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Abstract The existence and uniqueness of a strong solution for a class of partial functional
differential equations with Dirichlet boundary conditions is established by applying Rothe’s
method. As an application, we included an example to illustrate the main result.
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Introduction

In this paper, we study the existence and uniqueness of a strong solution of the following
partial functional differential equation with Dirichlet boundary conditions

∂

∂t
[w(t, x) + F(t, x, w(t, x))] = ∂2

∂x2
[w(t, x) + F(t, x, w(t, x))] + G(t, x, w(t, x)),

t ∈ [0, T ], x ∈ [0, 1], (1)

w(t, 0) = w(t, 1) = 0, t ∈ [−T, T ], (2)

w(t, x) = Φ(t, x), (t, x) ∈ [−T, 0] × [0, 1], (3)

where F, G and Φ are some suitable functions.
Equations of the type (1) in which the delay argument occurs in the derivative of the state

variable as well as in the independent variable, are called neutral differential equations. Neu-
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tral differential equations have many applications in various physical situations, for example,
in the theory of vibration of masses attached to an elastic bar [1], and in the study of two or
more simple oscillatory systems with some interconnections between them [1,2].

The existence of solutions of neutral differential equations has been considered by many
authors, for example, Islam and Raffoul [3] studied the existence of periodic solutions of the
nonlinear system of neutral differential equations

d

dt
[u(t) − Q(t, u(t − g(t)))] = A(t)u(t) + G(t, u(t), u(t − g(t))),

where A(t) is a nonsingular n×nmatrixwith continuous real-valued functions as its elements.
The functions Q : R × R

n → R
n and G : R × R

n × R
n → R

n are continuous in their
respective arguments. Damak et al. [4] studied the existence of weighted pseudo almost
periodic solutions of an autonomous neutral functional differential equation

d

dt
[u(t) − F(t, u(t − r))] = A[u(t) − F(t, u(t − r))] + G(t, u(t), u(t − r)), t ∈ R,

in a Banach space X, where A is the infinitesimal generator of a C0−semigroup {T (t)}t≥0,

and F : R × X → X is Weighted pseudo almost periodic and G : R × X × X → X is
Stepanov-weighted pseudo almost periodic functions.

The Rothe’s method was introduced by Rothe in [5], for solving the following scalar
parabolic initial boundary value problem of second order,

R(t, x)
∂u

∂t
− ∂2u

∂x2
= S(t, x, u), 0 < x < 1, t > 0,

u(0, x) = u0(x),

u(t, 0) = u(t, 1) = 0, t ≥ 0,

where R and S are sufficiently smooth functions of t and x in [0, T ]×(0, 1) satisfying certain
additional conditions. Here T means an arbitrary finite positive number. His method consist
in dividing [0, T ] into n number of subintervals [tnj−1, t

n
j ], tnj = jh, j = 1, 2, . . . , n with

tn0 = 0 of equal lengths h(h = T
n ) and replacing the partial derivative ∂u

∂t of the unknown

function u by the difference quotients
unj−unj−1

h . After defining a sequence of polygonal
functions

Un(x, t) = unj−1(x) + 1

h
(t − tnj−1)(u

n
j (x) − unj−1(x)), t ∈ [tnj−1, t

n
j ].

Rothe has proved the convergence of the sequence {Un} to the unique solution of the problem
as n → ∞ using some a priori estimates on {Un}. After Rothe this method has been used by
many authors, for example, see [6–28].

Raheem and Bahuguna [7] have applied Rothe’s method to establish the existence and
uniqueness of a strong solution for the following delayed cooperation diffusion system with
Dirichlet boundary conditions.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂w

∂t
(t, x) = ∂2w

∂x2
(t, x) + kw(t, x)[1 − w(t − τ, x)] + f (t, x),

t ∈ [t0, T ], x ∈ [0, π ],
w(t, 0) = w(t, π) = 0, t ∈ [t0 − τ, T ],
w(t, x) = φ(t, x), (t, x) ∈ [t0 − τ, t0] × [0, π],
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where w(t, x) is the density of species at time t and space location x, and k, τ are positive
constants, and the maps f, φ are defined from [t0, T ] × [0, π] and [t0 − τ, t0] × [0, π] into
L2[0, π] respectively.

Merazga and Bouziani [20] have proved the existence and uniqueness of a weak solution
for a semilinear heat equation with integral conditions in a non classical function space.
Recently in [9], authors have applied Rothe’s method to a fractional integral diffusion and
established the existence and uniqueness of a strong solution.

By literature, it is clear that Rothe’s method can be used for solving many physical,
mathematical, biological problems modeled by partial differential equations.

In the present work, we shall use Rothe’s method to solve functional differential equations
with Dirichlet boundary conditions defined by (1)–(3).

Preliminaries and Main Result

Consider H := L2[0, 1], the real Hilbert space of all real valued square integrable functions
defined on [0, 1] with the usual inner product and the norm generated by the inner product.
Define the linear operator A by

D(A) := {u ∈ H : u′′ ∈ H, u(0) = u(1) = 0}, Au = −u′′.

Then, −A is the infinitesimal generator of a C0-semigroup T (t), t ≥ 0, of contractions in
H. Define the maps f : [0, T ] × H → H by

f (t, h)(x) = F(t, x, h(x)), (4)

and g : [0, T ] × H → H by
g(t, h)(x) = G(t, x, h(x)). (5)

If we define u : [−T, T ] → H by u(t)(x) = w(t, x), and φ : [−T, 0] → H by
φ(t)(x) = Φ(t, x), then (1)–(3) can be rewritten as

d

dt
[u(t) + f (t, u(t))] + A[u(t) + f (t, u(t))] = g(t, u(t)), t ∈ [0, T ], (6)

u(t) = φ(t), t ∈ [−T, 0]. (7)

Lemma 1 (Theorem 1.4.3, [29]) If −A is the infinitesimal generator of a C0-semigroup of
contractions, then A is m-accretive, that is, 〈Au, u〉 ≥ 0 for u ∈ D(A), and R(I +λA) = H

for any λ > 0, where I is the identity operator on H, and R(·) is the range of an operator.

Lemma 2 (Lemma 2.5, [12]) Let −A be the infinitesimal generator of a C0-semigroup
of contractions. If Y n ∈ D(A) for n ∈ N, Yn → u ∈ H and ‖AYn‖ are bounded, then
u ∈ D(A) and AYn ⇀ Au, where ⇀ denotes the weak convergence in H.

We consider the following assumptions:

(H1) For each t ∈ [0, T ], the function St : H → H defined by St (h) = h + f (t, h), h ∈ H,

is bijective.
(H2) f is continuous, and there exists 0 < K < 1 such that

‖ f (t1, u1) − f (t2, u2)‖ ≤ K‖u1 − u2‖, ∀t1, t2 ∈ [0, T ], ∀u1, u2 ∈ H.

(H3) There exists Lg > 0 such that

‖g(t1, u1) − g(t2, u2)‖ ≤ Lg(|t1 − t2| + ‖u1 − u2‖), ∀t1, t2 ∈ [0, T ], ∀u1, u2 ∈ H.
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(H4) φ is continuous function.

Denote by C([a, b];H) the space of all continuous functions from the interval [a, b] into
H.

Definition 1 Afunction u ∈ C([−T, T ];H) is called a strong solution of the problem (6)–(7)
if u(t) = φ(t) for t ∈ [−T, 0], u(t)+ f (t, u(t)) ∈ D(A) for t ∈ [0, T ], u(t) is Lipschitzian
on [0, T ] and satisfies the Eq. (6) a.e. on [0, T ].

Theorem 1 Suppose that the conditions (H1)–(H4) are satisfied. Then (6)–(7) has a strong
solution u on [−T, T̃ ], 0 < T̃ < T, which can be continued uniquely either on the whole
interval [−T, T ] or on the maximal interval of existence [−T, tmax), 0 < tmax ≤ T, such
that u is a strong solution of (6)–(7) on every subinterval [−T, T̃ ], 0 < T̃ < tmax.

Discretization Scheme and a priori Estimates

Fix R > 0 and choose t0 such that 0 < t0 ≤ T and t0M0 ≤ R, where

M0 := Lg

(

T + R

1 − K

)

+ g(0, φ(0)) + ‖A(φ(0) + f (0, φ(0)))‖. (8)

For each n ∈ N, let tn0 = 0, hn = t0
n , and tnj = jhn, for j = 1, 2, . . . , n. Let un0 = φ(0) for

all n ∈ N, and define each of {unj }nj=1 successively as the unique solution of the following
equation

1

hn
[u + f (tnj , u) − unj−1 − f (tnj−1, u

n
j−1)] + A(u + f (tnj , u)) = g(tnj , u

n
j−1). (9)

The existence of a unique unj satisfying (9) is obtained by using Lemma 1 and the assumption
(H1). We define the sequence {Un} by

Un(t) =
⎧
⎨

⎩

φ(t), t ∈ [−T, 0],
unj−1 + f (tnj−1, u

n
j−1) + 1

hn
(t − tnj−1)(u

n
j + f (tnj , u

n
j ) − unj−1

− f (tnj−1, u
n
j−1)), t ∈ (tnj−1, t

n
j ].

(10)

Lemma 3 For n ∈ N and j = 1, 2, . . . , n,

‖unj + f (tnj , u
n
j ) − φ(0) − f (0, φ(0))‖ ≤ R.

Proof From (9) for j = 1, we have

1

hn
[un1 + f (tn1 , un1) − un0 − f (tn0 , un0)] + A(un1 + f (tn1 , un1)) = g(tn1 , un0).

Then,
〈
1

hn
[un1 + f (tn1 , un1) − un0 − f (tn0 , un0)], un1 + f (tn1 , un1) − un0 − f (tn0 , un0)

〉

+〈A(un1 + f (tn1 , un1) − un0 − f (tn0 , un0)), u
n
1 + f (tn1 , un1) − un0 − f (tn0 , un0)〉

= 〈g(tn1 , un0), u
n
1 + f (tn1 , un1) − un0 − f (tn0 , un0)〉

− 〈A(un0 + f (tn0 , un0)), u
n
1 + f (tn1 , un1) − un0 − f (tn0 , un0)〉.
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By Lemma 1, we obtain

1

hn
‖un1 + f (tn1 , un1) − un0 − f (tn0 , un0)‖

≤ ‖g(tn1 , un0)‖ + ‖A(un0 + f (tn0 , un0))‖
≤ ‖g(tn1 , un0) − g(0, φ(0))‖ + ‖g(0, φ(0))‖ + ‖A(φ(0) + f (0, φ(0))‖
≤ Lg|tn1 | + ‖g(0, φ(0))‖ + ‖A(φ(0) + f (0, φ(0))‖
≤ M0. (11)

Therefore,

‖un1 + f (tn1 , un1) − φ(0) − f (0, φ(0))‖ ≤ hnM0 ≤ t0M0 ≤ R. (12)

Hence,

(1 − K )‖un1 − φ(0)‖ ≤ ‖un1 − φ(0)‖ − ‖ f (tn1 , un1) − f (0, φ(0))‖
≤ ‖un1 + f (tn1 , un1) − φ(0) − f (0, φ(0))‖
≤ R.

Therefore, ‖un1 − φ(0)‖ ≤ R
1−K .

Assume that

‖uni + f (tni , uni ) − φ(0) − f (0, φ(0))‖ ≤ R for i = 1, 2, . . . , j − 1. (13)

Then, ‖uni − φ(0)‖ ≤ R
1−K for i = 1, 2, . . . , j − 1. Now, From (9) for i = j, 2 ≤ j ≤ n,

we have

1

hn
[unj + f (tnj , u

n
j ) − unj−1 − f (tnj−1, u

n
j−1)] + A(unj + f (tnj , u

n
j )) = g(tnj , u

n
j−1).

Then,
〈
1

hn
[unj + f (tnj , u

n
j ) − unj−1 − f (tnj−1, u

n
j−1)], unj + f (tnj , u

n
j ) − un0 − f (tn0 , un0)

〉

+〈A(unj + f (tnj , u
n
j ) − un0 − f (tn0 , un0)), u

n
j + f (tnj , u

n
j ) − un0 − f (tn0 , un0)〉

= 〈g(tnj , unj−1), u
n
j + f (tnj , u

n
j ) − un0 − f (tn0 , un0)〉

− 〈A(un0 + f (tn0 , un0)), u
n
j + f (tnj , u

n
j ) − un0 − f (tn0 , un0)〉.

By Lemma 1, we obtain

1

hn
‖unj + f (tnj , u

n
j ) − unj−1 − f (tnj−1, u

n
j−1)‖

≤ ‖g(tnj , unj−1)‖ + ‖A(un0 + f (tn0 , un0))‖
≤ ‖g(tnj , unj−1) − g(0, φ(0))‖ + ‖g(0, φ(0))‖ + ‖A(φ(0) + f (0, φ(0))‖
≤ Lg(|tnj | + ‖unj−1 − φ(0)‖) + +‖g(0, φ(0))‖ + ‖A(φ(0) + f (0, φ(0))‖
≤ Lg

(

|tnj | + R

1 − K

)

+ ‖g(0, φ(0))‖ + ‖A(φ(0) + f (0, φ(0))‖
≤ M0. (14)
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Therefore,

1

hn
‖unj + f (tnj , u

n
j ) − un0 − f (tn0 , un0)‖

≤ 1

hn
‖unj−1 + f (tnj−1, u

n
j−1) − un0 − f (tn0 , un0)‖

+ 1

hn
‖unj + f (tnj , u

n
j ) − unj−1 − f (tnj−1, u

n
j−1)‖

≤ 1

hn
‖unj−1 + f (tnj−1, u

n
j−1) − un0 − f (tn0 , un0)‖ + M0

Thus, we get

1

hn
‖unj + f (tnj , u

n
j ) − un0 − f (tn0 , un0)‖ ≤ jM0

Therefore,

‖unj + f (tnj , u
n
j ) − φ(0) − f (0, φ(0))‖ ≤ jhnM0 ≤ t0M0 ≤ R. (15)

Hence proved. �
Corollary 1 For n ∈ N and j = 1, 2, . . . , n,

1

hn
‖unj + f (tnj , u

n
j ) − unj−1 − f (tnj−1, u

n
j−1)‖ ≤ M0.

Proof Proof is obvious by Lemma 3 and from the Eqs. (13) and (14). �
Now, we defined a sequence {Yn} of step functions from [−hn, t0] into H by

Yn(t) =
{

φ(0), t ∈ [−hn, 0],
unj + f (tnj , u

n
j ), t ∈ (tnj−1, t

n
j ]. (16)

Remark 1 From Corollary 1, it is clear that the functions Un(t) are Lipschitz continuous on
[0, t0], and the sequenceUn(t)−Yn(t) → 0 inH as n → ∞ uniformly on [0, t0].Moreover,
Yn(t) ∈ D(A) for t ∈ [0, t0] and the sequences {Un(t)}, {Yn(t)} and {AYn(t)} are bounded
uniformly in n ∈ N and t ∈ [0, t0].

If we suppose that

gn(t) = g(tnj , u
n
j−1), t ∈ (tnj−1, t

n
j ], 1 ≤ j ≤ n, (17)

then (9) can be written as

d−

dt
Un(t) + AYn(t) = gn(t), t ∈ (0, t0], (18)

where d−
dt denotes the left derivative in (0, t0]. Also, for t ∈ (0, t0], we have

∫ t

0
AYn(s)ds = φ(0) −Un(t) +

∫ t

0
gn(s)ds. (19)

Lemma 4 There exists a function u ∈ C([−T, t0];H) such that Un(t) → u(t) + f (t, u(t))
in C([−T, t0];H) as n → ∞. Moreover, u is Lipschitz continuous on [0, t0].
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Proof From (18) and using Lemma 1, for t ∈ (0, t0], we have
〈
d−

dt
Un(t) − d−

dt
Uk(t), Yn(t) − Y k(t)

〉

≤ 〈gn(t) − gk(t), Yn(t) − Y k(t)〉.

Using above inequality, we get

1

2

d−

dt
‖Un(t) −Uk(t)‖2

=
〈
d−

dt
(Un(t) −Uk(t)),Un(t) −Uk(t)

〉

≤
〈
d−

dt
(Un(t) −Uk(t)) − gn(t) + gk(t),Un(t) −Uk(t) − Yn(t) + Y k(t)

〉

+〈gn(t) − gk(t),Un(t) −Uk(t)〉. (20)

For t ∈ (tnj−1, t
n
j ] and t ∈ (tkl−1, t

k
l ], 1 ≤ j ≤ n, 1 ≤ l ≤ k, we have

‖unj−1 − ukl−1‖ ≤ ‖Un(t) −Uk(t)‖ + ‖ f (tnj−1, u
n
j−1) − f (tkl−1, u

k
l−1)‖

+‖ 1

hn
(t − tnj−1)(u

n
j + f (tnj , u

n
j ) − unj−1 − f (tnj−1, u

n
j−1))‖

+‖ 1

hk
(t − tkl−1)(u

k
l + f (tkl , ukl ) − ukl−1 − f (tkl−1, u

k
l−1))‖.

By Corollary 1 and by the assumption (H2), we get

‖unj−1 − ukl−1‖‖ ≤ ‖Un(t) −Uk(t)‖ + K‖unj−1 − ukl−1‖ + (hn + hk)M0, (21)

that is,

‖unj−1 − ukl−1‖‖ ≤ 1

1 − K
(‖Un(t) −Uk(t)‖ + (hn + hk)M0). (22)

Now,

‖gn(t) − gk(t)‖ = ‖g(tnj , unj−1) − g(tkl , ukl−1)‖
≤ Lg(|tnj − tkl | + ‖unj−1 − ukl−1‖)
≤ εnk(t) + Lg

1 − K
‖Un(t) −Uk(t)‖,

where

εnk(t) = Lg

(

|tnj − tkl | + M0(hn + hk)

1 − K

)

.

Clearly, εnk(t) → 0 as n, k → ∞ uniformly on [0, t0]. This implies that for a.e. t ∈ [0, t0],
we have

d−

dt
‖Un(t) −Uk(t)‖2 ≤ M0(ε

1
nk + ‖Un(t) −Uk(t)‖2),

where ε1nk is a sequence of numbers such that ε1nk → 0 as n, k → ∞. Notice that Un = φ

on [−T, 0] for all n. Hence, we obtain

‖Un(t) −Uk(t)‖2 ≤ M0

(

T ε1nk +
∫ t

0
‖Un(s) −Uk(s)‖2ds

)

.
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Using Gronwall’s inequality, we conclude that there exists v ∈ C([−T, t0];H) such that
Un → v in C([−T, t0];H) as n → ∞. By the assumption (H1), for each t ∈ [0, t0]
there exists u(t) such that v(t) = u(t) + f (t, u(t)), and for each t ∈ [−T, 0], we define
u(t) = v(t). By the assumption (H2), it is clear that u(t) is continuous. It is easy to see that
v = φ on [−T, 0], therefore u(t) = φ(t) on [−T, 0]. Since v is Lipschitz continuous, by the
assumption (H2) u is also Lipschitz continuous on [0, t0]. Hence proved. �
Proof of Theorem 1 From Remark 1 it follows that Yn(t) → u(t) + f (t, u(t)) as n → ∞,

and u(t) + f (t, u(t)) ∈ H for t ∈ [0, t0]. Since ‖AYn‖ are bounded, by Lemma 2 it is clear
that AYn(t) ⇀ A(u(t) + f (t, u(t))). For t ∈ (tnj−1, t

n
j ], we have

‖unj−1 − u(t)‖ ≤ ‖unj + f (tnj , u
n
j ) − u(t) − f (t, u(t))‖

+‖unj + f (tnj , u
n
j ) − unj−1 − f (tnj−1, u

n
j−1)‖

+‖ f (t, u(t)) − f (tnj−1, u
n
j−1)‖

≤ ‖unj + f (tnj , u
n
j ) − u(t) − f (t, u(t))‖

+ M0hn + K‖unj−1 − u(t)‖,
that is,

‖unj−1 − u(t)‖ ≤ 1

1 − K
(‖unj + f (tnj , u

n
j ) − u(t) − f (t, u(t))‖ + M0hn).

Now, for t ∈ (tnj−1, t
n
j ], we have

‖gn(t) − g(t, u(t))‖ = ‖g(tnj , unj−1) − g(t, u(t))‖
≤ Lg(|tnj − t | + ‖unj−1 − u(t)‖)
≤ Lg

1 − K
‖unj + f (tnj , u

n
j ) − u(t) − f (t, u(t))‖

+
(

1 + M0

1 − K

)

Lghn .

Therefore, ‖gn(t) − g(t, u(t))‖ → 0 as n → ∞ uniformly on [0, t0]. From (19), for every
v ∈ H, we have

∫ t

0
〈AYn(s), v〉ds = 〈φ(0), v〉 − 〈Un(t), v〉 +

∫ t

0
〈gn(s), v〉ds.

By Lemma 4 and the bounded convergence theorem, we get as n → ∞,

∫ t

0
〈A(u(s) + f (s, u(s))), v〉ds = 〈φ(0), v〉 − 〈(u(t) + f (t, u(t))), v〉

+
∫ t

0
〈g(s, u(s)), v〉ds. (23)

Since A(u(t) + f (t, u(t))) is Bochner integrable on [0, t0], from (23) we obtain

d

dt
(u(t) + f (t, u(t))) + A(u(t) + f (t, u(t))) = g(t, u(t)) a.e. t ∈ [0, t0]. (24)

Nowwe prove the uniqueness of a function u ∈ C([−T, t0];H) such that u(t)+ f (t, u(t)) is
differentiable a.e. on [0, t0]with u(t)+ f (t, u(t)) ∈ D(A) a.e. on [0, t0] and u = φ on [−T, 0]
satisfying (24). Suppose there exist two strong solutions u1, u2 ∈ C([−T, t0];H) of (24)with
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u1 = u2 = φ on [−T, 0]. Let u(t) + f (t, u(t)) = u1(t) + f (t, u1(t)) − u2(t) − f (t, u2(t))
on [0, t0]. Then

‖u1(t) − u2(t)‖ ≤ ‖u1(t) + f (t, u1(t)) − u2(t) − f (t, u2(t))‖
+‖ f (t, u1(t)) − f (t, u2(t))‖

≤ ‖u(t) + f (t, u(t))‖ + K‖u1(t) − u2(t)‖.

Therefore, ‖u1(t) − u2(t)‖ ≤ 1
1−K ‖u(t) + f (t, u(t))‖ on [0, t0]. Now, from (24) and using

Lemma 1, we have

d

dt
‖u(t) + f (t, u(t))‖2 = 2〈 d

dt
(u(t) + f (t, u(t))), u(t) + f (t, u(t))〉

≤ 2〈g(t, u1(t)) − g(t, u2(t)), u(t) + f (t, u(t))〉
≤ 2‖g(t, u1(t)) − g(t, u2(t))‖‖u(t) + f (t, u(t))‖
≤ 2Lg(1 + K )‖u1(t) − u2(t)‖2

≤ 2Lg(1 + K )

(1 − K )2
‖u(t) + f (t, u(t))‖2.

Since u(t) + f (t, u(t)) = 0 on [−T, 0], therefore we obtain

‖u(t) + f (t, u(t))‖2 ≤ 2Lg(1 + K )

(1 − K )2

∫ t

0
‖u(s) + f (s, u(s))‖2ds.

Using Gronwall’s inequality, we conclude that u(t)+ f (t, u(t)) = 0 on [−T, t0]. Therefore,
by the assumption (H2), we get u1 = u2 on [−T, t0]. Now, we prove the continuation of the
solution u on [−T, T ]. Suppose t0 < T, then consider

{
d
dt [v(t) + f (t, v(t))] + A[v(t) + f (t, v(t))] = g̃(t, v(t)), 0 ≤ t ≤ T − t0,
v(t) = φ(t), t ∈ [−T, 0], (25)

where g̃(t, v(t)) = g(t+t0, v(t)), 0 ≤ t ≤ T−t0.Since g̃ satisfies the assumption (H3),we
can proceed as before and prove the existence of a unique solution v ∈ C([−T − t0, t1];H),

0 < t1 ≤ T − t0, such that v is Lipschitz continuous on [0, t1], v(t) ∈ D(A) for t ∈ [0, t1]
and v satisfies the following equation

{
d
dt [v(t) + f (t, v(t))] + A[v(t) + f (t, v(t))] = g̃(t, v(t)), a.e t ∈ [0, t1],
v(t) = φ(t), t ∈ [−T, 0]. (26)

Then the function

ũ(t) =
{
u(t), t ∈ [−T, t0],
v(t − t0), t ∈ [t0, t0 + t1], (27)

is Lipschitz continuous on [0, t0 + t1], ũ(t) ∈ D(A) for t ∈ [0, t0 + t1] and satisfies a.e.
on [0, t0 + t1]. By continuing in this way, we can prove the existence on [−T, T ] or on the
maximal interval of existence [−T, tmax), 0 < tmax ≤ T such that u is a strong solution on
every interval [−T, T̃ ], 0 < T̃ < tmax. Hence proved. �

123



642 Differ Equ Dyn Syst (July 2021) 29(3):633–643

Application

Consider the following differential equation
{d

dt
((1 + λ)u(t) + λ sin u(t)) + A((1 + λ)u(t) + λ sin u(t)) = μ(t + cos u(t)), t ∈ [0, T ],

u(t) = φ(t), t ∈ [−T, 0],
(28)

in the Hilbert space H := L2[0, 1], where −A is the infinitesimal generator of a C0-
semigroup T (t), t ≥ 0, of contractions in H, T and μ are positive real numbers, λ is
sufficiently small positive real number lies in the interval (0, 1

2 ), and φ : [−T, 0] → H is
any continuous function. Define the maps f : [0, T ] × H → H by

f (t, h) = λ(h + sin h), (29)

and g : [0, T ] × H → H by
g(t, h) = μ(t + cos h). (30)

Then, for each t ∈ [0, T ], the function St : H → H defined by

St (h) = h + f (t, h) = (1 + λ)h + λ sin h,

h ∈ H, is bijective. Now, for t1, t2 ∈ [0, T ], and h1, h2 ∈ H, consider

‖ f (t1, h1) − f (t2, h2)‖ = λ‖h1 + sin h1 − h2 − sin h2‖
≤ 2λ‖h1 − h2‖,

and

‖g(t1, h1) − g(t2, h2)‖ = μ‖t1 + cos h1 − t2 − cos h2‖
≤ μ(|t1 − t2| + ‖h1 − h2‖).

Thus, the functions f and g satisfy the assumptions (H1)–(H3). Therefore, by Theorem 1,
the problem (28) has a strong solution.
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