _ ¢ g 1=sen@alisd)itudd) _ o Also, an easy

computation shows that,

3(co(8), €0(8), c1(8), c2(8), €3(8), E3(8), c4(8), bo(3))

ank =
d(ao, a1, a2, az, as, as, ae, ay) 8=80

Therefore, by Theorem 2.7, there exists some (ag, a1, az, a3, as, as, ag, a7, ag) near do
such that system (47) has 11 limit cycles, from which ten limit cycles are near the double
homoclinic loop L and one limit cycle is near the center C. O

Acknowledgements This work is supported by Isfahan University of Technology.

References

Arnold, V.I.: Geometrical Methods in the Theory of Ordinary Differential Equations. Springer, Berlin
(1988)

Figueras, J.L., Tucker, W., Villadelprat, J.: Computer-assisted techniques for the verification of the Cheby-
shev property of Abelian integrals. J. Differ. Equations 254, 3647-3663 (2013)

Gasull, A., Geyer, A., Manosas, F.: On the number of limit cycles for perturbed pendulum equations. J.
Differ. Equations 261, 2141-2167 (2016)

Han, M.: Asymptotic Expansions of Melnikov Functions and Limit Cycle Bifurcation. Int. J. Bifurc.
Chaos. 22(12), 1250296-1-30 (2012)

Han, M., Yang, J., Xiao, D.: Limit cycle bifurcation near a double homoclinic loop with a nilpotent saddle.
Int. J. Bifurc. Chaos 22(8), 1250189-1-33 (2012)

Han, Y.W., Cao, Q.J., Chen, Y.S., Wiercigroch, M.: A novel smooth and discontinuous oscillator with
strong irrational nonlinearities. Sci. China Phys. Mech. Astron. 55, 1832-1843 (2012)

Moghimi, P., Asheghi, R., Kazemi, R.: An extended complete Chebyshev system of 3 Abelian integrals
related to a non-algebraic Hamiltonian system. Comput. Methods Differ. Equations 6(4), 438-447 (2018)
Moghimi, P., Asheghi, R., Kazemi, R.: On the number of limit cycles bifurcated from a near Hamiltonian
systems with a double homoclinic loop of Cuspidal type surrounded by a heteroclinic loop. Int. J. Bifurc.
Chaos. 28(1), 1850004—1-21 (2018)

Moghimi, P., Asheghi, R., Kazemi, R.: On the number of limit cycles bifurcated from some Hamiltonian
systems with a double homoclinic loop and a heteroclinic loop. Int. J. Bifurc. Chaos 27(4), 1750055-1-15
(2017)

Moghimi, P., Asheghi, R., Kazemi, R.: On the number of limit cycles bifurcated from some Hamiltonian
systems with a non-elementary heteroclinic loop. Chaos Solitons Fractals 113, 345-355 (2018)

. Pontryagin, L.: On dynamical systems close to Hamiltonian ones. Zh. Exp. Theor. Phys. 4, 234-238

(1934)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer



	On the Number of Limit Cycles Bifurcated from Some Non-Polynomial Hamiltonian Systems
	Abstract
	Introduction
	Study of System (4) Under Small Perturbations
	Asymptotic Expansions of the Melnikov Functions M and widetildeM
	Asymptotic Expansion of the Melnikov Function M*
	Asymptotic Expansion of the Melnikov Function Near the Centers
	Limit Cycle Bifurcation

	Application
	Acknowledgements
	References




