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Abstract In this paper, fractional optimal control problem for two dimensional coupled
evolution system is investigated. The fractional time derivative is considered in Caputo sense.
Constraints on controls are imposed. First, the existence and uniqueness of the state for these
systems is proved. Then, the necessary and sufficient optimality conditions for the fractional
Dirichlet problems with the quadratic performance functional are derived. Finally we give
some examples to illustrate the applicability of our results.
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Introduction

This paper deals with fractional optimal control problems for coupled evolution equations
fractional dynamic systems. A fractional dynamic system (FDS) is a systemwhose dynamics
is described by fractional differential equations (FDEs), and a fractional optimal control
problem (FOCP) is an optimal control problem for a FDS. Evolution equations represent
an important class of linear problems and occur in the mathematical description of a large
variety of physical problems. The most recent method in the study of free boundary value
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problems arising in filtration, heat conduction and diffusion theory uses a reformulation of
these problems as evolution equations.

Integer order optimal control problems for evolution equations have been extensively
studied by many authors, for comprehensive treatment of this topic we refer to the classical
monograph by Lions [20]. Extensive treatment and various applications of the fractional cal-
culus are discussed in the works of Agrawal et al. [1,2], Ahmad and Ntouyas [3], Bahaa et al.
[6–9,12],Mophou [21,22], Debbouche andNieto [14,15],Wang and Zhou [25], Tang andMa
[24] etc. It has been demonstrated that fractional order differential equations (FODEs) mod-
els dynamic systems and processes more accurately than integer order differential equations
do, and fractional controllers perform better than integer order controllers.

In this paper, we consider optimal control problem for coupled evolution equations with
Caputo derivatives. The novelties of this contribution is we generalize the previous studies
in Agrawal et al. [1,2] and Mophou [21,22] for fractional coupled evolution systems which
can used to describe many physical, chemical, mathematical and biological models. The
existence and uniqueness of solutions for such equations are proved. Fractional optimal
control is characterized by the adjoint problem. By using this characterization, particular
properties of fractional optimal control are proved.

This paper is organized as follows. In “Preliminaries”, we introduce some basic definitions
and preliminary results. In “Coupled evolution systemwithCaputo derivatives”,we formulate
the fractional Dirichlet problem for evolution equations. In “Optimization theorem and the
fractional control problem”, we show that our fractional optimal control problem holds and
we give the optimality conditions for the optimal control. Some illustrate examples are stated.

Preliminaries

Many definitions have been given of a fractional derivative, which include Riemann–
Liouville, Grünwald–Letnikov, Weyl, Caputo, Marchaud, and Riesz fractional derivative.
We will formulate the problem in terms of the left and right Caputo fractional derivatives
which will be given later.

Let n ∈ N∗ and � be a bounded open subset of Rn with a smooth boundary � of class
C2. For a time T > 0, we set Q = � × (0, T ) and � = � × (0, T ).

Definition 2.1 Let x : [a, b] → R be a continuous function on [a, b] and α > 0 be a real
number, and n = [α], where [α] denotes the smallest integer greater than or equal to α. The
left (left RLFI) and the right (right RLFI) Riemann–Liouville fractional integrals of order α

are defined by

a I
α
t x(t) = 1

�(α)

∫ t

a
(t − s)α−1x(s)ds (left RLFI),

t I
α
b x(t) = 1

�(α)

∫ b

t
(s − t)α−1x(s)ds (right RLFI),

where

�(α) =
∫ ∞

0
e−t uα−1du, a I

0
t x(t) =t I

0
b x(t) = x(t).

In the case of α = 1, the fractional integral reduces to the classical integral.
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The left (left RLFD) and the right (right RLFD) Riemann-Liouville fractional derivatives
of order α are defined by

aD
α
t x(t) = 1

�(n − α)

dn

dtn

∫ t

a
(t − s)n−α−1x(s)ds (left RLFD)

t D
α
b x(t) = (−1)n

�(n − α)

dn

dtn

∫ b

t
(s − t)n−α−1x(s)ds (right RLFD)

where α ∈ (n − 1, n), n ∈ N .

Moreover, The left (left CFD) and the right (right CFD) Caputo fractional derivatives of
order α are defined by

C
a D

α
t x(t) = 1

�(n − α)

∫ t

a
(t − s)n−α−1x (n)(s)ds (left CFD)

provided that the integral is defined.

C
t D

α
b x(t) = (−1)n

�(n − α)

∫ b

t
(s − t)n−α−1x (n)(s)ds (right CFD)

provided that the integral is defined.
The relation between the right RLFD and the right CFD is as follows:

C
t D

α
b x(t) = t D

α
b x(t) −

n−1∑
k=0

x (k)(b)

�(k − α + 1)
(b − t)(k−α).

If x and x(i), i = 1, ..., n − 1, vanish at t = a, then aDα
t x(t) = C

a D
α
t x(t), and if they

vanish at t = b, then t Dα
b x(t) = C

t D
α
b x(t).

Further, it holds

C
0 D

α
t c = 0, where c is a constant,

and

C
0 D

α
t tn =

{
0, for n ∈ N0 and n < [α];

�(n+1)
�(n+1−α)

tn−α, for n ∈ N0 and n ≥ [α],
where N0 = 0, 1, 2, . . .. We recall that for α ∈ N the Caputo differential operator coincides
with the usual differential operator of integer order.

Lemma 2.1 Let T > 0, u ∈ Cm([0, T ]), p ∈ (m−1,m),m ∈ N and v ∈ C1([0, T ]). Then
for t ∈ [0, T ], the following properties hold

aD
p
t v(t) = d

dt
a I

1−p
t v(t), m = 1,

aD
p
t a I

p
t v(t) = v(t);

0 I
p
t 0D

p
t u(t) = u(t) −

m−1∑
k=0

tk

k!u
(k)(0);

lim
t→0+

C
0 D

p
t u(t) = lim

t→0+ 0 I
p
t u(t) = 0.

Note also that when T = +∞, C
0 D

α
t f (t) is the Weyl fractional integral of order α of f .
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An important tool is the integration by parts formula for Caputo fractional derivatives,
which is stated in the following lemma.

Lemma 2.2 [1,2]. Let α ∈ (0, 1), and x, y : [a, b] → R be two functions of class C1. Then
the following integration by parts formula holds:

∫ b

a
y(t)Ca Dt x(t)dt = [t I 1−α

b y(t)x(t)]ba +
∫ b

a
x(t)t D

α
b y(t)dt.

Lemma 2.3 (Fractional Green’s formula [23]). Let 0 < α ≤ 1. Then for any φ ∈ C∞(Q)

we have∫ T

0

∫
�

(C0 D
α
t y(x, t) + Ay(x, t))φ(x, t)dxdt =

∫
�

φ(x, T ) C0 I
1−α
t y(x, T )dx

−
∫

�

φ(x, 0) C0 I
1−α
t y(x, 0+)dx +

∫ T

0

∫
∂�

y
∂φ

∂νA
d�dt

−
∫ T

0

∫
∂�

∂y

∂νA
φd�dt +

∫ T

0

∫
�

y(x, t)(− C
0 D

α
t φ(x, t)

+A∗φ(x, t))dxdt.

where A is a given operator which is defined by (3.6) below and

∂y

∂νA
=

n∑
i, j=1

ai j
∂y

∂x j
cos(n, x j ) on�,

cos(n, x j ) is the i-th direction cosine of n,n being the normal at � exterior to �.

We also introduce the space

W(0, T ) := {y : y ∈ L2(0, T ; H1
0 (�)), C

0 D
α
t y(t) ∈ L2(0, T ; H−1(�))}

in which a solution of a fractional differential systems is contained. The spaces considered
in this paper are assumed to be real.

Lemma 2.4 Let 0 < α < 1, X be a Banach space and f ∈ C([0, T ],X). Then for all,
t1, t2 ∈ [0, T ]

||0 Iα
t f (t1) −0 Iα

t f (t2)||X ≤ || f ||L∞((0,T );X)

�(α + 1)
|t1 − t2|α.

Remark 2.5 Since C([0, T ],X) ⊂ L∞((0, T );X) ⊂ L2((0, T );X) because [0, T ] is
a bounded subset of R , Lemma 2.4 holds for f ∈ L2((0, T );X) and we have that
0 Iα

t f ∈ C([0, T ],X) ⊂ L2((0, T );X).

Coupled evolution system with Caputo derivatives

For y10, y20 ∈ H1
0 (�) and f1, f2 ∈ L2(0, T ; H−1(�)), let us consider the fractional problem

for coupled evolution system:
Find

y = {y1, y2} ∈ W(0, T ) × W(0, T )
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such that

C
0 D

α
t y1(t) + Ay1(t) + y1(t) − y2(t) = f1(t), a.e. t ∈ ]0, T [, (3.1)

C
0 D

α
t y2(t) + Ay2(t) + y2(y) + y1(t) = f2(t), a.e. t ∈ ]0, T [, (3.2)

y1(x, 0) = y0,1(x), x ∈ �, (3.3)

y2(x, 0) = y0,2(x), x ∈ �, (3.4)

y1(x, t) = 0, y2(x, t) = 0 , x ∈ �, t ∈ (0, T ), (3.5)

here C
0 D

α
t y(t) is the Caputo fractional derivatives of y : [0, t] → H−1(�), where � has the

same properties as in “Introduction”. The monotone operator A in the state equations (3.1),
(3.2) is a second order elliptic operator given by

Ay = −
n∑

i, j=1

∂

∂xi

(
ai j (x)

∂y

∂x j

)
+ a0(x)y, (3.6)

where ai j , i, j = 1, 2, . . . , n, be given function on � with the properties

a0(x), ai j (x) ∈ L∞(�) (with real values),

a0(x) ≥ β > 0,
n∑

i, j=1

ai j (x)ξiξ j ≥ β(ξ21 + · · · + ξ2n ), ∀ξ ∈ Rn,

almost everywhere on�. The operatorA ∈ L
(
H1
0 (�), H−1(�)

)
satisfying for someω > 0,

and real κ , the coercivity condition

(Ay, y)L2(�) + κ|y|2L2(�)
≥ ω||y||2

H1
0 (�)

∀y ∈ H1
0 (�) (3.7)

Lemma 3.1 Let f1, f2 ∈ L2(Q) and y1, y2 ∈ L2((0, T ); H1
0 (�)) be such that

C
0 D

α
t y1(t),

C
0 D

α
t y2(t) ∈ L2(Q) and C

0 D
α
t y1(t)+Ay1(t)+y1(t)−y2(t) = f1(t), C

0 D
α
t y2(t)

+ Ay2(t) + y2(t) + y1(t) = f2(t). Then we have

(i) y1|�, y2|� exists and belongs L2((0, T ); H−1(�)),
(ii) y1(0), y2(0) belongs to L2(�).

Proof Since ai j ∈ C1(�) for 1 ≤ i, j ≤ n, we have (i). On the other hand, in view of Lemma
2.4, 0 Iα

t ( C0 D
α
t y1(t)), 0 Iα

t ( C0 D
α
t y2(t)) ∈ L2(�) because C

0 D
α
t y1(t),

C
0 D

α
t y2(t) ∈ L2(Q).

Hence, y1(0), y2(0) exists and belongs to L2(�) since 0 Iα
t ( C0 D

α
t y1(t)) = y1(t) − y1(0),

0 Iα
t ( C0 D

α
t y2(t)) = y2(t) − y2(0) and y1(t), y2(t) ∈ L2(�). 
�

For the operator A in (3.6) we define the bilinear form as follows:

Definition 3.1 For each t ∈]0, T [, y = (y1, y2) and φ = (φ1, φ2) we define a family of
bilinear forms π(t; y, φ) on (H1

0 (�))2 by:

π(t; y, φ) =
(
Ay1 + y1 − y2, φ1

)
L2(�)

+
(
Ay2 + y2 + y1, φ2

)
L2(�)

, y, φ ∈ (H1
0 (�))2. (3.8)

Then Eq. (3.8) can be written as

π(t; y, φ) =
(
Ay1 + y1 − y2, φ1

)
L2(�)

+
(
Ay2 + y2 + y1, φ2

)
L2(�)
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=
(

−
n∑

i, j=1

∂

∂xi

(
ai j (x)

∂y1
∂x j

)
+a0(x)y1 + y1 − y2, φ1(x)

)
L2(�)

+
(

−
n∑

i, j=1

∂

∂xi

(
ai j (x)

∂y2
∂x j

)
+a0(x)y2 + y2 + y1, φ2(x)

)
L2(�)

=
∫

�

n∑
i, j=1

ai j
∂

∂xi
y1(x)

∂

∂x j
φ1(x)dx +

∫
�

a0(x)y1(x)φ1(x)dx .

+
∫

�

n∑
i, j=1

ai j
∂

∂xi
y2(x)

∂

∂x j
φ2(x)dx +

∫
�

a0(x)y2(x)φ2(x)dx

+
∫

�

[y1φ1 + y2φ2 − y2φ1 + y1φ2]dx (3.9)

Lemma 3.2 The bilinear form π(t; y, φ) in (3.9) is coercive on (H1
0 (�))2 that is for y =

(y1, y2) we have

π(t; y, y) ≥ λ ||y||2
(H1

0 (�))2
, λ > 0. (3.10)

Proof It is well known that the ellipticity ofA is sufficient for the coerciveness of π(t; y, φ)

on (H1
0 (�))2. Since we have

π(t; y, φ) =
∫

�

n∑
i, j=1

ai j
∂

∂xi
y1(x)

∂

∂x j
φ1(x)dx +

∫
�

a0(x)y1(x)φ1(x)dx

+
∫

�

n∑
i, j=1

ai j
∂

∂xi
y2(x)

∂

∂x j
φ2(x)dx +

∫
�

a0(x)y2(x)φ2(x)dx

+
∫

�

[y1φ1 + y2φ2 − y2φ1 + y1φ2]dx,

then we get

π(t; y, y) =
∫

�

n∑
i, j=1

ai j
∂

∂xi
y1(x)

∂

∂x j
y1(x)dx +

∫
�

a0(x)y1(x)y1(x)dx

+
∫

�

n∑
i, j=1

ai j
∂

∂xi
y2(x)

∂

∂x j
y2(x)dx +

∫
�

a0(x)y2(x)y2(x)dx

+
∫

�

[y1y1 + y2y2 − y2y1 + y1y2]dx

≥ β

n∑
i, j=1

ai j || ∂

∂xi
y1(x)||2L2(�)

+ β||y1(x)||2L2(�)
+ ||y1(x)||2L2(�)

+ β

n∑
i, j=1

ai j || ∂

∂xi
y2(x)||2L2(�)

+ β||y2(x)||2L2(�)
+ ||y2(x)||2L2(�)
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≥ λ1||y1||2H1
0 (�)

+ λ1||y2||2H1
0 (�)

≥ λ||y||2
(H1

0 (�))2
, λ = max(λ1, λ2) > 0.


�

Also we assume that ∀y, φ ∈ (H1
0 (�)2 the function t → π(t; y, φ) is continuously

differentiable in ]0, T [ and the bilinear form π(t; y, φ) is symmetric,

π(t; y, φ) = π(t;φ, y) ∀y, φ ∈ (H1
0 (�))2. (3.11)

Then (3.1)–(3.5) constitute a fractional Dirichlet coupled problem. First by using the Lax–
Milgram lemma, we prove sufficient conditions for the existence of a unique solution of the
mixed initial-boundary value problem (3.1)–(3.5).

Lemma 3.3 [21,22] (Fractional Green’s formula for evolution systems). Let y = (y1, y2)
be the solution of system (3.1)–(3.5). Then for any φ = (φ1, φ2) ∈ (C∞(Q))2 such that
φ(x, T ) = (φ1, φ2)(x, T ) = 0 in � and φ = (φ1, φ2) = 0 on �, we have for each i = 1, 2

∫ T

0

∫
�

( C0 D
α
t yi (x, t) + Ayi (x, t))φi (x, t)dxdt

= −
∫

�

φi (x, 0)yi (0)dx +
∫ T

0

∫
∂�

yi
∂φi

∂ν
d�dt

−
∫ T

0

∫
∂�

∂yi
∂ν

φi d�dt +
∫ T

0

∫
�

yi (x, t)(− C
0 D

α
t φi (x, t)

+ A∗φi (x, t))dxdt.

Lemma 3.4 If (3.10) and (3.11) hold, then the problem (3.1)–(3.5) admits a unique solution
y(t) = (y1(t), y2(t)) ∈ (W(0, T ))2.

Proof From the coerciveness condition (3.10) and using the Lax–Milgram lemma, there
exists a unique element y(t) = (y1(t), y2(t)) ∈ (H1

0 (�))2 such that

( C0 D
α
t y(t), φ)(L2(Q))2 + π(t; y, φ) = L(φ) for all φ = (φ1, φ2) ∈ (H1

0 (�))2, (3.12)

where L(φ) is a continuous linear form on (H1
0 (�))2 and takes the form

L(φ) =
∫
Q
[ f1φ1 + f2φ2]dxdt +

∫
�

[y0,1φ1(x, 0) + y0,2φ2(x, 0)]dx, (3.13)

f = ( f1, f2) ∈ (L2(Q))2, y0 = (y0,1, y0,2) ∈ (L2(�))2.

Then Eq. (3.12) equivalents to there exists a unique solution y(t) = (y1(t), y2(t)) ∈
(H1

0 (�))2 for
(

C
0 D

α
t y1(t) + Ay1(t) + y1 + y2, φ1(x)

)
L2(Q)

+
(

C
0 D

α
t y2(t) + Ay2(t) + y2 − y1, φ2(x)

)
L2(Q)

= L(φ). (3.14)

Then Eq. (3.14) is equivalent to the fractional evolution equations
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C
0 D

α
t y1(t) + Ay1(t) + y1 + y2 = f1, (3.15)

C
0 D

α
t y2(t) + Ay2(t) + y2 − y1 = f2, (3.16)

“tested” against φ1(x), φ2(x) respectively.
Let us multiply both sides in (3.16), (3.17) by φ1(x), φ2(x) respectively and applying

Green’s formula (Lemma 3.3), we have∫
Q
( C0 D

α
t y1(t) + Ay1(t) + y1 + y2)φ1(x)dxdt

=
∫
Q

f1φ1dxdt for all φ1(x) ∈ H1
0 (�), (3.17)

∫
Q
( C0 D

α
t y2(t) + Ay2(t) + y2 − y1)φ2(x)dxdt

=
∫
Q

f2φ2dxdt for all φ2(x) ∈ H1
0 (�) (3.18)

applying Green’s formula (Lemma 3.3), we have

−
∫

�

φ1(x, 0)y1(x, 0)dx +
∫ T

0

∫
∂�

y1
∂φ1

∂ν
d�dt −

∫ T

0

∫
∂�

∂y1
∂ν

φd�dt

+
∫ T

0

∫
�

y1(x, t)(− C
0 D

α
t φ1(x, t) + A∗φ1(x, t))dxdt +

∫
Q
(y1 + y2)φ1dxdt

=
∫
Q

f1φ1(x)dxdt −
∫

�

φ2(x, 0)y2(x, 0)dx +
∫ T

0

∫
∂�

y2
∂φ1

∂ν
d�dt

−
∫ T

0

∫
∂�

∂y2
∂ν

φd�dt +
∫ T

0

∫
�

y2(x, t)(− C
0 D

α
t φ2(x, t) + A∗φ2(x, t))dxdt

+
∫
Q
(y2 − y1)φ2dxdt =

∫
Q

f2φ2(x)dxdt

whence comparing with (3.12), (3.13), we get
∫

�

φ1(x, 0)y1(x, 0)dx −
∫ T

0

∫
∂�

y1
∂φ1

∂ν
d�dt =

∫
�

y0,1φ1(x, 0)dx .

∫
�

φ2(x, 0)y2(x, 0)dx −
∫ T

0

∫
∂�

y2
∂φ2

∂ν
d�dt =

∫
�

y0,2φ2(x, 0)dx .

From this we deduce the initial conditions

y1(x, 0) = y0,1, x ∈ �

y2(x, 0) = y0,2, x ∈ �

which completes the proof. 
�

Optimization theorem and the fractional control problem

For a control u = (u1, u2) ∈ (L2(Q))2, the state y(u) = (y1(u), y1(u)) of the system is
given by the fractional variation coupled systems:

C
0 D

α
t y1(u) + Ay1(u) + y1(u) − y2(u) = f1(t) + u1, in Q,
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a.e. t ∈ ]0, T [, f1 ∈ L2(Q), (4.1)
C
0 D

α
t y2(u) + Ay2(u) + y2(u) + y1(u) = f2(t) + u2, in Q,

a.e. t ∈ ]0, T [, f2 ∈ L2(Q), (4.2)

y1(x, 0; u) = y0,1(x) ∈ L2(�), x ∈ �, (4.3)

y2(x, 0; u) = y0,2(x) ∈ L2(�), x ∈ �, (4.4)

y1(x, t) = 0, y2(x, t) = 0 , x ∈ �, t ∈ (0, T ), (4.5)

The observation equations are given by

zi (u) = yi (u), for each i = 1, 2. (4.6)

The cost function J (v) for v = {v1, v2} is given by

J (v) =
∫
Q
[(y1(v) − zd,1)

2 + (y2(v) − zd,2)
2]dxdt + (Nv, v)(L2(Q))2

where zd = {zd,1, zd,2} is a given element in (L2(Q))2 and N = {N1, N2} ∈
L(L2(Q), L2(Q)) is hermitian positive definite operator:

(Nui , ui ) ≥ c||ui ||2L2(Q)
, c > 0, for each i = 1, 2. (4.7)

Control constraints We define Uad ( set of admissible controls) is closed, convex subset
of U = L2(Q) × L2(Q).

Control problemWe want to minimize J over Uad i.e. find u = {u1, u2} such that

J (u) = inf
v={v1,v2}∈Uad

J (v). (4.8)

Under the given considerations we have the following theorem:

Theorem 4.1 The problem (4.8) admits a unique solution given by (4.1)–(4.5) and the opti-
mality condition∫

Q
[p1(v1 − u1) + p2(v2 − u2)] dxdt + (Nu, v − u)U ≥ 0, ∀v ∈ Uad , u ∈ Uad (4.9)

where p(u) = {p1(u), p2(u)} is the adjoint state.
Proof Since the control u ∈ Uad is optimal if and only if

J ′(u)(v − u) ≥ 0 for all v ∈ Uad

The above condition, when explicitly calculated for this case, gives

(y1(u) − zd,1, y1(v) − y1(u))L2(Q) + (y2(u) − zd,2, y2(v)

−y2(u))L2(Q) + (Nu, v − u)U ≥ 0

i.e. ∫
Q
[y1(u) − zd,1)(y1(v) − y1(u)) + (y2(u) − zd,2)(y2(v) − y2(u))]dxdt

+(Nu, v − u)(L2(Q))2 ≥ 0. (4.10)

For the control u ∈ (L2(Q))2 the adjoint state p(u) = {p1(u), p2(u)} ∈ (L2(Q))2 is
defined by

− C
0 D

α
t p1(u) + A∗ p1(u) + p1(u) + p2(u) = y1(u) − zd,1, in Q, (4.11)
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− C
0 D

α
t p2(u) + A∗ p2(u) + p2(u) − p1(u) = y2(u) − zd,2, in Q, (4.12)

p1(u) = 0, p2(u) = 0 on�, (4.13)

p1(x, T ; u) = 0, p2(x, T ; u) = 0 in�, (4.14)

where A∗ is the adjoint operator for the operator A, which given by

A∗ p = −
n∑

i, j=1

∂

∂x j

(
ai j (x)

∂p

∂xi

)
+a0(x)p.

Now, multiplying the Eqs. (4.11), (4.12) by (y1(v)− y1(u)), (y2(v)− y2(u)) respectively
and applying Green’s formula, we obtain

∫
Q
(y1(u) − zd,1)(y1(v) − y1(u))dxdt =

∫
Q
[− C

0 D
α
t p1(u)

+ A∗ p1(u) + p1(u) + p2(u)](y1(v) − y1(u)) dxdt

= −
∫

�

p1(x, 0)(y1(v; x, 0) − y1(u; x, 0+))dx

+
∫

�

p1(u)(
∂y1(v)

∂νA
− ∂y1(u)

∂νA
) d�

−
∫

�

∂p1(u)

∂νA
(y1(v) − y1(u)) d�

+
∫
Q
[p1(u)( C0 D

α
t + A + 1) + p2(u)](y1(v) − y1(u)) dxdt, (4.15)

∫
Q
(y2(u) − zd,2)(y2(v) − y2(u))dxdt =

∫
Q
[− C

0 D
α
t p2(u)

+A∗ p2(u) + p2(u) − p1(u)](y2(v) − y2(u)) dxdt

= −
∫

�

p2(x, 0)(y2(v; x, 0) − y2(u; x, 0+))dx

+
∫

�

p2(u)(
∂y2(v)

∂νA
− ∂y2(u)

∂νA
) d�

−
∫

�

∂p2(u)

∂νA
(y2(v) − y2(u)) d�

+
∫
Q
[p2(u)( C0 D

α
t + A + 1) − p1(u))](y2(v) − y2(u)) dxdt. (4.16)

Using (4.1)–(4.5), (4.13) and (4.14), we have
∫
Q
[p1(u)( C0 D

α
t + A + 1) + p2(u)](y1(v) − y1(u)) dxdt =

∫
Q
p1(u)(v1 − u1) dxdt

∫
Q
[p2(u)( C0 D

α
t + A + 1) − p1(u))](y2(v) − y2(u)) dxdt =

∫
Q
p2(u)(v2 − u2) dxdt

y1(u)|� = 0, y2(u)|� = 0 p1(u)|� = 0, p2(u)|� = 0,

y1(v; x, 0) − y1(u; x, 0) = y0,1(x) − y0,1(x) = 0

y2(v; x, 0) − y2(u; x, 0) = y0,2(x) − y0,2(x) = 0
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Then (4.15) becomes∫
Q
(y1(u) − zd,1)(y1(v) − y1(u))dxdt =

∫
Q
p1(u)(v1 − u1)dxdt,

and (4.16) becomes∫
Q
(y2(u) − zd,2)(y2(v) − y2(u))dxdt =

∫
Q
p2(u)(v2 − u2)dxdt,

and hence (4.10) is equivalent to∫
Q
p1(u)(v1 − u1) dxdt +

∫
Q
p2(u)(v2 − u2) dxdt + (Nu, v − u)(L2(Q))2 ≥ 0

which can be written as:∫
Q
[(p1(u) + N1u1)(v1 − u1) + (p2(u) + N2u2)(v2 − u2) dxdt ≥ 0

which completes the proof. 
�
Example 4.1 see [16] and [17]. We consider an example of an evolution equation which is
analogous to that considered in section 2 butwithNeumann boundary condition and boundary
control.

In this example we consider the space

W(0, T ) := {y : y ∈ L2(0, T ; H1(�)), C
0 D

α
t y(t) ∈ L2(0, T ; (H1(�))

′
)}

in which a solution of a fractional differential systems is contained. Let y(u) =
{y1(u), y2(u)} ∈ W(0, T ) be the state of the system which is given by,

C
0 D

α
t y1(u) + Ay1(u) + y1(u) − y2(u) = f1(t), in Q, a.e. t ∈ ]0, T [, f1 ∈ L2(Q),

(4.17)
C
0 D

α
t y2(u) + Ay2(u) + y2(u) + y1(u) = f2(t), in Q, a.e. t ∈ ]0, T [, f2 ∈ L2(Q),

(4.18)

y1(x, 0; u) = y0,1(x) ∈ L2(�), x ∈ �, (4.19)

y2(x, 0; u) = y0,2(x) ∈ L2(�), x ∈ �, (4.20)
∂y1(x, t)

∂νA
|� = u1,

∂y2(x, t)

∂νA
|� = u2 , x ∈ �, t ∈ (0, T ). (4.21)

The control u = {u1, u2} is taken in L2(�) × L2(�):

u = {u1, u2} ∈ U = L2(�) × L2(�).

Problem (4.17)–(4.21) admits a unique solution. To see this we apply Theorem (1.2) [20],
with

V = H1(�) × H1(�), φ = {φ1, φ2} ∈ V,

π(t; y, φ) = π(y, φ) =
∫

�

n∑
i, j=1

ai j
∂

∂xi
y1(x)

∂

∂x j
φ1(x)dx +

∫
�

a0(x)y1(x)φ1(x)dx
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+
∫

�

n∑
i, j=1

ai j
∂

∂xi
y2(x)

∂

∂x j
φ2(x)dx +

∫
�

a0(x)y2(x)φ2(x)dx

+
∫

�

[y1φ1 + y2φ2 − y2φ1 + y1φ2]dx,

L(φ) = ( f, φ)=
∫

�

[ f1(x, t)φ1(x) + f2(x, t)φ2(x)]dx +
∫

�

[u1(t)φ1(x) + u2(t)φ2(x)]d�.

Let us consider the case where we have partial observation of the final state

z(v) = y1(x, T ; v), (4.22)

and the cost function J (v) for v = {v1, v2} is given by

J (v) =
∫

�

(y1(x, T ; v) − zd)
2dx + (Nv, v)(L2(�))2 , zd ∈ L2(�).

where N = {N1, N2} ∈ L(L2(�), L2(�)) is hermitian positive definite operator:

(Nu, u) ≥ c||u||2L2(�)
, c > 0 (4.23)

Control constraints We define Uad ( set of admissible controls) is closed, convex subset
of U = L2(�) × L2(�).

Control problemWe want to minimize J over Uad i.e. find u = {u1, u2} such that

J (u) = inf
v={v1,v2}∈Uad

J (v). (4.24)

The adjoint state is given by

− C
0 D

α
t p1(u) + A∗ p1(u) + p1(u) + p2(u) = 0, in Q, (4.25)

− C
0 D

α
t p2(u) + A∗ p2(u) + p2(u) − p1(u) = 0, in Q, (4.26)

∂p1(u)

∂νA∗
= 0,

∂p2(u)

∂νA∗
= 0 on�, (4.27)

p1(x, T ; u) = y1(u) − zd , in�, p2(x, T ; u) = 0 in�. (4.28)

The optimality condition is
∫

�

[p1(u)(v1 − u1) + p2(u)(v2 − u2)] d� + (Nu, v − u)(L2(�))2 ≥ 0,

∀v ∈ Uad , u ∈ Uad . (4.29)

Example 4.2 In the case of no constraint on the control (U = Uad) and N = {N1, N2} is a
diagonal matrix of operators. Then (4.29) reduces to

p1 + N1u1 = 0 on �, p2 + N2u2 = 0 on �,

which equivalent to

u1 = −N−1
1 (p1(u)|�)), u2 = −N−1

2 (p2(u)|�). (4.30)

The fractional optimal control is obtained by the simultaneous solving (4.17)–(4.21) and
(4.25)–(4.28) (where we eliminate u1, u2 with the aid of (4.30)) and then utilizing (4.30).
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Example 4.3 If we take

Uad =
{
ui |ui ∈ L2(�), ui ≥ 0 almost everywhere on �, i = 1, 2

}
,

and N = ν×Identity, (4.29) gives

u1 ≥ 0, p1(u) + ν1u1 ≥ 0, u1(p1(u) + ν1u1) = 0 on �,

u2 ≥ 0, p2(u) + ν2u2 ≥ 0, u2(p2(u) + ν2u2) = 0 on �.

The fractional optimal control is obtained by the solution of the fractional problem

C
0 D

α
t y1(u) + Ay1(u) + y1(u) − y2(u) = f1(t), in Q, a.e. t ∈ ]0, T [, f1 ∈ L2(Q),

C
0 D

α
t y2(u) + Ay2(u) + y2(u) + y1(u) = f2(t), in Q, a.e. t ∈ ]0, T [, f2 ∈ L2(Q),

− C
0 D

α
t p1(u) + A∗ p1(u) + p1(u) + p2(u) = 0, in Q,

− C
0 D

α
t p2(u) + A∗ p2(u) + p2(u) − p1(u) = 0, in Q,

y1(x, 0; u) = y0,1(x) ∈ L2(�), x ∈ �,

y2(x, 0; u) = y0,2(x) ∈ L2(�), x ∈ �,

p1(x, T ; u) = y1(u) − zd , in�,

p2(x, T ; u) = 0 in�.

∂y1(x, t)

∂νA
|� ≥ 0,

∂y2(x, t)

∂νA
|� ≥ 0 , x ∈ �, t ∈ (0, T ).

∂p1(u)

∂νA∗
= 0,

∂p2(u)

∂νA∗
= 0 on�,

p1 + ν1
∂y1
∂νA

≥ 0,
∂y1
∂νA

[p1 + ν1
∂y1
∂νA

] = 0 on �,

p2 + ν2
∂y2
∂νA

≥ 0,
∂y2
∂νA

[p2 + ν2
∂y2
∂νA

] = 0 on �,

hence

u1 = ∂y1
∂νA

|�, u2 = ∂y2
∂νA

|�.

Example 4.4 We can generalize our results to n dimensional coupled fractional system as
follows. The state of the system is given, for each i = 1, 2, . . . , n, by

C
0 D

α
t yi (u) + Ayi (u) +

n∑
j=1

bi j y j (u) = fi (t), in Q, a.e. t ∈ ]0, T [, f1 ∈ L2(Q),

(4.31)

yi (x, 0; u) = y0,i (x) ∈ L2(�), x ∈ �, (4.32)
∂yi (x, t)

∂νA
|� = ui , x ∈ �, t ∈ (0, T ), (4.33)

bi j =
{
1, i ≥ j;
−1, i < j.

(4.34)

The control u = {u1, u2, . . . , un} is taken in (L2(�))n :

u = {u1, u2, . . . , un} ∈ U = (L2(�))n .
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Problem (4.31)–(4.33) admits a unique solution. To see this, we use the method developed
in [20]:

V = (H1(�))n, φ = {φ1, φ2, . . . , φn} ∈ V,

π(t; y, φ) = π(y, φ) =
∫

�

n∑
i, j=1

ai j
∂

∂xi
yi (x)

∂

∂x j
φi (x)dx +

∫
�

a0(x)
n∑
j=1

y j (x)φ j dx

+
n∑

i=1

∫
�

n∑
j=1

bi, j y j (x)φi (x)dx,

L(φ) = ( f, φ) =
∫

�

n∑
i=1

fi (x, t)φi (x)dx +
∫

�

n∑
i=1

ui (t)φi (x)d�.

Let us consider the case where we have partial observation of the final state

z(v) = y1(x, T ; v), (4.35)

and the cost function J (v) for v = {v1, v2} is given by

J (v) =
∫

�

(y1(x, T ; v) − zd)
2dx + (Nv, v)(L2(�))n , zd ∈ L2(�).

where N = {N1, N2, . . . , Nn} ∈ L((L2(�))n, (L2(�))n) is hermitian positive definite oper-
ator:

(Nu, u) ≥ c||u||nL2(�)
, c > 0 (4.36)

Control constraints We define Uad ( set of admissible controls) is closed, convex subset
of U = (L2(�))n .

Control problemWewant to minimize J overUad i.e. find u = {u1, u2, . . . , un} such that
J (u) = inf

v={v1,v2,...,vn}∈Uad
J (v). (4.37)

The adjoint state is given by

− C
0 D

α
t pi (u) + A∗ pi (u) +

n∑
j=1

b ji y j (u) = 0, in Q, (4.38)

∂pi (u)

∂νA∗
= 0, on�, (4.39)

p1(x, T ; u) = y1(u) − zd , in�, pk(x, T ; u) = 0, k = 2, 3, . . . , n in�, (4.40)

where b ji are the transpose of bi j . The optimality condition is

∫
�

n∑
i=1

pi (u)(vi − ui ) d� + (Nu, v − u)(L2(�))n ≥ 0, ∀v ∈ Uad , u ∈ Uad . (4.41)

Remark 4.2 If we take α = 1 in the previews sections we obtain the classical results in the
optimal control with integer derivatives.
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Conclusions

In this paper we considered optimal control problem for coupled evolution systems with
Caputo derivatives. The analytical results were given in terms of Euler-Lagrange equations
for the fractional optimal control problems. The formulation presented and the resulting equa-
tions are very similar to those for classical optimal control problems for coupled parabolic
systems. The optimization problem presented in this paper constitutes a generalization of
the optimal control problem of evolution equations with Dirichlet boundary conditions con-
sidered in [20] to systems with Caputo time derivatives. Also the main results of the paper
contain necessary and sufficient conditions of optimality for coupled evolution equations that
give characterization of fractional optimal control (Theorem 4.1).
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