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Abstract This paper is devoted to study the existence and uniqueness of solutions for a class
of nonlinear fractional dynamical systems with affine-periodic boundary conditions. We can
show that there exists a solution for an α-fractional system via the homotopy invariance of
Brouwer degree, where 0 < α ≤ 1. Furthermore, using Gronwall–Bellman inequality, we
can prove the uniqueness of the solution if the nonlinearity satisfies the Lipschitz continuity.
We apply the main theorem to the fractional kinetic equation and fractional oscillator with
constant coefficients subject to affine-periodic boundary conditions. And in appendix, we
give the proof of the nonexistence of affine-periodic solution to a given (α, Q, T )-affine-
periodic system in the sense of Riemann–Liouville fractional integral and Caputo derivative
for 0 < α < 1.
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Introduction

The structure of the solution of an differential equation plays an important role in the theory
of dynamical systems, such as periodicity, anti-periodicity, harmonic-periodicity, quasi-
periodicity and so on. In 2103 [46], Li et al. introduced the concept “affine-periodic” which
is a kind of symmetry rather than periodicity, which is the general version of periodicity, anti-
periodicity, harmonic-periodicity and quasi-periodicity. There are some natural phenomena
presenting affine-periodicity [9,34], such as, spiral wave (or affine-periodic wave), spiral
line in geometry, and the orbit of the earth goes round the sun: the orbit is a circle or ellipse
exactly in a plane, but in fact, the circle in the plane is only a projection in the space along
the time axis. The orbit of the earth when it goes round the sun is cubic rather than just in a
plane and the space position is rotating as the time walks a periodic, that is to say, the orbit
of the earth goes round the sun presents the “affine-symmetry”.

The subject of affine-periodic problem is essential and more and more researchers pay
attention to “affine-symmetry” and consider the existence of affine-periodic solutions of
different affine-periodic dynamical systems, such as dissipative systems [21,46], discrete
dynamical systems [22], nonlinear dynamic equations on time scales [39] and so on [11,13,
40,41].

Our problem is to consider the existence and uniqueness of affine-periodic solutions to
fractional affine-periodic systems for fractional-order models are found to be more adequate
than integer-order models for some real world problems. Fractional derivatives provide an
excellent tool for the description ofmemory and hereditary properties of variousmaterials and
processes. This is the main advantage of fractional differential equations in comparison with
classical integer-order models. Fractional differential equations arise in many engineering
and scientific disciplines as the mathematical models of systems and processes in the fields of
physics, chemistry, aerodynamics, electrodynamics of complex medium, polymer rheology,
and so forth, involves derivatives of fractional order. And the problem of existence and
uniqueness is very essential, which is mentioned by mathematician Hadamard [17], and
he believed that mathematical models of physical phenomena should have the properties
that (1) a solution exists, (2) the solution is unique, and (3) the solution is stable, that is
the solution’s behavior changes continuously with the initial conditions, which is called
Hadamardwell-posedness orwell-posedness. The solution is calledwell-posed if the solution
is existing, unique and stable.

As a general of periodicity, anti-periodicity, harmonic-periodicity and quasi-periodicity,
there are also many research in the spacial case for fractional dynamical systems. Such as,
in [14], Devi developed the generalized monotone method to fractional differential equa-
tions with periodic boundary values and obtained some existence results. In [2], Ahmad and
Nieto obtained some existence results for a differential equation of fractional order with
anti-periodic boundary conditions using Leray–Schauder degree theory. In [43], Wei et al.
considered the existence and uniqueness of the solution of the periodic boundary value prob-
lem for a fractional differential equation involving a Riemann–Liouville fractional derivative
by using the monotone iterative method. In [42], Wang and Bai investigated the existence
and uniqueness of solution of the periodic boundary value problem for nonlinear impulsive
fractional differential equation involving Riemann–Liouville fractional derivative by using
Banach contraction principle. In [12], Chen and Chen considered the anti-periodic bound-
ary value problem for nonlinear fractional differential equation and obtained some existence
results bymeans of the Banach fixed point theorem and Schauder fixed point theorem. In [26],
Nieto studied a linear fractional differential equation with a periodic boundary condition and
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gave the explicit form of the solution and the corresponding Green’s function. Meanwhile,
some new comparison results are presented by some properties of the Green’s function. In
[18], Hu et al. considered periodic boundary value problem for fractional differential equa-
tion and obtained a new result on the existence of solutions for above fractional boundary
value problem using the coincidence degree theory.

Under the help of these fruitful results, we consider the existence and uniqueness of affine-
periodic solutions to affine-periodic systems with initial values at first. But, we find that the
affine-periodic solutions may not exist in the sense of Riemann–Liouville fractional integral
and Caputo fractional derivative for 0 < α < 1 if the nonlinearity holds affine-symmetry,
the proof can be found in Sect. 6.2. Thus, we consider the existence and uniqueness of the
solutions toα-fractional systemswith affine-periodic boundary conditions,where 0 < α ≤ 1.

The rest of this paper is organized as follows: in Sect. 2, we present some definitions and
notations for the fractional calculus and the concept of affine-periodic. Section 3 contains
some sufficient conditions for the existence and uniqueness of the solution for affine-periodic
boundary problem and the proof of the main results. In Sect. 5, some applications are pre-
sented. Section 6 includes some auxiliary proof procedure.

Fractional Calculation and α-Fractional System

Fractional calculus is the field of mathematical analysis which deals with the investigation
and applications of integrals and derivatives of arbitrary order. There are several definitions
of the fractional integration of order α ≥ 0, and not necessarily equivalent to each other, see
[23]. Riemann–Liouville and Caputo fractional definitions are the two most used from all the
other definitions of fractional calculus which have been introduced recently [10,19,36,38].

Definition 2.1 [19,36,38] A real function f (t), t > 0 is said to be in the space Cμ,μ ∈ R

if there exists a real number p > μ such that f (t) = t p f1(t), where f1(t) ∈ C[0,+∞), and
it is said to be in the space Cn

μ if f (n)(t) ∈ Cμ, n ∈ N.

Definition 2.2 [19,36,38] The Riemann–Liouville fractional integral operator of order β ≥
0 of a function f ∈ Cμ,μ � −1 is defined as

RL
aI

β
t f (t) =

{
1

�(β)

∫ t
a (t − τ)β−1 f (τ )dτ, β > 0,

f (t), β = 0,

where a ∈ R and the symbol “ RL I” represents the fractional integral in the Riemman–
Liouville sense.

Definition 2.3 [19,36,38] The Caputo fractional derivative of order β > 0 of a function
f ∈ Cn−1, n ∈ N is defined as

C
a D

β
t f (t) =

{
1

�(n−β)

∫ t
a

f (n)(τ )

(t−τ)β+1−n dτ, n − 1 < β < n,

dn f (t)
dtn , β = n,

where a ∈ R and the symbol “CD” represents the fractional derivative in the Caputo sense.

With the definitions above, we can obtain the following lemma.
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Lemma 2.4 If n − 1 < β ≤ n, n ∈ N, then

RL
aI

β
t
C
a D

β
t f (τ ) = f (t) −

n−1∑
k=0

ckt
k,

where ck ∈ R, k = 0, 1, · · · , n − 1.

And the proof of Lemma 2.4 can be found in Sect. 6.1.
In the following, we present the definition of α-fractional system, (α, Q, T )-affine-

periodic system, (α, Q, T )-affine-periodic solution, and (Q, T )-affine -periodic boundary
conditions.

Definition 2.5 [22,39,46] The dynamical system

C
a D

α
t x = f (t, x), (t, x) ∈ (I ⊆ R) × R

n (2.1)

is called an α-fractional system. If there exists some T > 0 and Q ∈ GLn(R) such that

f (t + T, x) = Q f (t, Q−1x).

where 0 < α ≤ 1, then (2.1) is called an (α, Q, T )-affine-periodic system .

Remark 2.6 An interesting problem is to seek for a solution x = x(t) which can keep the
affine-symmetry of f , that is, the space variable x has a transformation or rotating Q as the
time variable walks a periodic T, which is the concept of (α, Q, T )-affine-periodic solution
in Definition 2.7.

Definition 2.7 [22,39,46] A solution x = x(t) of (2.1) is called (α, Q, T )-affine-periodic
solution if

x(t + T ) = Qx(t), ∀t ∈ I.

Remark 2.8 Obviously, an (α, Q, T )-affine-periodic solution is periodic solution, anti-
periodic solution, harmonic-periodic solution or quasi periodic solution when Q = I (the
identical matrix), Q = −I, Qm = I for some m ∈ N or Q ∈ On(R).

Remark 2.9 It is easy to see that if x = x(t) is an (α, Q, T )-affine-periodic solution of (2.1),
then

x(T ) = Qx0,

where x0 = x(0) is the initial value.

In this paper, we find that the definition of Riemann–Liouville fractional integral has
not shift-invariant, which leads to the (α, Q, T )-affine-periodic solution may not exist for
0 < α < 1, the proof can be seen in Sect. 6.2. Thus, we consider the α-fractional system
with boundary condition x(T ) = Qx(0) which is called “(Q, T )-affine-periodic boundary
condition” in the Definition 2.10, where 0 < α ≤ 1.

Definition 2.10 [22,39,46] The (α, Q, T )-affine-periodic system (2.1) is called satisfying
(α, Q, T )-affine-periodic boundary conditions if

x(0) = ξ , x(T ) = Qξ ,

where ξ ∈ R
n .

123



Differ Equ Dyn Syst (October 2020) 28(4):1015–1031 1019

Main Results

Consider the α-fractional system with (Q, T )-affine-periodic boundary conditions{
C
0 D

α
t x = f (t, x), (t, x) ∈ [0, T ] × R

n,

x(0) = ξ , x(T ) = Qξ ,
(3.1)

with the auxiliary α-fractional system with (Q, T )-affine-periodic boundary conditions{
C
0 D

α
t x = λ f (t, x), (t, x) ∈ [0, T ] × R

n,

x(0) = ξ , x(T ) = Qξ ,
(3.2)

where 0 < α ≤ 1, Q ∈ GLn(R), 0 ≤ λ ≤ 1. Then we have the following result:

Theorem 3.1 For the following assumptions:

A1 : For each λ ∈ (0, 1], every possible solution x(t) for system (3.2) satisfies that if
x(t) ∈ D̄, then x(t) /∈ ∂D,∀t ∈ [0, T ].

A2 : The Brouwer degree

deg(g, D ∩ Ker(I − Q), 0) 	= 0, if Ker(I − Q) 	= {0},
where g(·) = RL

0I
α
T P f (τ, ·), P : Rn → Ker(I − Q) is an orthogonal projection.

A3 : The function f is Lipschitz continuous, that is, there exists a constant L ∈ R
+ such

that
|| f (t, x) − f (t, y)|| ≤ L||x − y||, ∀(t, x), (t, y) ∈ [0, T ] × R

n .

If the α-fractional system (3.2) holds the assumptions A1 and A2, then the α-fractional
system (3.1) admits at least a solution. And furthermore, if the assumption A3 holds
as well, then the solution of (3.1) is unique.

Before the proof procedure of Theorem 3.1, some lemmas which will be used in the proof
of the main theorem are listed firstly.

Lemma 3.2 [35] LetX = C([0, T ]) denote the set of all continuous functions in Rn on the
interval [0, T ], and X be a linear space which holds

(k1x1 + k2x2)(t) = k1x1(t) + k2x2(t), ∀x1, x2 ∈ X , ∀t ∈ [0, T ].
Define ‖x‖ = supt∈[0,T ] ‖x(t)‖, then (X , ‖ · ‖) is a Banach space.

Lemma 3.3 [27] Let � ⊂ R
n be an open bounded subset and f : �̄ → R

n be a continuous
mapping. If p /∈ f (∂�), then there exists an integer deg( f ,�, p) called the Brouwer degree
of f (x) = p in � satisfying the following properties:

Pro1 (Normality) deg(I,�, p) = 1 if and only if p ∈ �, where I denotes the identity
mapping.

Pro2 (Solvability) If deg( f ,�, p) 	= 0, then f (x) = p has a solution in �.
Pro3 (Homotopy) If f t (x) = H(t, x) : [0, 1] × �̄ → R

n is continuous and
p /∈ f t (∂�) for all t ∈ [0, 1], then the deg( f t (·),�, p) = deg(H(t, ·),�, p)
is independent on t.

Lemma 3.4 [28] Let u(t) and f (t) be nonnegative, continuous function on I = [0,∞) for
which the inequality holds

u(t) ≤ u0 +
∫ t

0
f (τ )u(τ )dτ, t ∈ I,
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where u0 is a nonnegative constant. Then

u(t) ≤ u0 exp
∫ t
0 f (τ )dτ ,

which is called the Gronwall–Bellman inequality.

Proof of Main Results

In this section, we give the proof of the main Theorem 3.1.

Proof The solution of (3.2) is equivalent to the following integral form

x(t) = ξ + λRL
0 Iαt f (τ, x(τ ))

with (Q, T )-affine-periodic boundary condition

x(0) = ξ , x(T ) = Qξ ,

which yields
(I − Q)ξ + λRL

0 IαT f (τ, x(τ )) = 0. (4.1)

Case 1 Ker(I − Q) 	= {0}, that is (I − Q)−1 does not exists. By a coordinate transform and
take Q as the following form

Q =
(
I 0
0 Q1

)

without loss of generality we assume (I − Q1)
−1 exists.

Set

R
n = Ker(I − Q) ⊕ Im(I − Q),

then for all ξ ∈ R
n , there exists ξKer ∈ Ker(I − Q) and ξ⊥ ∈ Im(I − Q) such that

ξ = ξKer + ξ⊥.

Let P : Rn → Ker(I − Q) be the orthogonal projection, then (4.1) is equivalent to(
0 0
0 (I − Q1)

) (
ξKer

ξ⊥
)

+
(

λRL
0I

α
T P f (τ, x(τ ))

λRL
0I

α
T (I − P) f (τ, x(τ ))

)
= 0.

And furthermore {
λRL

0I
α
T P f (τ, x(τ )) = 0,

(I − Q1)ξ
⊥ = −λRL

0I
α
T ((I − P) f (τ, x(τ )).

For x ∈ X which satisfies x(t) ∈ D̄ for all t ∈ [0, T ], we define an operator

	(ξKer, x, λ) =
(

ξKer + RL
0I

α
T P f (τ, x(τ ))

ξKer − λ(I − Q1)
−1RL

0I
α
T ((I − P) f (τ, x(τ )) + λRL

0I
α
t f (τ, x(τ ))

)
.

We claim that each fixed point of	 inX is a solution of (3.2). In fact, if x is a fixed point
of 	, then(

ξKer

x(t)

)
=

(
ξKer + RL

0I
α
T P f (τ, x(τ ))

ξKer − λ(I − Q1)
−1RL

0I
α
T (I − P) f (τ, x(τ )) + λRL

0I
α
t f (τ, x(τ ))

)
.
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Thus,{
RL
0I

α
T P f (τ, x(τ )) = 0,

x(t) = ξKer − λ(I − Q1)
−1RL

0I
α
T ((I − P) f (τ, x(τ )) + λRL

0I
α
t f (τ, x(τ )).

(4.2)

Substituting t = 0 and t = T into x(t), it gives

ξ = ξKer − λ(I − Q1)
−1RL

0I
α
T (I − P) f (τ, x(τ )),

x(T ) = ξKer − λ(I − Q1)
−1RL

0I
α
T (I − P) f (τ, x(τ )) + λRL

0I
α
T f (τ, x(τ )).

In order to prove x is the solution of (3.2), a necessary condition is

Qx(0) = x(T )

⇔
(
I 0
0 Q1

) (
ξ Ker

ξ⊥
)

=
⎛
⎝ ξKer + λRL

0I
α
T P f (τ, x(τ ))

−λ(I − Q1)
−1RL

0I
α
T (I − P) f (τ, x(τ ))

+λRL
0I

α
T (I − P) f (τ, x(τ ))

⎞
⎠

⇔ λRL
0I

α
T P f (τ, x(τ )) = 0,

which is obvious.
Moreover, we have

ξ⊥ = −λ(I − Q1)
−1RL

0 IαT (I − P) f (τ, x(τ )).

So

x(t) = ξKer − λ(I − Q1)
−1RL

0I
α
T (I − P) f (τ, x(τ )) + λRL

0I
α
t f (τ, x(τ ))

= ξKer + ξ⊥ + λRL
0I

α
t f (τ, x(τ ))

= ξ + λRL
0I

α
t f (τ, x(τ )).

It means that the fixed point x of 	 is a solution of (3.2).
Provided that there exists a fix point of operator 	, we have proved that the fixed point is

the solution of (3.2). So we need to illustrate the existence of fixed points of 	.
Set

f (t, x) = ( f1(t, x), f2(t, x), · · · , fn(t, x)),

where fi is continuous since f is continuous, then there exists constants mi and Mi such
that

0 ≤ mi ≤ maxt∈[0,T ] | fi (t, x(t))|
�(α + 1)

≤ Mi , i = 1, 2, · · · , n.

Set

M = max
1≤i≤n

Mi , m = max
1≤i≤n

mi ,

and

Xλ =
{
x ∈ X : ‖x(t) − x(s)‖

|tα − sα| ≤ λ
√
n(M − m), ∀t 	= s

}
,

then it is easy to define a retraction σλ : X → Xλ.
Define a homotopy

H(ξKer, x, λ)

=
(

ξKer + RL
0I

α
T P f (τ, σλ ◦ x(τ ))

σλ ◦ ξKer − λ(I − Q1)
−1RL

0I
α
T (I − P) f (τ, σλ ◦ x(τ )) + λRL

0I
α
t f (τ, σλ ◦ x(τ ))

)
,
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where

(ξKer, x, λ) ∈ (D ∩ Ker(I − Q)) × D̃ × [0, 1], D̃ = {x ∈ X |x(t) ∈ D, ∀ t ∈ [0, T ]} .

We claim that
0 /∈ (I − H)(∂((D ∩ Ker(I − Q)) × D̃) × [0, 1]),

which is proved by contradiction. Suppose there exists

(ξ̄
Ker

, x̄, λ̄) ∈ (∂((D ∩ Ker(I − Q)) × D̃) × [0, 1]) such that

(I − H)(ξ̄
Ker

, x̄, λ̄) = 0.

As ξ̄
Ker ∈ ∂ (D ∩ Ker(I − Q)) ⊂ ∂D is a contradictory to the assumption A1, we know that

ξ̄
Ker

/∈ ∂ (D ∩ Ker(I − Q)) ⊂ ∂D. In other words, x̄ ∈ ∂ D̃. We discuss it in two cases:
(i) If λ̄ = 0, then

X0 =
{
x ∈ X

∣∣ ||x(t) − x(s)||
|tα − sα| ≤ 0

}
.

Hence x(t) = p ∈ X0 and σ0 ◦ x(t) = p for all t ∈ [0, T ]. Since (I − H)(ξ̄
Ker

, x̄, λ̄) = 0,
we have

(
ξ̄
Ker

x̄(t)

)
=

(
ξ̄
Ker + RL

0I
α
T P f (τ, p)

σ0 ◦ ξ̄
Ker

,

)
,

thus g( p) = 0. Notice that x̄ ∈ ∂ D̃, hence there exists t0 ∈ [0, T ] such that p = x(t0) ∈ ∂D.
It is a contradictory to the assumption A2, because the Brouwer degree deg(ggg, D,000) 	= 0.

(ii) If λ̄ ∈ (0, 1], since (I − H)(ξ̄
Ker

, x̄, λ̄) = 0, we have

(
ξ̄
Ker

x̄(t)

)

=
(

ξ̄
Ker + RL

0I
α
T P f (τ, x(τ ))

σλ̄ ◦ ξ̄
Ker − λ̄(I − Q1)

−1RL
0I

α
T (I − P) f (τ, σλ̄ ◦ x̄(τ )) + λ̄RL

0I
α
t f (τ, σλ̄ ◦ x̄(τ ))

)
,

thus

RL
0I

α
T P f (τ, x(τ )) = 0,

and

x̄(t) = σλ̄◦ ξ̄
Ker−λ̄(I−Q1)

−1RL
0I

α
T (I− P) f (τ, σλ̄◦ x̄(τ ))+λ̄RL

0I
α
t f (τ, σλ̄◦ x̄(τ )). (4.3)
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Notice that

‖x̄(t) − x̄(s)‖
|tα − sα| = ‖λ̄RL

0I
α
t f (τ, σλ̄ ◦ x̄(τ )) − λ̄RL

0I
α
s f (τ, σλ̄ ◦ x̄(τ ))‖

|tα − sα|
= λ̄

�(α)|tα − sα|
∥∥∥∥

∫ t

0
(t − τ)α−1 f (τ, σλ̄ ◦ x̄(τ )dτ

−
∫ s

0
(s − τ)α−1 f (τ, σλ̄ ◦ x̄(τ ))dτ

∥∥∥∥
= λ̄

�(α)|tα − sα|
( n∑

i=1

∣∣∣∣
∫ t

0
(t − τ)α−1 fi (t, x)dτ

−
∫ s

0
(s − τ)α−1 fi (t, x)dτ

∣∣∣∣
2) 1

2

≤ λ̄

�(α)|tα − sα|
( n∑

i=1

(Mi − mi )
2
∣∣∣∣
∫ t

0
(t − τ)α−1dτ

−
∫ s

0
(s − τ)α−1dτ

∣∣∣∣
2) 1

2

≤ λ̄
√
n(M − m)�(α + 1)

�(α)|tα − sα|
∣∣∣∣
∫ t

0
(t − τ)α−1dτ −

∫ s

0
(s − τ)α−1dτ

∣∣∣∣
≤ λ̄

√
n(M − m),

which means x̄ ∈ Xλ̄, thus σλ̄ ◦ x̄ = x̄. Now we rewrite (4.3) as

x̄(t) = ξ̄
Ker − λ̄(I − Q1)

−1RL
0I

α
T (I − P) f (τ, x̄(τ )) + λ̄RL

0I
α
t f (τ, x̄(τ )). (4.4)

And similar to the discussion in (4.2), we can prove that x̄(t) is a solution of (3.2). By
assumption A1, we know that x̄(t) /∈ ∂D for all t ∈ [0, T ], which is a contradictory to
x̄ ∈ ∂ D̃. Thus we have

0 /∈ (I − H)(∂((D ∩ Ker(I − Q)) × D̃) × [0, 1]).
Therefore, by the homotopy invariance and the theory of the Brouwer degree, we have

deg((I − H)(ξKer, ·, 1), (D ∩ Ker(I − Q)) × D̃, 0 )

= deg((I − H)(ξKer, ·, 0), (D ∩ Ker(I − Q)) × D̃, 0)

= deg(g, D ∩ Ker(I − Q), 0) 	= 0,

which means that there exists x∗ ∈ D̃ such that(
x∗Ker
x∗(t)

)
= H(x∗Ker, x∗, 1)

and x∗ ∈ X1 then H(x∗Ker, x∗, 1) = �(x∗Ker, x∗, 1), and x∗ is a fixed point of 	 in X ,
thus x∗(t) is a solution of (3.2).
Case 2 If Ker(I − Q) = {0}, that is (I − Q)−1 exists, then

ξ = −(I − Q)−1λ RL
0I

α
T P f (τ, x(τ )).
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Consider the homotopy

H(x, λ) = −(I − Q)−1λ RL
0I

α
T P f (τ, x(τ )) + λ RL

0I
α
t f (τ, x(τ )).

Similar to the proof when Ker(I − Q) 	= {0}, we have 0 /∈ (I − H)(∂ D̃ × [0, 1]). Hence
deg(I − H(·, 1), D̃, 0) = deg(I − H(·, 0), D̃, 0) = deg(I, D̃, 0) = 1,

which means that there exists x∗(t) ∈ D for all t ∈ R
1 such that

x∗(t) = x∗(0) + λ RL
0I

α
t f (τ, x(τ )).

Therefore x∗(t) is a solution of (3.2).
Since we know the solution exists, then the uniqueness of the solution with boundary

values can be described by the uniqueness of the solution with initial value. Let us consider
the α-fractional system with initial value as follows{

C
0 D

α
t x = f (t, x),

x(0) = ξ ,

which is equivalent to the following integral formal

x(t) = x(0) + 1

�(α)

∫ t

0
(t − τ)α−1 f (τ, x(τ ))dτ.

If there is another solution y(t), and thanks to the assumption A3, then

‖x(t) − y(t)‖ =
∥∥∥∥ 1

�(α)

∫ t

0
(t − τ)α−1 f (τ, x(τ )) dτ

− 1

�(α)

∫ t

0
(t − τ)α−1 f (τ, y(τ )) dτ

∥∥∥∥
= 1

�(α)

∥∥∥∥
∫ t

0
(t − τ)α−1 ( f (τ, x(τ ) − f (τ, y(τ )) dτ

∥∥∥∥
≤ L

�(α)

∫ t

0
(t − τ)α−1‖x(τ ) − y(τ )‖dτ. (4.5)

Setting h(t) = ‖x(t) − y(t)‖, then h(0) = 0 and (4.5) is equivalent to

h(t) ≤ L

�(α)

∫ t

0
(t − τ)α−1h(τ )dτ.

According to the Lemma 3.4, we have

h(t) ≤ h(0) · exp Ltα
�(α+1) ≤ h(0) · exp LTα

�(α+1) = 0,

which indicates that x = y. That shows the uniqueness of the solution. ��

Some Applications

In this section, we will apply the main theorem to the fractional relaxor kinetic equations
and fractional harmonic oscillator equations. It shows the existence and uniqueness of the
solutions under the affine-periodic boundary conditions.
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Fractional Relaxor Kinetic Equation in R
n

It is awell known fact thatmany fundamental laws of physics can be formulated as generalized
fractional kinetic equations [1,16,29,30] of the form

C
0 D

α
t x = −Ax (5.1)

with affine-periodic boundary condition

x(0) = ξ , x(T ) = Qξ , (5.2)

where 0 < α ≤ 1, x = (x1, x2, . . . , xn) ∈ R
n, ξ = (ξ1, ξ2, . . . , ξn) ∈ R

n, n ∈ N, 0 < t ≤
T, and A = diag{d1, d2, . . . , dn}, di > 0, i = 1, 2, . . . , n.

When the index α = 1 and n = 1, this equation represents a relaxation process described
by the solutions x(t) = x(0)e−t/τ with a characteristic time scale τ = A−1 for the exponential
decay. When α = 1 and n ∈ N, Eq. (5.2) could be Maxwell’s equations or Schrödinger’s
equation if A is limited to linear operators, or it could beNewton’s law ofmotion or Einstein’s
equations for geodesics if A may also be a nonlinear operator [30].

In this subsection, we considerα-order kinetic equation inRn , where 0 < α ≤ 1.We focus
on the fractional relaxor, i.e. 0 < α ≤ 1. The fractional kinetic equation has different limit
cases which have been discussed intensively during the last decade. One case is related to the
so-called Lev́y process and Lev́y flights [20,24,33], another to the problem of fractal time
and fractal Brownian motion [31]. Both limit cases can be matched to the Montroll–Weiss
equation and to the continuous time random walk [8,25,32,44,45]. All of these cases can
be united by the fractional kinetic equation. The fractional kinetic equation being written in
some generalized form can cover all described cases, including non-Markovian case, and the
corresponding generalized solutions can be obtained. Sometimes, the well-known integral
equations, like the Benjamin–Ono equation for the internal ocean waves, can be rewritten in
a form with fractional derivatives.

Theorem 5.1 For any
0 < α ≤ 1, if Q = diag{Eα((−d1T )α), Eα((−d2T )α), . . . , Eα((−dnT )α)}, then the prob-
lem (5.1)–(5.2) admits a unique solution.

Proof Set the open set

D : =
n∏

i=1

Di ⊂ R
n, where Di = (−mi − δ0, mi + δ0) ,

mi = max{|ξi |Eα((−di T )α), |ξi |}, δ0 ∈ R
+.

It is easy that the exact solution of (5.1) and (5.2) is

x(t) = (ξ1Eα((−d1t)
α), ξ2Eα((−d2t)

α), . . . , ξn Eα((−dnt)
α)) ∈ D̄,

and x(t) /∈ ∂D for all t ∈ [0, T ]. Since Ker(I − Q) = {0} and by the proof of the Theorem
3.1 when Ker(I − Q) = {0}, there admits a solution of the problem (5.1) and (5.2). And

‖(−Ax) − (−Ay)‖ = ‖A‖‖x − y‖ ≤ L||x − y||,
where L = √

nmax1≤i≤n di , thus the solution is unique. ��
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Fractional Harmonic Oscillators

The harmonic oscillator, one of the simplest mechanical systems, whose motion is governed
by a second order linear differential equation with constant coefficients

my
′′ + μy

′ + ky = 0, (5.3)

which describes the displacement (elongation) of a body of mass m, in time t , from the
equilibrium position, subject to Hooke’s Law, −ky(t), a damping force −μy′, where the
prime ′ = d

dt and μ, k are positive constants. A lucid treatment of the various aspects of
the dynamics of the simple harmonic oscillator can be found in the Feynmann Lectures on
Physics [15].

The purpose of this subsection is to present a generalization of the classical harmonic
oscillator based on the methods of fractional calculus, into what will be referred to hereafter
as the fractional oscillator. Consider fractional homogeneous linear vibration equation with
constant coefficients as

m C
0 D

2α
t y + μ C

0 D
α
t y + ky = 0, 1/2 < α ≤ 1. (5.4)

Herewe investigate a generalized damped harmonic oscillator, where the first derivative in the
damping term has been replaced by a derivative of arbitrary order α,where 1/2 < α ≤ 1.The
“oscillator” part is also described by a fractional 2α-order derivative. This equation was used
to describe the properties of viscoelastic materials by Bagley and Torvik [37]. Their work
shows that constitutive equations containing fractional derivatives are effective in describing
the frequency-dependent behavior of viscoelastic polymers [7] and that the fractional calculus
leads to well-posed problems for the motion of structures containing elastic and viscoelastic
components. A particular virtue of constitutive relations containing fractional derivatives
is that they lead to a casual response at zero time [6], thereby having a distinct advantage
over convolution methods employing a structural damping model in that they may be safely
employed to predict transient response.

Set

2n = μ

m
, ω2 = k

m
, x1 = y, x2 = C

0 D
α
t x1,

then (5.4) is equivalent to the α-order linear equations with constant coefficients{
C
0 D

α
t x1 = x2,

C
0 D

α
t x2 = −ω2x1 − 2nx2,

which can be written in compact form

C
0 D

α
t x = Ax, 1/2 < α ≤ 1, (5.5)

where

x = (x1, x2)
T , A =

(
0 1

−ω2 −2n

)
,

and furthermore we consider Eq. (5.5) with affine-periodic boundary conditions

x(0) = ξ , x(T ) = Qξ , (5.6)

where ξ = (ξ1, ξ2) ∈ R
2, T > 0.
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Theorem 5.2 For any 1/2 < α ≤ 1, if

Q = 1

λ2 − λ1

(
λ2Eα(λ1T α) − λ1Eα(λ2T α) −Eα(λ1T α) + Eα(λ2T α)

λ1λ2Eα(λ1T α) − λ1λ2Eα(λ2T α) −λ1Eα(λ1T α) + λ2Eα(λ2T α)

)
,

then there exists a unique solution of system (5.5)–(5.6), where λ1 and λ2 are two different
eigenvalues of A when n 	= ω > 0.

Proof Since n 	= ω > 0, then the matrix A admits two different eigenvalues λ1 and λ2, and
there exists a non-degenerate linear transformation x = Rz such that (5.5) can be transformed
into

C
0 D

α
t z = Bz, 1/2 < α ≤ 1, B = R−1AR =

(
λ1 0
0 λ2

)
.

We discuss the above equation in two different cases:
Case 1 If n > ω, then λ1 = −n − √

n2 − ω2, λ2 = −n + √
n2 − ω2 and

R =
(
1 1
λ1 λ2

)
.

It is easy to get

z = (
C1Eα(λ1t

α),C2Eα(λ2t
α)

)T
,

and thus

x = Rz = (C1Eα(λ1t
α) + C2Eα(λ2t

α), λ1C1Eα(λ1t
α) + λ2C2Eα(λ2t

α))T .

Obviously, x is continuous on [0, T ]. Then there exists an open set D ⊂ R
2 such that

x(t) /∈ ∂D for all t ∈ [0, T ] if x(t) ∈ D̄.
Case 2 If n < ω, then λ1 = −n − i

√
ω2 − n2, λ2 = −n + i

√
ω2 − n2. By the same way as

in Case 1, there exists an open set D ⊂ R
2 such that x(t) /∈ ∂D for all t ∈ [0, T ] if x(t) ∈ D̄.

After simple calculation, we can get

det(I − Q) = (Eα(λ1T
α) − 1)(Eα(λ2T

α) − 1) 	= 0,

thus Ker(I − Q) = {0}. Hence, there exists a solution of problem (5.5)-(5.6).
Finally, since A is a bounded linear operator, there exists a positive constant L such that

‖Ax − Ay|| ≤ L‖x − y‖,

which indicates the uniqueness of the solution. ��
Acknowledgements The authors wish to thank the anonymous reviewers for their constructive suggestions
and comments on improving the presentation of the paper.
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Appendix

Proof of Lemma 2.4

Proof Case 1 If β = n, then

RL
aI

β
t
C
a D

β
t f (τ ) =

∫ t

a
· · ·

∫ t

a︸ ︷︷ ︸
n−times

f (n)(τ )dτ =
∫ t

a
· · ·

∫ t

a︸ ︷︷ ︸
(n−1)−times

( f (n−1)(τ ) − a(0)
1 )dτ

=
∫ t

a
· · ·

∫ t

a︸ ︷︷ ︸
(n−2)−times

( f (n−2)(τ ) − a(0)
2 − a(1)

2 t)dτ

= · · ·
=

∫ t

a
( f

′
(τ ) − a(0)

n−1 − a(1)
n−1t − · · · − a(n−2)

n−1 tn−2)dτ

= f (t) − a(0)
n − a(1)

n t − · · · − a(n−1)
n tn−1

� f (t) −
n−1∑
k=0

ckt
k,

where ck = a(k)
n−1 ∈ R

1.
Case 2 If n − 1 < β < n, then

RL
aI

β
t
C
a D

β
t f (τ ) = RL

aI
β
t
RL
aI

n−β
t

C
a D

n
t f (τ ) = RL

aI
n
t
C
a D

n
t f (τ ),

and by the proof of Case 1, we have

RL
aI

β
t
C
a D

β
t f (τ ) = f (t) −

n−1∑
k=0

ckt
k .

��
A Proof of the Nonexistence of (α, Q, T )-Affine-Periodic Solution for a Given
(α, Q, T )-Affine-Periodic System when 0 < α < 1

Proof Consider the (α, Q, T )-affine-periodic system

C
a D

α
t x = f (t, x), (t, x) ∈ [0, T ] × R

n, (6.1)

where 0 < α < 1, Q ∈ GLn(R), T > 0, a ∈ R.

If x = x(t) is an (α, Q, t)-affine-periodic solution of (6.1), then x(t + T ) = Qx(t),∀t ∈
[0, T ].

Set

y(t) � x(t) = Q−1x(t + T ),
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then y should satisfy C
a D

α
t y = f (t, y). But in fact, it follows the definitions of Riemann–

Liouville fractional integral and Caputo fractional derivative that

C
a D

α
t y(t) = RL

a I1−α
t

C
a D

1
t y(t)

= RL
a I1−α

t y
′
(t)

= 1

�(1 − α)

∫ t

a
(t − τ)−α y

′
(τ )dτ

= Q−1

�(1 − α)

∫ t

a
(t − τ)−αx

′
(τ + T )dτ

= Q−1

�(1 − α)

∫ t+T

a+T
(t + T − τ)−αx

′
(τ )dτ

= Q−1

�(1 − α)

∫ t+T

a
(t + T − τ)−αx

′
(τ )dτ

− Q−1

�(1 − α)

∫ a+T

a
(t + T − τ)−αx

′
(τ )dτ

= Q−1 f (t + T, x(t + T )) − Q−1

�(1 − α)

∫ a+T

a
(t + T − τ)−αx

′
(τ )dτ

= f (t, Q−1x(t + T )) − Q−1

�(1 − α)

∫ a+T

a
(t + T − τ)−αx

′
(τ )dτ

= f (t, y(t)) − Q−1

�(1 − α)

∫ a+T

a
(t + T − τ)−α y

′
(τ )dτ.

When a = −∞,

C
a D

α
t y = f (t, y),

which is reasonable and this case is also in the sense of Weyl fractional integral, but we
don’t know what is the placement in infinity. When a > −∞, that is to say, the lower limit
of integral is finite or there is a “truncation” destroys the shift-invariant, which shows the
nonexistence of the (α, Q, T )-affine-periodic solution for a given (α, Q, T )-affine-periodic
system.And some similar results about periodicity or quasi-periodicity for fractional integrals
and derivatives of periodic functions can be found in Nieto et al.’s work, see [3–5]. ��
Remark 6.1 The above conclusion shows that in order to obtain the existence and uniqueness
of affine-periodic solutions for fractional affine-periodic dynamical systems, the fractional
differential operators must keep shift-invariant apart from Weyl fractional differential oper-
ators. Thus, one direction for the future research is to modify the definition of fractional
derivative or to seek “quasi-periodic solutions”. This is our ongoingwork andwill be reported
elsewhere.
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