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Abstract In this paper, an unconditionally stable compact finite difference scheme for the
solution of linear convection–diffusion equation is proposed. In the proposed scheme, second
derivative approximations of the unknowns are eliminated with the unknowns itself and their
first derivative approximations while retaining the fourth order accuracy and tri-diagonal
nature of the scheme. Proposed compact finite difference scheme which is fourth order
accurate in spatial variable and second or lower order accurate in temporal variable depending
on the choice ofweighted time average parameter is applied toAsian option partial differential
equation. A diagonally dominant system of linear equation is obtained from the proposed
scheme which can be efficiently solved. Two numerical examples are given to demonstrate
the efficiency and accuracy of the proposed compact finite difference scheme.

Keywords Compact finite difference scheme · Option pricing · Asian option ·
Convection–diffusion equation

Introduction

Asian options [1], as one of the example of exotic options, first appeared in 1987 when
the Bankers Trust Tokyo (hence the name Asian options) office developed a commercially
used pricing formula for options on the average crude oil price. Asian options, having lower
volatility than their underlying asset because of their averaging feature, are considered as
an economical financial instrument for hedging purpose. So the study of Greeks (hedging
parameters) is also important in the case of Asian options. In practice, most Asian options
use the arithmetic average [2]. Since the probability distribution of the sum of log-normally
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distributed random variables is analytically intractable, the problem of pricing arithmetic
Asian options does not have a closed form solution. Therefore various numerical techniques
have been applied to price the Asian options.

Let us review some existing literature for Asian options. Vecer [3] characterized Asian
options by a one-dimensional partial differential equation (PDE) which could be applied to
both discrete and continuous average Asian options. He applied classical finite difference
scheme to solve the Asian options PDE. Marcozzi [4] provided variational methods for
pricing the Asian options. A theoretical framework is given by Marcozzi in his paper as
numerical analysis of a finite element implementation. He provided the method to find the
price of Asian options which has early exercise feature. Dubois and Lelievre [5] applied
classical finite difference scheme to the Asian options PDE with moving boundary condition
and showed that their method is much faster than the method presented in [3]. D’halluin et
al. [6] gave a semi-Lagrangian approach to price continuously observed fixed strike Asian
options. In this paper, a one-dimensional partial integro differential equation (PIDE) has been
solved at each time step and solution is updated using semi-Lagrangian time stepping. Rogers
and Shi [7] obtained lower-bounds for both types of Asian options. Lower bound formulas in
[7] restrict the option’s maturity to exactly 1 year. This limitation has been removed by Chen
and Lyuu [8] and Rogers–Shi formula is extended to general maturities. Recently, Kumar
et al. [9] presented a numerical study of Asian options with radial basis functions based on
finite differences scheme.

The growing popularity of compact finite different schemes in recent years have brought
about a renewed interest towards the finite difference schemes. High-order compact schemes
leads to a system of equations with coefficient matrix having smaller band width as compared
to classical finite difference schemes. High-order compact finite difference schemes which
consider not only the value of the function but also those of its first or higher derivatives
as unknowns at each discretization point have been extensively studied and widely used
to compute problems involving compressible flows [10], computational aeroacoustic [11]
and several other practical applications [12]. High-order compact finite difference schemes
have also been used in computational finance in order to compute the option prices, for e.g.
During et al. [13] discussed the convergence of high-order compact finite difference schemes
for European options by solving nonlinear Black–Scholes equation. Zhao et al. [14] discussed
the high-order compact finite difference schemes for pricing American options. Tangman et
al. [15] discussed the high-order compact finite difference schemes for numerical pricing of
European and American options under Black–Scholes model.

There exist a vast literature of compact finite difference schemes for convection–diffusion
equations [16–18]. For e.g. in [16,17], modified differential equation approach is used to
derive the high-order accurate first and second derivative approximations and the truncation
error is compactly approximated. In these paper, original second order differential equation
is considered as an auxiliary relation and original equation is differentiated in order to get
the expressions for higher derivatives. Deriving compact schemes using modified differential
approach for variable coefficient PDEs is difficult in general. A fourth order accurate compact
finite difference scheme for convection–diffusion equation is proposed by Rigal [18]. He
eliminated the highest order term in Taylor series in order to get a fourth order accurate
compact finite difference scheme.

In this paper, we propose an unconditionally stable fourth-order compact finite difference
scheme for the solution of linear convection–diffusion equation. The main contribution of
the manuscript are as follows:
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– Proposed compact finite difference scheme does not require the original equation as an
auxiliary equation. In the proposed compact finite difference scheme, second derivative
approximations of the unknowns are eliminated with the unknowns itself and their first
derivative approximations while retaining the fourth order accuracy and tri-diagonal
nature of the scheme.

– Proposed compact finite difference approximations are compared with the classical finite
difference approximations and Padé approximation for second derivative using Fourier
analysis and it is observed that proposed compact finite difference approximation have
better resolution characteristics.

– Proposed compact finite difference scheme is applied to Asian option PDE and it is
proved that proposed scheme is unconditionally stable for suitable choice of weighted
time average parameter. Particular Asian option PDE with moving boundary condition
is taken to reduce the computational cost significantly.

– Moreover, efficiency of the proposed compact finite difference scheme is compared to
the central difference scheme by calculating the CPU time for a given accuracy and it
is observed that proposed compact finite difference scheme is significantly efficient than
central difference scheme.

The rest of the paper is organized as follows. In the next section, continuous arithmetic
Asian options PDE is given. In the following section, compact finite difference approxi-
mations for first and second derivatives are discussed. Fourier analysis for different finite
difference schemes is also discussed in this section. Stability of the proposed scheme for a
convection–diffusion equation is also proved in this section. Before the concluding section,
numerical results for arithmetic Asian options with compact finite difference scheme are
given and obtained results are compared with the existing literature. Finally, conclusion of
this paper is given and future work is proposed.

Mathematical Model

The price of continuous arithmetic average fixed strike Asian call option can be obtained
from the solution of following two-dimensional PDE [1]

∂V

∂t
+ 1

2
σ 2S2

∂2V

∂S2
+ r S

∂V

∂S
+ S

∂V

∂ I
− rV = 0, (2.1)

with the final condition

V (S, I, T ) = max

(
I

T
− K , 0

)
, (2.2)

where r is interest rate, T is the time to expiration, K is the stock price and σ is the volatility
of underlying asset and

I (t) =
∫ t

0
S(x)dx .

Well-posedness of the boundary value formulation of a fixed strike Asian option is discussed
in [19]. For more details about the existence and uniqueness of the solution of Asian option
PDE (2.1), one can see [19] and references therein. Using the change of variables discussed
in [7]

z = K − I/T

S
, V (S, I, t) = Sv(z, t), (2.3)
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above two dimensional PDE can be transformed into one dimensional PDE

−∂v

∂t
= 1

2
σ 2z2

∂2v

∂z2
−

(
1

T
+ r z

)
∂v

∂z
,

v(z, T ) = max(−z, 0).

(2.4)

Now, using the change of variables [5]

z = x − t

T
, u(x, t) = v(z, t), (2.5)

in PDE (2.4), we get

−∂u

∂t
= 1

2
σ 2

(
x − t

T

)2
∂2u

∂x2
− r

(
x − t

T

)
∂u

∂x
,

v(x, T ) = max(1 − x, 0).

(2.6)

The value of Asian option for I ≥ KT is given as [20]

V (S, I, t) = S

rT
(1 − e−r(T−t)) +

(
I

T
− K

)
e−r(T−t). (2.7)

By using Eqs. (2.3) and (2.5) in above equation, we get

u(x, t) = 1

rT
(1 − e−r(T−t)) −

(
x − t

T

)
e−r(T−t), x ≤ t

T
. (2.8)

So we find solution of Eq. (2.6) for x > t
T using (2.8) as boundary condition at x = t/T .

From Fig. 1, it is evident that using (2.8) as boundary condition at x = t/T reduces the
computation significantly. Hence, we have the following PDE

−∂u

∂t
= 1

2
σ 2

(
x − t

T

)2
∂2u

∂x2
− r

(
x − t

T

)
∂u

∂x
, (x, t) ∈ (t/T,∞) × (0, T ),

u(x, T ) = max(1 − x, 0), x ∈ [1,∞),

u

(
t

T
, t

)
= 1

rT

(
1 − e−r(T−t)

)
, t ∈ (0, T ],

lim
x→∞ u(x, t) = 0, t ∈ [0, T ].

(2.9)

It can be seen from Eq. (2.9) that left boundary condition is varying as time is changing. This
is depicted in Fig. 1. We propose an unconditionally stable compact finite difference scheme
for the solution of above Eq. (2.9). In order to solve the above PDE numerically, domain
(t/T,∞) is truncated toΩ = (t/T, L) for a fixed constant L and u(L , t) = 0 is chosen. It is
discussed in [21] that truncation of domain leads to a negligible error in the price of option.
Hence, we consider the following PDE throughout the paper:

−∂u

∂t
= 1

2
σ 2

(
x − t

T

)2
∂2u

∂x2
− r

(
x − t

T

)
∂u

∂x
, (x, t) ∈ (t/T, L) × (0, T ),

u(x, T ) = max(1 − x, 0), x ∈ [1, L),

u

(
t

T
, t

)
= 1

rT

(
1 − e−r(T−t)

)
, t ∈ (0, T ],

u(L , t) = 0, t ∈ [0, T ].

(2.10)
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Fig. 1 Grid with moving boundary condition for pricing of arithmetic average Asian option

After getting the solution u(x, t) of above PDE, spline interpolation is used to find the price
of the Asian option. The relation between the price of Asian option (V (S, I, 0)) and the
solution of above PDE (u(x, t)) is written as:

price = S0u

(
K

S0
, 0

)
,

where S0 is the stock price and K is the strike price.

Compact Finite Difference Scheme

To begin with, we discuss the compact finite difference approximations for first and second
derivatives in this section.

Fourth-Order Compact Finite Difference Approximations for First and Second
Derivatives

In this section, we derive fourth order accurate second derivative approximation of unknowns
with the help of unknowns itself and their first derivative approximation. From Taylor series,
second-order accurate central difference approximation for first derivative can be written as
follows

Δxui = ui+1 − ui−1

2δx
, (3.1)

and similarly second order accurate central difference approximation for second derivative
can be written as

Δ2
xui = ui+1 − 2ui + ui−1

δx2
, (3.2)

where δx is the grid size along x-direction and ui is the value of u(xi ) at a typical grid point
xi . Now, fourth-order accurate compact finite difference approximation for first derivative
[22] (Padé scheme for first derivative) can be written as
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1

4
uxi−1 + uxi + 1

4
uxi+1 = 1

δx

[
−3

4
ui−1 + 3

4
ui+1

]
, (3.3)

where uxi is first derivative approximation of unknown u at grid point xi . Similarly, fourth-
order accurate compact finite difference approximation for second derivative [22] (Padé
scheme for second derivative) can be written as

1

10
uxxi−1 + uxxi + 1

10
uxxi+1 = 1

δx2

[
6

5
ui−1 − 12

5
ui + 6

5
ui+1

]
, (3.4)

where uxxi is second derivative approximation of unknown u at grid point xi . If uxi are also
considered as a variable then from Eq. (3.3), we obtain

1

4
uxxi−1 + uxxi + 1

4
uxxi+1 = 1

δx

[
−3

4
uxi−1 + 3

4
uxi+1

]
. (3.5)

Eliminating uxxi−1 and uxxi+1 from Eqs. (3.4) and (3.5), we obtain second derivative approx-
imation as follows

uxxi = 2
ui+1 − 2ui + ui−1

δx2
− uxi+1 − uxi−1

2δx
. (3.6)

Using Eqs. (3.1) and (3.2) in above Eq. (3.6), we obtain

uxxi = 2Δ2
xui − Δxuxi . (3.7)

In Eq. (3.7), uxi is obtained from Eq. (3.3). It is observed that Eqs. (3.3) and (3.7) pro-
vides fourth-order accurate compact approximations for first and second derivatives. The
elimination of second order derivatives was initially proposed by Adam [23,24]. In case of
non-periodic boundary conditions, additional compact relations are required at the boundary
points. For the additional boundary formulations of various orders, one can see [24,25]. It
is shown in Fig. 2 that less number of grid points are required to obtain high-order accu-
racy as compared to central difference. We compare the proposed compact finite difference
approximations with central difference approximations as follows.

Fig. 2 Number of required grid points for various order of accuracy for first derivative approximation using
central difference approximation and compact finite difference approximation
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Fourier Analysis

Fourier analysis is a classical technique to compare two difference schemes in numerical
analysis. Fourier analysis of a finite difference scheme quantifies the resolution characteristics
of the difference approximation. By resolution characteristics, wemean that the accuracywith
which difference schemes represents the exact value over the full grid. For more details about
the Fourier analysis of finite difference approximations, one can see [22].
Fourier analysis for first derivative approximation If we denote the wave number by ω and
modifiedwave number for first derivative approximation byω′, then for fourth-order accurate
compact finite difference approximation given in Eq. (3.3)

ω′ = 3 sin(ω)

2 + cos(ω)
. (3.8)

For second-order accurate central finite difference approximation

ω′ = sin(ω), (3.9)

and for fourth-order accurate central finite difference approximation

ω′ = − sin (2ω)

6
+ 4 sin(ω)

3
. (3.10)

In Fig. 3a modified wave numbers are plotted with respect to the wave numbers for exact
differentiation (ω′ = ω), fourth-order accurate compact finite difference approximation
(Eq. (3.8)), second-order accurate classical finite difference approximation (Eq. (3.9)) and
fourth-order accurate classical finite difference approximation (Eq. (3.10)). It can be seen
from Fig. 3a that fourth-order accurate compact finite difference approximation has better
resolution characteristics as compared to the classical finite difference approximations.
Fourier analysis for second derivative approximation If we denote modified wave number
for second derivative approximation by ω′′, then for fourth-order accurate compact finite
difference approximation given in Eq. (3.7)

ω′′ = 5 − 4 cos(ω) − cos2(ω)

2 + cos(ω)
. (3.11)

For fourth-order accurate compact finite difference Padé approximation given in Eq. (3.4)

ω′′ = 12(1 − cos(ω))

2 + cos(ω)
. (3.12)

For second-order accurate central finite difference approximation

ω′′ = 2 − 2 cos(ω), (3.13)

and for fourth-order accurate central finite difference approximation

ω′′ = cos(2ω)

6
− 8 cos(ω)

3
+ 5

2
. (3.14)

In Fig. 3b modified wave numbers are plotted with respect to the wave numbers for exact
differentiation (ω′′ = ω2), compact finite difference approximation for second derivative
(Eq. (3.12)), classical finite difference second-order approximation (Eq. (3.13)) and classical
finite difference fourth-order approximation (Eq. (3.14)). It can be seen from Fig. 3b that
compact finite difference approximation has better resolution characteristics as compared to
the classical finite difference approximation.
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Fig. 3 Modified wave number and wave number for various finite difference schemes: a first derivative
approximation, b second derivative approximation

Fully Discrete Problem

Asian option PDE (2.9) can be written as a one-dimensional linear convection–diffusion
equation of the form

∂u

∂t
= p(x, t)

∂u

∂x
+ q(x, t)

∂2u

∂x2
, (3.15)

with the given initial and boundary conditions, where p(x, t) = r(x − t
T ) and q(x, t) =

1
2σ

2(x − t
T )2. Now we discretize the Eq. (3.15) in finite domain (x, t) ∈ (Ω × (0, T ]). We

use θ method for temporal semi-discretization, 0 ≤ θ ≤ 1, (θ = 0 for forward Euler, θ = 1
for backward Euler, and θ = 1/2 for Crank–Nicolson scheme) and compact finite difference
approximations discussed above for spatial discretization of the PDE (3.15). IfUm

n represents
the approximation of the solution of Eq. (3.15) at (xn, tm) then Eq. (3.15) can be written in
discrete form as follows

Um+1
n −Um

n

δt
= [

(1 − θ)qmn U
m
xxn + θqm+1

n Um+1
xxn

] + [
(1 − θ)pmn U

m
xn + θpm+1

n Um+1
xn

]
.

(3.16)

Using the second derivative approximation given in Eq. (3.7) in above equation

Um+1
n −Um

n

δt
= [

(1 − θ)qmn
(
2Δ2

xU
m
n − ΔxU

m
xn

) + θqm+1
n

(
2Δ2

xU
m+1
n − ΔxU

m+1
xn

)]
+ [

(1 − θ)pmn U
m
xn + θpm+1

n Um+1
xn

]
, (3.17)

where 1 ≤ n ≤ N , 1 ≤ m ≤ M and N , M are the number of grid points in space and time
direction respectively. By rearranging the terms, we get

[1 − 2θqm+1
n δtΔ2

x ]Um+1
n = [1 + 2qmn (1 − θ)δtΔ2

x ]Um
n + θδt[pm+1

n − qm+1
n Δx ]Um+1

xn

+ (1 − θ)δt[pmn − qmn Δx ]Um
xn . (3.18)

The above scheme is fourth order accurate in spatial variable and second order accurate (for
θ = 0.5) in temporal variable. It is observed that proposed compact finite difference scheme
requires only three grid points to achieve fourth order accuracy in spatial variable. Proposed
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compact finite difference scheme is implicit in nature and it will be proved in following
section that proposed scheme is unconditionally stable for 0.5 ≤ θ ≤ 1.

Stability Analysis

Stability analysis is very crucial aspect for the solution of time dependent problems using
numerical algorithms. Since the coefficients of the Eq. (2.9) are polynomial in x and t , they
will always be bounded in max norm for a discrete problem. Hence, principle of frozen
coefficients can be used in order to prove the stability for variable coefficient PDE (3.15).
Stability analysis using classical central difference scheme for constant coefficient problems
is discussed in [26] and for variable coefficient problems by using the principle of frozen coef-
ficients in [27].We carry out von-Neumann stability analysis for the difference scheme (3.18)
as follows.

Theorem 1 (Stability) The difference scheme (3.18) is unconditionally stable for
0.5 ≤ θ ≤ 1.

Proof Let Um
n = bmeimω where ω = 2πδx/λ is the phase angle with wavelength λ and bm

is the amplitude at time level m then from Eqs. (3.9), (3.13) and (3.8) we can write

ΔxU
m
n = i

sin(ω)

δx
Um
n , (3.19)

Δ2
xU

m
n = 2 cos(ω) − 2

δx2
Um
n , (3.20)

Um
xn = i

3 sin(ω)

δx(2 + cos(ω))
Um
n , (3.21)

where i = √−1. Using relation (3.19)–(3.21) in the difference scheme (3.18), we get[
1 − 4qθδt

(
cos(ω) − 1

δx2

)]
um+1
n =

[
1 + 4q(1 − θ)δt

(
cos(ω) − 1

δx2

)]
umn

+ θδt

[(
q
sin(ω)

δx
+ i p

)
3 sin(ω)

δx(2 + cos(ω))

]
um+1
n

+ (1 − θ)δt

[(
q
sin(ω)

δx
+ i p

)
3 sin(ω)

δx(2+cos(ω))

]
umn .

(3.22)

Then amplification factor AF can be written as

AF =
1 + (1 − θ)δt

[(
q cos2(ω)+4 cos(ω)−5

δx2(2+cos(ω))

)
+ i

(
p 3 sin(ω)

δx(2+cos(ω))

)]

1 − θδt
[(

q cos2(ω)+4 cos(ω)−5
δx2(2+cos(ω))

)
+ i

(
p 3 sin(ω)

δx(2+cos(ω))

)] . (3.23)

If

P = δt

(
q
cos2(ω) + 4 cos(ω) − 5

δx2(2 + cos(ω))

)
,

Q = δt

(
p

3 sin(ω)

δx(2 + cos(ω))

)
,

then

AF = 1 + (1 − θ)(P + i Q)

1 − θ(P + i Q)
. (3.24)
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This implies

|AF |2 = (1 + P − θ P)2 + (1 − θ)2Q2

(1 − θ P)2 + θ2Q2 . (3.25)

|AF | ≤ 1 is required for stability condition, hence

(P2 + Q2)(1 − 2θ) + 2P ≤ 0. (3.26)

It is observed that P ≤ 0 because(
cos2(ω) + 4 cos(ω) − 5

δx2(2 + cos(ω))

)
≤ 0 ∀ ω ∈ [0, 2π].

Inequality (3.26) is satisfied if

(1 − 2θ) ≤ 0 ⇒ θ ≥ 0.5.

Hence difference scheme (3.18) is unconditionally stable in the sense of von-Neumann for
0.5 ≤ θ ≤ 1.

Solution to Algebraic System

Solution of algebraic system associated with the difference scheme (3.18) is discussed in this
section. If we denote

Um = (Um
1 ,Um

2 , . . . ,Um
N )T and Um

x = (Um
x1 ,U

m
x2 , . . . ,U

m
xN )T ,

then system of equations corresponding to the difference scheme (3.18) can be written in
matrix form as follows

AUm+1 = F(Um,Um
x ,Um+1

x ). (3.27)

Thematrix A is a diagonally dominant, tri-diagonalmatrixwhich leads to an efficient solution
of system of equations. The value of Um

x can be obtained by solving a tri-diagonal system
of equations from Eq. (3.3). The main problem is due to the presence of Um+1

x on the right
hand side of the Eq. (3.27). For this reason, we use correcting to convergence approach [28]
which is summarized in the following algorithm.

Algorithm for Correcting to Convergence Approach

1. Start with Um .
2. Obtain Um

x using Eq. (3.3).
3. Take Um+1

old = Um , Um+1
xold = Um

x .
4. Correct to Um+1

new using Eq. (3.27).
5. If ‖Um+1

new − Um+1
old ‖ < tolerance, then Um+1

new = Um+1
old .

6. Obtain Um+1
xnew using Eq. (3.3).

7. Um+1
old = Um+1

new , Um+1
xold = Um+1

xnew and go to step 4. Stopping criterion for inner iteration is
taken tolerance = 10−12 in above approach.

Numerical Results

Two numerical examples are given in this section in order to show the accuracy and efficiency
of the proposed compact finite difference scheme. For temporal semi-discretization, θ = 0.5
is used for both the examples.
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Table 1 Error in discrete �2 norm and rate of convergence in temporal variable for Example 1 when δx = 1
64

δt 0.1 0.05 0.25 0.0125 0.00625

e(δt) 7.169e−004 1.609e−004 3.820e−005 9.311e−006 2.298e−006

η 2.15 2.07 2.03 2.01

Table 2 Error in discrete �2 norm and rate of convergence in spatial variable for Example 1 when δt = δx2

δx 0.1 0.05 0.25 0.0125 0.00625

e(δx) 1.206e−005 7.259e−007 4.556e−008 2.801e−009 1.892e−010

η 4.05 3.99 4.01 3.88

Example 1 Linear convection–diffusion equation.

Our goal for this example is to show that the proposed compact finite difference scheme
is second order accurate in temporal variable and fourth order accurate in spatial variable.
We consider the following convection–diffusion equation:

∂u

∂t
= 1

2

∂u

∂x
+ 1

2

∂2u

∂x2
, x ∈ (0, 1), t ∈ (0, 1],

u(x, 0) = ex , x ∈ (0, 1),

u(0, t) = et , u(1, t) = e1+t , t ∈ (0, 1]. (4.1)

Exact solution for the above Eq. (4.1) is given as u(x, t) = ex+t . Let e(δx) denotes the
discrete �2 norm error between the numerical solution and the exact solution at final time
with respect to grid size δx , then rate of convergence η can be written

η = log2

[
e(δx)

e(δx/2)

]
. (4.2)

For a vector z = (z1, z2, . . . , zs)T , discrete �2 norm is given as

|z|�2 =
[
δx

s∑
i=1

|zi |2
]1/2

.

In Table 1, error between the exact and numerical solution in discrete �2 norm is given at
T = 1 for fixed grid size δx = 1

64 . It is evident from the table that when δt is reduced to half
of its value, error is reduced by a factor of 1

4 . In this way it is proved that proposed compact
finite difference scheme is second order accurate in temporal variable.

Table 2 shows the error between the exact and numerical solution in discrete �2 norm for
δt = δx2. Error in discrete �2 norm between exact and numerical solution is computed for
various grid size (δx) values and it is observed that when δx is reduced to half of its value,
error is reduced by a factor of 1

16 . This proves that proposed compact finite difference scheme
is fourth order accurate in spatial variable.
Efficiency of proposed compact finite difference scheme for Example 1 Efficiency of the
proposed schemes, i.e. the computation time to obtain a given accuracy, is an important
point in our comparison with finite difference schemes. This is machine as well as pro-
gramming dependent. All the computations are done using MATLAB on a computer with

123



50 Differ Equ Dyn Syst (January–July 2019) 27(1–3):39–56

10−8 10−6 10−4 10−2
10−2

10−1

100

101

l
2
 error

C
P

U
 t

im
e

Central difference scheme
Compact finite difference scheme

Fig. 4 Efficiency: CPU time and discrete �2 error using central difference schemes and proposed compact
finite difference scheme for Example 1

Intel core i7 CPU@ 3.10 GHz. In order to compare the efficiency of the proposed scheme,
we compute the error between the exact and numerical solution in discrete �2 norm for
N = 50, 70, 90, 110, 130 and CPU time using central difference scheme and proposed com-
pact finite difference scheme. In Fig. 4, error and CPU time is presented and it is shown in the
figure that for a given accuracy, proposed compact finite difference scheme is significantly
efficient as compared to the central difference scheme.

Example 2 Asian option.

Numerical results for fixed strike arithmetic average Asian call options are given in this
example. We chose number of intervals J for x > 1 such that result should be independent
of J . It is given in [5] that J = N/2 is sufficient to guarantee that price of Asian option will
not depend on value of xmax . We also compute Greeks using the proposed compact finite
difference scheme for Asian options. For e.g. Delta values (Δnum) at t = 0 for Asian options
can be calculated by

Delta(Δnum) = u

(
K

S0
, 0

)
− K

S0

∂u

∂x

(
K

S0
, 0

)
. (4.3)

We apply the proposed compact finite difference scheme to the Asian option PDE with
the parameters, S0 = 100, T = 1 for various values of volatility (σ ), interest rates (r) and
strike prices (K ). Results obtained from these parameters for Asian option PDE are given
in Table 3 and compared with the results given in [29,30]. Lower and upper bounds for
different Asian options are taken from [7]. Price of Asian option using the proposed compact
scheme is obtained with N = 512 in all cases. It is observed from the Table 3 that results
obtained from proposed compact finite difference scheme are in a good agreement with the
existing literature. In Fig. 5, price of arithmetic average Asian call option with the parameters
S0 = 100, T = 1 and various values of r and σ versus strike price is plotted.
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Table 3 Comparison of price of arithmetic average Asian call option by various methods for different volatil-
ities and interest rates for S = 100 and T = 1

r σ K Present scheme Zhang [29] Chen–Lyuu [30] Lower bound
[7]

Upper bound
[7]

0.05 0.10 90 11.951126 11.9510927 11.951076 11.951 11.973

100 3.641842 3.6413864 3.641344 3.641 3.663

110 0.331473 0.3312030 0.331074 0.331 0.353

0.09 90 13.385299 13.3851974 13.385190 13.385 13.410

100 4.915267 4.9151167 4.915075 4.915 4.942

110 0.630618 0.6302713 0.630064 0.630 0.657

0.15 90 15.398523 15.3987687 15.398767 15.399 15.445

100 7.029421 7.0277081 7.027678 7.028 7.066

110 1.413742 1.4136149 1.413286 1.413 1.451

0.05 0.20 90 12.598322 12.5959916 12.595602 12.595 12.687

100 5.763833 5.7630881 5.762708 5.762 5.854

110 1.990125 1.9898945 1.989242 1.989 2.080

0.09 90 13.832486 13.8314996 13.831220 13.831 13.927

100 6.788156 6.7773481 6.776999 6.777 6.872

110 2.558836 2.5462209 2.545459 2.545 2.641

0.15 90 15.642544 15.6417575 15.641598 15.641 15.748

100 8.412453 8.4088330 8.408519 8.408 8.515

110 3.557377 3.5556100 3.554687 3.554 3.661

0.05 0.30 90 13.955321 13.9538233 13.952421 13.952 14.161

100 7.946844 7.9456288 7.944357 7.944 8.153

110 4.072889 4.0717942 4.070115 4.070 4.279

0.09 90 14.984833 14.9839595 14.982782 14.983 15.194

100 8.829541 8.8287588 8.827548 8.827 9.039

110 4.697472 4.6967089 4.694902 4.695 4.906

0.15 90 16.514532 16.5129113 16.512024 16.512 16.732

100 10.210984 10.2098305 10.208724 10.208 10.429

110 5.730765 5.7301225 5.728161 5.728 5.948

Now, proposed compact finite difference scheme is applied to the Asian option PDE for
small and large volatilities at different strike prices (K ) with the parameters, S0 = 100,
T = 1, r = 0.09. The values of Asian option and their comparison with the results in
[29–31] are given in Table 4. From the Table 4, it is observed that proposed compact finite
difference scheme is accurate for small and large both type of volatilities. Figure 6 shows the
price of arithmetic average Asian call option versus strike price for different values of σ and
S0 = 100, T = 1, r = 0.09.

In Table 5, price of Asian option obtained from proposed compact finite difference scheme
for large maturity time (T = 3) at different strike prices (K ) and volatilities with the param-
eters, S0 = 100, T = 1, r = 0.09 are given. The values of Asian option are compared with
the results in [9,29,32,33]. From the Table 5, it is observed that proposed compact finite
difference scheme is accurate for large maturity time also.
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Fig. 5 Price of arithmetic average Asian call option with the parameters S0 = 100, T = 1 and various values
of r and σ versus strike price: a σ = 0.1, b σ = 0.2, c σ = 0.3

Table 4 Comparison of price of arithmetic average Asian call option by various methods for different volatil-
ities for S0 = 100, r = 0.09 and T = 1

σ K Present scheme Zhang [29] Zhang-AA2 [31] Zhang-AA3
[31]

Chen–Lyuu
[30]

0.05 95 8.808842 8.808839 8.80884 8.80884 8.808839

100 4.308180 4.3082350 4.30823 4.30823 4.308231

105 0.958392 0.9583841 0.95838 0.95838 0.958331

0.1 95 8.911842 8.9118509 8.91171 8.91184 8.911836

100 4.915113 4.9151167 4.91514 4.91512 4.915075

105 2.070063 2.0700634 2.07006 2.07006 2.069930

0.2 95 9.995658 9.9956567 9.99597 9.99569 9.995362

100 6.777355 6.7773481 6.77758 6.77738 6.776999

105 4.296482 4.2965626 4.29643 4.29649 4.295941

0.3 95 11.655752 11.6558858 11.65747 11.65618 11.654758

100 8.828863 8.8287588 8.82942 8.82900 8.827548

105 6.517868 6.5177905 6.51763 6.51802 6.516355
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Table 4 continued

σ K Present scheme Zhang [29] Zhang-AA2 [31] Zhang-AA3
[31]

Chen–Lyuu
[30]

0.4 95 13.510846 13.5107083 13.51426 13.51182 13.507892

100 10.923753 10.9237708 10.92507 10.92474 10.920891

105 8.729912 8.7199362 8.72936 8.73089 8.726804

0.5 95 15.442826 15.4427163 15.44890 15.44587 15.437069

100 13.028121 13.0281555 13.03015 13.03017 13.022532

105 10.929630 10.9296247 10.92800 10.93253 10.923750
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Fig. 6 Price of arithmetic average Asian call option with the parameters S0 = 100, T = 1, r = 0.09 and
various values σ versus strike price

Table 5 Comparison of price of arithmetic average Asian call option by various methods for different volatil-
ities for S0 = 100, r = 0.09 and T = 3

σ K Present scheme Zhang [29] Ju [32] Hsu and Lyuu [33] Kumar et al. [9]

0.05 95 15.116283 15.1162646 15.11626 15.116230 15.116784

100 11.303640 11.3036080 11.30360 11.304036 11.303619

105 7.553427 7.5533233 7.55335 7.554073 7.550559

0.1 95 15.213945 15.2138005 15.21396 15.213921 15.214139

100 11.637781 11.6376573 11.63798 11.637813 11.637450

105 8.391263 8.3912219 8.39140 8.391189 8.390679

0.2 95 16.637245 16.6372081 16.63942 16.637276 16.637222

100 13.766935 13.7669267 13.76770 13.767043 13.766921

105 11.220238 11.2198706 11.21879 11.220047 11.219881

0.3 95 19.023155 19.0231619 19.02652 19.023263 19.023123

100 16.586198 16.5861236 16.58509 16.586222 16.586118
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Table 5 continued

σ K Present scheme Zhang [29] Ju [32] Hsu and Lyuu [33] Kumar et al. [9]

105 14.392976 14.3929780 14.38751 14.393083 14.392999

0.4 95 21.740932 21.7409242 21.74461 21.740973 21.740921

100 19.588312 19.5882516 19.58355 19.588307 19.588251

105 17.625484 17.6254416 17.61269 17.625501 17.625444

0.5 95 24.571842 24.5718705 24.57740 24.571913 24.571875

100 22.630858 22.6307858 22.62276 22.630828 22.630790

105 20.843225 20.8431853 20.82213 20.843226 20.843189

Table 6 Comparison of value of Delta (Δnum ) for S0 = 100, r = 0.05, K = 100 and T = 1. Delta value
for finite difference (FD estimate), finite difference with control variate (FD with CV), path-wise derivatives
(PW estimate), path-wise derivatives with control variate (PW with CV) are taken from [34]

Method σ = 0.1 σ = 0.3 σ = 0.5

Present scheme 0.6587 0.5694 0.5923

Finite difference (FD) 0.6599 0.5668 0.5919

FD with CV 0.6592 0.5662 0.5936

PW estimate 0.6585 0.5680 0.5960

PW with CV 0.6593 0.5663 0.5928
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Fig. 7 Efficiency: CPU time to obtain a given accuracy and discrete �2 error using central difference schemes
and proposed compact finite difference scheme for Asian option PDE

The relation between the option prices and theDelta values is given in Eq. (4.3). In Table 6,
Delta (Δnum) values for Asian option obtained from proposed compact finite difference
scheme for the parameters, S0 = 100, K = 100, T = 1, r = 0.05 are given. Results
obtained from proposed compact finite difference scheme are compared with [34] and it is
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observed that proposed compact finite difference scheme is accurate for the computation of
hedging parameters (Delta) also.
Efficiency of proposed compact finite difference scheme for Asian option PDE We discuss
the CPU time taken to obtain a given accuracy and discrete �2 norm error using central
difference scheme and proposed compact finite difference scheme for Asian option PDE. In
Fig. 7, �2 error represents the error between the numerical solution and reference solution for
K = 100, S0 = 100, σ = 0.05, r = 0.15 and T = 1 in discrete �2 norm. Reference solution
is computed for same parameters with N = 2048. We compute the error and corresponding
CPU time at grid points N=10, 20, 30, 40, 50 using central difference scheme and proposed
compact finite difference scheme. Since the convection and diffusion coefficients of theAsian
option PDE (2.9) are variables in x and t and grid is changing at each time step, matrices and
their inverses are computed at each time step. It is shown in Fig. 7 that for a given accuracy,
proposed compact finite difference scheme is significantly efficient as compared to the central
difference scheme.

Conclusion and Future Work

An unconditionally stable compact finite difference scheme is proposed to solve the linear
convection–diffusion equation. In the proposed scheme, second derivative approximations of
the unknowns are eliminated with the unknowns itself and their first derivative approxima-
tions while retaining the tri-diagonal nature of the scheme. Fourier analysis of the difference
schemes is presented and it is concluded that proposed compact finite difference approxima-
tions have better resolution characteristics as compared to classical finite difference schemes.
It is also proved that proposed compact finite difference scheme is unconditionally stable.
Proposed compact finite difference scheme is applied to Asian option PDE and a diagonally
dominant system of linear equations is obtained which can be solved using Thomas algo-
rithm efficiently. Efficiency of the proposed compact finite difference scheme is compared
to the central difference scheme by calculating the CPU time for a given accuracy and it is
observed that proposed compact finite difference scheme is significantly efficient than central
difference scheme. Since the proposed compact finite difference scheme is easily extendable
for the two dimensional problems in a similar manner, we would like to extend the proposed
compact finite difference scheme for two dimensional problems.

Acknowledgements M. Mehra acknowledges the support provided by Department of Science and Technol-
ogy, India, under the Grant Number RP03107.
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