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Abstract In this paper we present the concept of singularly perturbed vector field (SPVF)
method, and its application to thermal explosion of diesel spray combustion. Given a system
of governing equations, which consist of hidden Multi-scale variables, the SPVF method
transfer and decompose such system to fast and slow singularly perturbed subsystems. The
resulting subsystem enables us to understand better the complex system, and to simplify
the calculations. Later powerful analytical, numerical and asymptotic methods [e.g method
of integral (invariant) manifold, the homotopy analysis method etc.] can be applied to each
subsystem. In this paper, we compare the results obtained by themethods of integral invariant
manifold and SPVF as applied to the spray droplets combustion model.

Keywords Polydisperse spray · Model reduction · Asymptotic analysis · Multi-scale
systems
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Nomenclature:

A Pre-exponential factor (1/s)
B Universal gas constant (Jkmol−1K−1)
C Molar concentration (kmolm−3)
c Specific heat capacity (Jkg−1K−1)
E Activation energy (Jkmol−1)
L Liquid evaporation energy (i.e., latent heat of evaporation, Enthalpy of evaporation)

(Jkg−1)
m Different size of droplets’ radii
n Number of droplets per unit volume (m−3)
Q Combustion energy (Jkg−1)
R Radius of droplet (m)
T Temperature (K )
t Time (s)

Subscripts:

d Liquid fuel droplets
f Combustible gas component of the mixture
g Gas mixture
p Under constant pressure
0 Initial state

Introduction

Mathematical models that related to various engineering application, are usually described
by a large set of complex equations (differential equations). For the purpose of numerical,
analytical and qualitative analysis, it is often desirable to reduce the system to a smaller
system with a comparatively small loss of accuracy. Generally, a large set of differential
equations describing a complex realistic phenomenon has a number of essentially different
time scales (i.e. rates of change) which correspond to sub-processes. Given such systems,
there is a great difficulty in revealing the hidden hierarchy, the implicit multi-time scale of the
original systems which govern the equations and, hence one cannot apply asymptotic meth-
ods. On one hand, discovering the hierarchical structure of systems requires considerable
complicated numerical treatments, but on the other hand, this known hierarchical structure
allows applying a number of asymptotic approaches for the analysis of their behavior. There
are several asymptotic methods and numerical tools that can be applied to multi-scale sys-
tems. For example the method of integral invariant manifold (MIM), that has been applied
to thermal ignition of diesel spray [1–4], the iteration method of Fraser and Roussel [5–8],
the computational singular perturbation (CSP) method [9,10], geometric singular perturba-
tion theory [11–13], and the intrinsic low dimensional method (ILDM) which is a numerical
method [14–18]. The ILDM-method successfully locates slow manifolds of considered sys-
tem, but also has a number of principal problems. The main constraints of the ILDM-method
are as follows: the algorithm cannot be applied on domains of phase space, where the RHS
leading eigenvalues of the Jacobian matrix of the considered system are complex. In this
case the ILDM method does not produce any decomposition of the original system or pro-
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duces an incorrect decomposition. Even in the case of an explicitly known decomposition,
the ILDM cannot treat some zones on the phase plane such as the turning zones (manifolds),
i.e. zones where critical changes in the system behavior occur, the numerical algorithm of the
method produces additional non relevant solutions to the system dynamics (ghost manifolds).
A modification of the ILDM method is the transposition intrinsic low dimensional method
(TILDM). TILDM is based on the geometrical approach for the hierarchical systems of ordi-
nary differential equations. Although all these methods as well as most reduction methods
have been applied successfully to many engineering problems, models of reacting flows etc.,
they have some principle restrictions and drawback some of which have been mentioned
above. The main problem of these methods is the lack of tools for hierarchy identification of
the system, i.e., fast and slow subsystem. Researches in the field of combustion theory sug-
gested a new method called global quasi linearization (GQL), and singular perturbed vector
field (SPVF) to solve the above problems [19–26]. The main idea of this method is to transfer
the original system of the governing equations with the hidden hierarchy (hidden multi-scale
structure) to its explicit form as a singularly perturbed system (SPS). When one finds this
transformation from a hidden hierarchymodel into amodel with standard SPS, the analysis of
the original system can be treated by the very powerful machinery of the standard SPS theory
for model reduction and decomposition, as we mention above. The global information about
the decomposition of the model is very useful and able to provide the qualitative structure
of the slow and fast manifold [22]. This paper deals with the SPVF method as applied to
thermal explosion of fuel spray.

Preliminaries to the SPVF Method

Given a large and complex scientific model with nonlinear governing equations, the aim
of this research is to reduce the number of equations and to discover the hierarchy of the
dynamical variables of the system, i.e., to decompose the system into subsystems with fast
and slow rates of dynamical variables. In order to do so, one should look for a new coordinates
and representation of the governing equations (of the original model) in the form of Singular
Perturbed System (SPS) form. Once we found these coordinates, we were able to decompose
the original system into slow and fast subsystems which enabled us to apply asymptotic and
analytical methods. Let us formalized the general framework theory of the SPVF.

Definition 1 Let �x ∈ Rn , �x = (x1, x2, . . . , xn), �F : Rn → Rn , �F = (F1, F2, . . . , Fn)
where �Fi : Rn → R, i = 1, 2, . . . n.

A general ODE system of order n has the form of: �̇x = �F(�x).

Definition 2 Let �x ∈ Rn , �x = �x f + �xs = (x f1 , x f2 , . . . , x fn f
, xs1 , xs2 , . . . , xsns ), �x f =

(x f1 , x f2 , . . . , x fn f
, 0, . . . , 0), �xs = (0, . . . , 0, xs1 , xs2 , . . . , xsns ), where n f + ns = n.

Let �F : Rn → Rn , �F = �Ff + ε �Fs = (Ff1 , Ff2 , . . . , Ffn f
, εFs1 , εFs2 , . . . , εFsns ),

�Ff : Rn → Rn f , �Fs : Rn → Rns �Ff = (Ff1 , Ff2 , . . . , Ffn f
, 0, . . . , 0), �Ff =

(0, . . . , 0, Fs1 , Fs2 , . . . , Fsns ), where
�Fi : Rn → R, i ∈ { f1, f2, . . . , fn f , s1, s2, . . . , sns }.

We call a general ODE system, a Fast-Slow ODE (FS-ODE) if there exists a small parameter
ε such that the system has the following form: �̇x = �Ff (�x), �̇x = ε �Fs(�x), i.e., ẋ fi = �Ffi for
1 ≤ i ≤ n f and ẋsi = �Fsi for 1 ≤ i ≤ ns . Denote fn f and sns the dimension of the slow and
fast ODE subsystem correspondingly.
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Definition 3 Given descending in order the set of eigenvalues � = {λ1, λ2, . . . , λn}. An
eigenvalue maximum gap is defined as follows: max

i

{∣∣∣ λi+1
λi

∣∣∣
}
(we can also define the gap

as min
i

{
λi

λi+1

}
). Let us denote by ns the index for which we obtain the maximum gap. We

call �s = {λ1, λ2, . . . , λns } slow eigenvalues and the remaining eigenvalues can again be
re-indexed to have � f = {λ1, λ2, . . . , λn f } fast eigenvalues, where n f + ns = n.

Definition 4 Let An×m1 , Bn×m2 we denote the Horizontal concatenation of the two matrices
by (A ,B), resulting in the matrix of dimension n × m where m = m1 + m2.

Method explaining Let �̇x = �F(�x) be a general system ODE of order n, that describes a
physical phenomena with a hidden hierarchy of rate change of variables. The rate of change
is greatly dependent on the choice of the coordinate system. And there are generally two
domains of the coordinate system: the domain where the system change is slow and the
domain where the change is fast. If in the coordinate system the entire system variables have
fast or slow time scales (but not both), then there are no noticeable differences between the
rates of change, thus the initial problem is not reduced. Our aim is to find such systems of
coordinates in which the ODE system will decompose into slow and fast subsystems i.e., a
FS-ODE system. For this purpose, let us choose an arbitrary n vectors {�x1, . . . , �xn} ∈ Rn .
We define the following n × n matrix T to be the images of these vectors under the vector
field �F :

T :=

⎛
⎜⎜⎜⎝

F1(�x1) . . . F1(�xn)
F2(�x1) . . . F2(�xn)

... . . .
...

Fn(�x1) . . . Fn(�xn)

⎞
⎟⎟⎟⎠

Let � = {λ1, . . . , λn} be the ascending eigenvalues by absolute value of Matrix T , and
let V = {�v1, . . . , �vn} be the eigenvectors respectively. Since the rate of a change of each
vector is determined by it eigenvalue, T will be decomposed according to its big and small
absolute value of eigenvalues. The maximal gap of eigenvalues can be determined by the

max
i

{∣∣∣ λi+1
λi

∣∣∣
}
, we denote this index for which this expression is determined by ns . By this

index we can classify the eigenvalue/eigen vectors into two categories: fast and slow rate. If
the index is equal to or smaller than ns it belong to the slow rate, otherwise it is classified as
fast rate.

Let � f = {λ f
1 , . . . , λ

f
n f }, �s = {

λs1, . . . , λ
s
ns

}
, V f = {�v f

1 , . . . , �v f
n f }, V s =

{�vs1, . . . , �vsns }

� f =

⎛
⎜⎜⎜⎜⎝

�v f
1,1 . . . �v f

n f ,1�v f
1,2 . . . �v f

n f ,2
... . . .

...
�v f

1,n . . . �v f
n f ,n

⎞
⎟⎟⎟⎟⎠

, �s =

⎛
⎜⎜⎜⎝

�vs1,1 . . . �vsns ,1�vs1,2 . . . �vsns ,2
... . . .

...
�vs1,n . . . �vsns ,n

⎞
⎟⎟⎟⎠ ,

than we can write:

T = (
�slow, � f ast

) ·
(
Dslow 0
0 D f ast

)
· (

�slow, � f ast
)−1

,

where Dslow , D f ast are block diagonal matrices with the eigenvalues correspondingly.
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The matrix T has eigenvectors that can be divided into two sets: fast eigenvectors and
slow eigenvectors, corresponding to big and small absolute value of eigenvalues (the larger
the eigen value the greater the rate of change in the direction of matching eigenvector).

According to SPVF decomposition, if the vectors {�x1, . . . , �xn} are composed of mixed
rate of change, the matrix T can be decomposed to the sum T = T f + εTs

T =

⎛
⎜⎜⎜⎝

Ff1(�x1) . . . Ff1(�xn)
Ff2(�x1) . . . Ff2(�xn)

... . . .
...

Ffn f
(�x1) . . . Ffn f

(�xn)

⎞
⎟⎟⎟⎠ + ε

⎛
⎜⎜⎜⎝

Fs1(�x1) . . . Fs1(�xn)
Fs2(�x1) . . . Fs2(�xn)

... . . .
...

Fsns (�x1) . . . Fsns (�xn)

⎞
⎟⎟⎟⎠ ,

Hence, we can decompose the matrix T to fast and slow subsystems.

The Algorithm for SPVF

The above procedure of SPVF method depends on the choice of linear independent vectors
{�x1, . . . , �xn}. The choice of the domain Rn and these points, is a crucial point of the algorithm
and should be adapted to every particular model.

The following steps are implemented

1. Select N vectors, uniformly distributed vectors� = {�x1, . . . , �xN }, �xi ∈ Rn where N >>

n.
2. Compute the mean value of the vector filed over the point from step 1: F̄ =

1
N

∑N
i=1

�F(�xi ),

F̄ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
N

∑N
i=1 F1(�xi )

1
N

∑N
i=1 F2(�xi )

...

1
N

∑N
i=1 Fn(�xi )

⎞
⎟⎟⎟⎟⎟⎟⎠

= 1

N

N∑
i=1

⎛
⎜⎜⎜⎜⎝

F1(�xi )
F2(�xi )

...

Fn(�xi )

⎞
⎟⎟⎟⎟⎠

.

3. Define the so-called control set as follows: �cs = { �xi ∈ � : ‖F(xi )‖ >
∥∥F̄∥∥} for

simplicity let reindex �cs = {�x1, . . . , �xNcs }.
4. Build the ordered basis sets:

Bi = {�x(i−1)·n+1, . . . , �xi ·n
}
with the corresponding matrix

Ai =

⎛
⎜⎜⎜⎝

x1,(i−1)·n+1 . . . x1,i ·n
x2,(i−1)·n+1 . . . x2,i ·n

... . . .
...

xn,(i−1)·n+1 . . . xn,i ·n

⎞
⎟⎟⎟⎠

and let B = {B1, B2, . . . , Bm}, A = {A1, A2, . . . , Am} where m = � Ncs
n �.

5. Select only the reference basis set from step 4 which have |Det (Ai )| above the
average level over all determinate basis i.e., let � = 1

m

∑m
i=1 |Det (Ai )|, then the

reference basis is Brb = {Bi : |Det (Ai )| ≥ �, i = 1, . . . ,m}. Again let us reindex,
Brb = {B1, B2, . . . , Bk} with the matching reindex of vectors �x .
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6. For each i = 1, 2, . . . , k compute the eigenvalues of following matrix Ti that correspond
to the matching basis Bi ,

Ti =

⎛
⎜⎜⎜⎝

F1(�x(i−1)·n+1) . . . F1(�xi ·n)
F2(�x(i−1)·n+1) . . . F2(�xi ·n)

... . . .
...

Fn(�x(i−1)·n+1) . . . Fn(�xi ·n)

⎞
⎟⎟⎟⎠ .

7. Let {λi1, λi2, . . . , λin} be in ascending ordered eigenvalues of Ti . For each Ti we compute
max gap as:

gapmaxi = max
n

(∣∣∣λin+1(Ti )
∣∣∣ /

∣∣∣λin(Ti
∣∣∣
)

.

8. Denote by imax the index for which gapmaxi is maximal. The eigenvectors of Timax ,
{�vimax

1 , �vimax
2 , . . . , �vimax

n }, that correspond to {λimax
1 , λ

imax
2 , . . . , λ

imax
n } consist of the desired

coordinate system. Let ns-be the index for which
(∣∣∣λimax

n+1(Timax )

∣∣∣ /
∣∣∣λimax

n (Timax

∣∣∣
)
is max-

imal. Then the vectors
{�vimax

1 , �vimax
2 , . . . , �vimax

ns } and, {�vimax
ns+1, �vimax

ns+2, . . . , �vimax
n } are the new slow and fast vectors

of the slow and fast system correspondingly.
9. Rewrite the original system in the new coordinate {�vimax

1 , �vimax
2 , . . . , �vimax

n }.
Comment: In general, when one applies the SPVF algorithm, especially in complex systems,
the eigenvalues of the matrix T can be complex numbers. In order to overcome this problem
one should take in the algorithm the square root of the eigenvalues of the matrix T T ∗ to
be the practical eigenvalues of the considered problem (since T T ∗ is symmetric it has real
eigenvalues).

Application of the SPVF Method

In this section we applied the SPVF method to the thermal explosion of monodisperse fuel
spray.

The Monodisperse Fuel Spray Model

In this section we apply the SPVF to the model of thermal explosion of monodisperse fuel
spray. The physical assumptions of the physical model are as follows: The droplet boundaries
are assumed to be on the saturation line i.e., the liquid temperature is constant and equal to
the liquid saturation temperature. The combustible liquid droplets are considered to comprise
a polydisperse spray. The assumption of the quasi-steady-state approximation is valid for the
vaporizing droplets. The thermal conductivity of the liquid phase is much greater than that
of the gas phase. Thus, the heat transfer coefficient in the liquid gas mixture is supposed
to be defined by the thermal properties of the gas phase. An adiabatic approach is applied.
Because the ignition time is a very short period, the adiabatic assumption is valid. During this
period, there is almost no heat transfer out of the system. For thermal explosion processes,
the pressure change in the reaction volume and its influence on the combustion process is
neglected. The combustion reaction is modeled as a first order, highly exothermic chemical
reaction. The model has the form of a system of non-linear ordinary differential equations.
Moreover, it contains an energy equation for the reacting gas, mass equations for the liquid
droplets of m different sizes and a concentration equation for the reacting gas mixture.
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Under these assumptions, the system of the governing equations as given in [27] is:

dTg
dt

= αgμ f Q f AC f e

(
− E

BTg

)

αgρgcpg
− 4πλg(Tg − Td)Rdi ndi

αgρgcpg
≡ F1

(
Tg, Rdi ,C f

)
, (1)

d(R2
di

)

dt
= − 2λg

ρL L
(Tg − Td) ≡ F2

(
Tg, Rdi ,C f

)
, i = 1, . . . ,m, (m equations) (2)

dC f

dt
= −AC f e

(
− E

BTg

)
+ 4πλg(Tg − Td)Rdi ndi

Lαgμ f
≡ F3

(
Tg, Rdi ,C f

)
. (3)

In our notations �F = (F1, F2, F3).
The initial conditions are:

at t = 0 : Tg(t = 0) = Tg0 = Tdi , Rdi = Rdi0 , C f = C f 0. (4)

Equations (1)–(3) include an energy equation for the reacting gas, a mass equation for liquid
droplets, and a concentration equation for the reacting gas mixture, respectively.

Preliminary Results

Monodisperse Model Experimental Data

The initial conditions are: Tg0 = 860, Rdi0 = 10−4 and C f 0 = 120.
The domain of the results for the temperature is [0, 5.6] × [860, 1120], for the radius is
[0, 5.6] × [0, 10−4] and for the concentration is [0, 5.6] × [0, 135]. The results shown in
Figs. 1, 2 and 3. Figure 1 present the solution profile of the temperature of monodisperse
model for three different fuel types (Decane, Heptane and T etralin). According to this
figure the thermal explosion of the monodisperse spray occurs after ≈ [4.2s − 5.3s], i.e., the
thermal explosion for Decane occurs after 4.2s, for Heptane after 4.8s and for T etralin
after 5.3s. The evaporation of the radius Rd (see Fig. 2) corresponds to the explosion time for
the solution profile of the temperature, i.e., for example the radius of the Decane fuel, that
start at the initial radius Rd0 = 10−4, decreases to zero after ≈ 4.3s and so on. The solution
profile of the concentration C f (see Fig. 3) is also coherent to the solution profile of the
temperature and radius. For example concentration of the Decane that start at 120kmolm−3

decrease to zero at the explosion time after ≈4.12 s.

Application of the SPVF Algorithm

The data for the SPVF algorithm: N = 20, 000 and n = 3. The results of the SPVF algorithm
i.e., the eigenvalues and the corresponds eigenvectors are summarized below:

λ1 = 0.00004 ←→ �v1 = (−0.00001, 1,−0, 00003)T

λ2 = 0.00004 ←→ �v2 = (−0.7194,−0.00007,−0.6946)T

λ3 = 0.00004 ←→ �v3 = (−0.6946, 0.00007, 0.7194)T

According to the SPVF theory, the eigenvector �v3, that corresponds to the largest eigenvalue
λ3 indicates the fast direction of the system in the new coordinates. λ1 and λ2 correspond
to the slow direction of the system since they are at approximately the same order and
λ1, λ2 << λ3.
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Fig. 1 The solution profile of the temperature of monodisperse model for three different fuel types applying
numerical simulation. Dash line decane, dash-dot line heptane and solid line tetralin
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Fig. 2 The solution profile of the radius of monodisperse model for three different fuel types applying
numerical simulation. Dash line decane, dash-dot line heptane and solid line tetralin
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Fig. 3 The solution profile of the cencentration of monodisperse model for three different fuel types applying
numerical simulation. Dash line decane, dash-dot line heptane and solid line tetralin
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The next step is to rewrite the monodisperse model in a new coordinate using the above
eigenvectors. Hence, let us write:

⎛
⎝
x
y
z

⎞
⎠ =

⎛
⎝

−0.00001 1 −0.00003
−0.7194 −0.00007 −0.6946
−0.6946 0.00007 0.7194

⎞
⎠ ·

⎛
⎝
Tg
Rd

C f

⎞
⎠ (5)

After the above multiplication the aim of the next step is to write the temperature, radius,
and the concentration as a function of the new coordinates, i.e., Tg = Tg(x, y, z), Rd =
Rd(x, y, z),C f = C f (x, y, z).
From Eq. (6) we obtain the following system:

dx

dt
= −0.00001 · dTg

dt
+ dRd

dt
− 0.00003 · dC f

dt
,

dy

dt
= −0.7194 · dTg

dt
− 0.00007 · dRd

dt
− 0.6946 · dC f

dt
,

dz

dt
= −0.6946 · dTg

dt
+ 0.00007 · dRd

dt
+ 0.7194 · dC f

dt
, (6)

now substitute the expressions of dTg
dt ,

dRd
dt and

dC f
dt from the monodisperse model (1)–(3)

into the Eq. (6), i.e., substitute F1
(
Tg, Rdi ,C f

)
,

F2
(
Tg, Rdi ,C f

)
and F3

(
Tg, Rdi ,C f

)
from Eqs. (1)–(3) instead of the expressions

dTg
dt ,

dRd
dt and

dC f
dt correspondingly into Eq. (6). Now substitute Tg = Tg(x, y, z), Rd =

Rd(x, y, z),C f = C f (x, y, z) into F1, F2 and F3 and obtain the monodisperse fuel spray
model in the new coordinate (x, y, z) in the following form:

dx

dt
= −0.00001 · F1

(
Tg(x, y, z), Rdi (x, y, z),C f (x, y, z)

)

+F2
(
Tg(x, y, z), Rdi (x, y, z),C f (x, y, z)

)

−0.00003 · F3
(
Tg(x, y, z), Rdi (x, y, z),C f (x, y, z)

) ≡ F̃1(x, y, z),

dy

dt
= −0.7194 · F1

(
Tg(x, y, z), Rdi (x, y, z),C f (x, y, z)

)

−0.00007 · F2
(
Tg(x, y, z), Rdi (x, y, z),C f (x, y, z)

)

−0.6946 · F3
(
Tg(x, y, z), Rdi (x, y, z),C f (x, y, z)

) ≡ F̃2(x, y, z),

dz

dt
= −0.6946 · F1

(
Tg(x, y, z), Rdi (x, y, z),C f (x, y, z)

)

+0.00007 · F2
(
Tg(x, y, z), Rdi (x, y, z),C f (x, y, z)

)

+0.7194 · F3
(
Tg(x, y, z), Rdi (x, y, z),C f (x, y, z)

) ≡ F̃3(x, y, z). (7)

The Physical Domain of the Model in the New Coordinates

In order to solve the model in the new coordinates we should transform the physical domain
of the original model under the considered transformation (see Figs. 4, 5, 6).
For each coordinate, we select the two vectors according to the value of the transformed
matrix, such that the multiplication will result in the minimum and maximum values. i.e.,
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1 2 3 4 5
t

0.00005

0.00010

0.00015

0.00020
x

Fig. 4 The solution profile of the x-coordinate: the asymptotic case when x ≈ Rd according to Eq. (5)

1 2 3 4 5
t

680

700

720

740

760

y

Fig. 5 The solution profile of the y-coordinate: the asymptotic case when for convenience we take the
eigenvector �v2 as −�v2 (i.e., we take the eigenvalue λ2 as −λ2) and from Eq. (5) we obtained y ≈ 0.7194 ·
Tg + 0.6946 · C f

1 2 3 4 5
t

550

600

650

700

z

Fig. 6 The solution profile of the z-coordinate: the asymptotic case when for convenience we take the �v3 as
−�v3 (i.e., we take the eigenvalue λ3 as −λ3) and from Eq. (5) we obtained z ≈ 0.6946 · Tg − 0.7194 · C f
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x-coordinate:
⎛
⎝

−0.00001 1 −0.00003
−0.7194 −0.00007 −0.6946
−0.6946 0.00007 0.7194

⎞
⎠ ·

⎛
⎝

0
10−4

0

⎞
⎠ =

⎛
⎝

0.0001
−7 · 10−9

7 · 10−9

⎞
⎠ (8)

⎛
⎝

−0.00001 1 −0.00003
−0.7194 −0.00007 −0.6946
−0.6946 0.00007 0.7194

⎞
⎠ ·

⎛
⎝
5000
0
200

⎞
⎠ =

⎛
⎝

−0.056
−3735.92
−3329.12

⎞
⎠ (9)

this means that the physical domain of the new x-coordinate is x ∈ [−0.056, 0.0001].
y-coordinate:

⎛
⎝

−0.00001 1 −0.00003
−0.7194 −0.00007 −0.6946
−0.6946 0.00007 0.7194

⎞
⎠ ·

⎛
⎝
0
0
0

⎞
⎠ =

⎛
⎝
0
0
0

⎞
⎠ (10)

⎛
⎝

−0.00001 1 −0.00003
−0.7194 −0.00007 −0.6946
−0.6946 0.00007 0.7194

⎞
⎠ ·

⎛
⎝
5000
10−4

200

⎞
⎠ =

⎛
⎝

−0.0559
−3735.92
−3329.12

⎞
⎠ (11)

this means that the physical domain of the new y-coordinate is y ∈ [−3735.92, 0.0001].
z-coordinate:

⎛
⎝

−0.00001 1 −0.00003
−0.7194 −0.00007 −0.6946
−0.6946 0.00007 0.7194

⎞
⎠ ·

⎛
⎝

0
10−4

200

⎞
⎠ =

⎛
⎝

−0.0059
−138.92
143.88

⎞
⎠ (12)

⎛
⎝

−0.00001 1 −0.00003
−0.7194 −0.00007 −0.6946
−0.6946 0.00007 0.7194

⎞
⎠ ·

⎛
⎝
5000
0
0

⎞
⎠ =

⎛
⎝

−0.05
−3597
−3473

⎞
⎠ (13)

this means that the physical domain of the new z-coordinate is z ∈ [−3473, 143.88].
Stability

According to the method of integral invariant method the analysis of the system dynamics
is reduced to the analysis on the slow manifold. The slow manifold is determined, by taking
the derivative of the fast variable to zero in Eq. (7) i.e., dz/dt = 0 ⇒ F̃3(x, y, z) = 0.

In order to find the stable/ unstable points of the slow manifold, one should compute
the derivative of the slow manifold with respect to the fast variable, i.e., ∂z F̃3(x, y, z). We
substitute each point from the slowmanifold into the expression ∂z F̃3. Points are stable when
∂z F̃3 < 0. In Fig. 7 we presented the slow manifold of the system (7). Figure 8 presents the
stability points of the system (7), Fig. 9 presents the non-stability points of the system (7),
and Fig. 10 presents both the stability and non-stability points of the system (7).

Steady State Approximation

Given a system of ordinary differential equations, the behavior of a dynamic system is related
to the systems’ variables. As in our case the system is approximated by linear ordinary
differential equations as presented in Eq. (7). When this is the case, classical or closed
form solutions can be obtained. For the general case of non-linear differential equations,
solutions must be sought through the use of simulations by analog computation methods or
by numerical integration techniques carried out using computers. Although any problem can
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Fig. 7 The slow manifold of the system (7) the manifold F̃3 (x, y, z)

be solved by these simulations methods, the insight that can be derived from linear system
analysis is invaluable as a guide to control system design and performance evaluations. One
method that can give an insight into the dynamical of the linear system (7) is the steady state
analysis.
In general, given a system of first order ordinary differential equations �x ′ = �f (�x) the �x-
nullcline is the set of pointswhich satisfy �f = 0. The intersection point of all the nullclines is
called the equilibrium point or f i xed point of the considered system. The Jacobianmatrix
with constant entries, is identifiedwith thematrix of a linear systems.Near a fixed point which
is denoted by (x∗, y∗, z∗), the dynamics of the nonlinear system are qualitatively similar to
the dynamics of the linear system associated with the Jacobian matrix J = J (x∗, y∗, z∗),
provided its eigenvalues λ j ’s have nonzero real parts. Fixed points with a Jacobian matrix
such that Re(λ j ) �= 0 are called hyperbolic fixed points. Otherwise, they are non-hyperbolic
fixed points, whose stabilities must be determined directly.

The physical meaning of stability is the ability of a system to return to its steady state
when subjected to a disturbance, i.e., the non-linear system’s phase portrait near the fixed
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Fig. 8 The stability points of the slow manifold of the system (7) with ∂z F̃3 (x, y, z) < 0

point is topologically unchanged due to small perturbations, and its dynamics are structurally
stable or robust. Hence, the equilibria of the system (7) are found by setting all derivatives to
zero and solving for (x∗, y∗, z∗), with star notation indicating that the variables are at their
equilibrium values. When analyzing the stability of each equilibrium of the above system,
one can examine the Jacobian of the system (7) given by:

J = J (x∗, y∗, z∗) = ∂(F̃1, F̃2, F̃3)

∂(x, y, z)
. (14)

In order to determine if the stability of the points that are obtained from the solution of the
system

⎧⎪⎨
⎪⎩

F̃1 = 0

F̃2 = 0

F̃3 = 0

(15)

are stable, we substituted these points in J and computed the eigenvalues of J for each point.
The points from this steady state system are in 3 dimensional space. So a point is stable
if all of its 3 eigenvalues are negative. In Fig. 11 we presented the steady state surface as
the intersections of the surfaces (F̃1, F̃2, F̃3). Figure 12 presented the stable points of this
surface.
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2000

0

2000

Fig. 9 The non-stability points of the slow manifold of the system (7) with ∂z F̃3 (x, y, z) > 0

The initial conditions are obtained from Eq. (8) when substituting t = 0. The above model
(7) is a system of ordinary linear differential equations that can be solved using simple code
inMatlab. The results are presented in Figs. 4, 5 and 6. Figure 4 presented the solution profile
of the system (7) for the x-coordinate. In the asymptotic case the new coordinate x is constant
which is compatible with the solution profile of the radius of the monodisperse model (see
Fig. 2), i.e., �Rd

�t ≈ 0.0001−0
5.2−0 = 0.0000192 �⇒ dRd

dt ≈ 0. Figure 5 presented the solution
profile of the system (7) for the y-coordinate. In the asymptotic case, from the system (8),
we have y ≈ 0.7194 · Tg + 0.6946 · C f , i.e., the new coordinate y is a combination (sum)
of the temperature and the concentration of the monodisperse spray model. The coefficients
of this combination (which are the first and the last coordinates of the eigenvector �v2) have
the proportion 0.7194

0.6946 ≈ 1. This means that if we sum the solution profile of the temperature
and the solution profile of the concentration point by point we obtain the graph of y, and
indeed Fig. 5 is coherent with this analysis. For example, at the time 2.45s �⇒ Tg = 982
andC f = 214.01 then 0.7194 ·Tg +0.6946 ·C f = 716.182, and the y-coordinate at 2.45s is
717.223 as expected (see Fig. 5). The new coordinate z is a combination (difference) between
the temperature and the concentration. The same analysis can be done for the z-coordinate,
(see Fig. 6).

Newgeneral resultsGiven themodel ofmonodisperse fuel spray (1)–(3) the standardmachin-
ery to analyze the model is to transfer the model into a non-dimensional one in the form of
Singular Perturbed System (SPS), i.e., a system with explicit small parameter which decom-
posed the system into fast and slow subsystems.
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Fig. 10 The stability and non-stability points of the system (7)

Considered the system (1)–(3) in non-dimensional SPS form as:

dθg

dτ
= F̃1

(
1

ε
, θg, rdi , η f

)
,

drdi
dτ

= F̃2
(
θg, rdi , η f

)
,

dη f

dτ
= F̃3

(
θg, rdi , η f

)
, (16)

where τ is the dimensionless time, θs is the gas temperature, rdi is the droplets radii, η f is the
fuel concentration, and ε is the small parameter of the system. Once the system is presented
as SPS system one can applied various asymptotic method such as the method of integral
manifolds, different perturbation methods, etc.

According to the system (16) one can see that the fast variable of the system is the gas
temperature θg . Since the system is adiabatic, hence the energy integral, which represents the
energy conservation law, is exists. Hence, by applying the energy integral procedure one can
obtain an explicit expression for the concentration as the function of the gas temperature and
the radius, η f = η f (θg, rdi ). This enable one to reduced the considered system from three
equations into two equations only in the form of
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Fig. 11 The steady state surface of the system (7), i.e., the intersections of the surfaces F̃1 (x, y, z) =
F̃2 (x, y, z) = F̃3 (x, y, z) = 0

dθg

dτ
= F̃1

(
1

ε
, θg, rdi , η f

(
θg, rdi

))
,

drdi
dτ

= F̃2
(
θg, rdi , η f

(
θg, rdi

))
,

η f = η f
(
θg, rdi

)
. (17)

According to the form of the above system, the fast variable of the system is only the gas
temperature (the droplets radii is the slow one). Hence, the main problem when applying the
above procedure is the loss of the physical properties of the variables of the system. And
indeed, when we apply the SPVF algorithm the dimensional monodisperse model Equations,
(1)–(3), we receive that the fast direction of the system is the combination between the gas
temperature Tg and the concentration C f in the form of −0.6946 · Tg + 0.7194 ·C f (which
means increasing temperature and decreasing the concentration) or one can choose the option
of 0.6946 · Tg − 0.7194 · C f . This means that the fast variables of the original system is in
the direction of the gas temperature Tg and in the direction of the fuel concentrationC f . This
information of the fast physical variable, the concentration, is loss when applying the energy
integral.
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Fig. 12 The stability of the steady state surface where all the eigenvalues of the Jacobian matrix are negative

Conclusions

In our research we presented the theoretical framework and the algorithm of singular per-
turbed vector field (SPVF) and its application to the problem of thermal explosion of a
monodisperse spray model. Given the monodisperse model, the hierarchical properties are
hidden. By applying the SPVF method, we have rewritten the monodisperse model in a new
coordinate which reveals the combustion process of the model. This enables us to decompose
the system dynamics of themonodispersemodel into the so-called “slow” and “fast”motions.

The new coordinates are a combination of the original variables of the system. This can
be useful for engineering applications. For example, the y-coordinate is a combination of
70% of the gas temperature and 69% of the concentration. This combination can be mixing
for an optimal combustion of the monodisperse spray.

In addition the main result of the SPVF method is that it enables the reduction the dimen-
sion of the system, and hence to reduce the numerical and analytical computations which are
time-consuming on the computer.
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