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Abstract Ecological and biological conservation of living systems has been an active area
of research over the years by agriculturalists, biologists and mathematicians. One of the
studies involves additional food supplement feeding (also called as diversionary feeding) for
the purpose of biological (wildlife in some cases) conservation. The idea in this approach
is to distract (thereby supplement) the wildlife from predating upon the other species with
the end goal of wildlife conservation. On the other hand in agricultural entomology, insect
control and optimization, additional food is supplemented as a tool for effective pest control
thereby achieving the biological control. The study of these ecosystems is usually done using
the predator–prey systems. In nature, we find situations wherein the group defense (toxicity)
of the prey reduces the predator’s predation rate. This type of behaviour of the prey is also
known as inhibitory effect of the prey. Biological conservation of such predator prey systems
in the presence of additional food supplements is quite challenging and interesting. In this
paper, we consider an additional food provided predator–prey system which is a variation
of the standard predator–prey model in the presence of the inhibitory effect of the prey. The
predators functional response is assumed to be of Holling type IV (considering the inhibitory
effect). This model is analyzed to understand the inherent dynamics of the system. The
findings suggest that the quality and quantity of additional food provided to the predators,
play a very significant role in determining the eventual state of the ecosystem. The outcomes
of the analysis suggests eco friendly strategies to eco-managers for biological conservation
of living systems.
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Introduction

Ecological and biological conservation of living systems over the years has been a serious
concern and has been intensely researched by agriculturalists, biologists andmathematicians.
Some of the outcomes of these studies suggest that provision of additional food supplements
can be used as a effective tool for achieving the said objective [1,12,17,19,20,24,32,37,38].
These studies can be broadly classified into two kinds.

The studies of the first kind involves additional food supplement feeding (also called as
diversionary feeding) for the purpose of biological (wildlife in some cases) conservaration.
The idea is to reduce the predation of one type of species (predators) on the other living
species (target prey) by providing the predators with alternate food supplements in addition
to the available target prey. Because of this the predator tends to get distracted and also get
supplemented with additional food supplements thereby relieving the predating pressure on
the target prey. This strategy is usually used in biological conservation and wildlife damage
management. Onemust be cautiouswith the supplements provided as over nutrious additional
food can increase the attack rate and reproductivity of the predators leading to heavy predation
pressure on the target prey resulting in the opposite. From some of the field studies it can even
be observed that diversionary feeding may need not always achieve the goal of conservation
of the prey. The above discussions are substantiated with some examples in the following
paragraph.

In an experiment conducted during the years of 1998 and 1999, in south Scotland, hen
harriers on Langholm moor were provided with substitute food in order to reduce the rate at
which they preyed on grouse. The outcomes from this work showed that harriers regularly fed
on the substitute food and they reduced the intake of grouse chicks [12]. Voles of the genus
Microtus and Clethrionomys feed on bark, tissues and roots of the coniferous and deciduous
tree plantations inNorthAmerica. Provision of diversionary food items such as alfalfa, canola
oil, and bark mulch with wax has yielded good results suggesting that diversionary food may
help reduce the tree damage [2]. On the other hand provision of supplement food to striped
skunks for reducing the depredation of upland-duck nests has limited value [2]. Also studies
on supplement feeding for northern bobwhite and its effects on wildlife species can be found
in [1].

The studies of the second kind have motivation and application in the field of agricultural
entomology, pest control and optimization of loss due to infestations by insects. One of the
popular approaches for pest control include chemical control. In the method of chemical
control, insecticides and pesticides are used to control the pests. Although, these chemicals
serve as an effective solution for the problem of pest control, it has been proven that these
chemicals cause major health hazards to human beings and environment. So, eco friendly
bio control programmes seem to be the need of the hour.

In general, pest populations are regulated by their environment (e.g., resources, climate,
and competition) and the influence of natural enemies [7]. “Natural enemy” is a collective
term for parasites, parasitoids, pathogens, predators, and competitors that inflict mortality
or injury on a population of a species. By feeding upon, infecting, or otherwise damaging
individual plants, natural enemies help to mediate the host plants ability to compete in its
environment. The method of control of the pests using their natural enemies is called as
bio control. Off late mathematicians and field scientists working in the area of agricultural
entomology have been conducting experiments on biological control of pests, by studying the
interactions of the eco-system as predator–prey models. In these models, the pest is assumed
to be as prey and natural enemy is viewed to be as predator. One of the approaches for
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achieving the biological conservation of ecosystems (in this case biological control), is to
provide the predators with additional food supplements in order to enhance their longevity
and fecundity, so as to effectively control the prey (pest) [17,19,20,24,37,38].

These studies deal with consequences of providing continuous additional food supple-
ments to the predator and the corresponding effects on the predator–prey dynamics of the
system. Owing to this and evolving literature on differential equations, study on three species
communities have become the focus of considerable attention both for the theoreticians and
experimentalists. Thus, three-species systems (like plant–herbivore–parasitoid, plant-pest-
predator) which can be modeled using two prey one predator, are being studied in different
branches of ecology [8,9,11,15,21,25,33,34,36,40].

Some of these studies have modeled one predator-two (non-interacting) prey systems [15,
34,36]. These studies suggest, that providing additional food to the predator would decrease
the target prey density. Also, by changing the additional food supply, the predators fecundity
gets enhanced thereby reducing the equilibrium prey population level, thus, biologically
controlling the ecosystem. This phenomenon of decrease in equilibrium prey densities in the
presence of additional food supplements to the predator is termed as apparent competition
[16]. Although, these theories have suggested ways of biological control of pests, it can be
inferred from empirical data that, provision of additional food does not always decrease the
target prey density [13,15,22,39]. This apparent contradiction between the theoretical studies
and empirical observations calls for a deeper understanding of the predator–prey dynamics
under the provision of additional food.

Recent works [23,27–31], have addressed some of the issues pertaining to this contradic-
tion. In these studies the ‘Quality’ and ‘Quantity’ of the additional food were viewed to be
as control parameters and by varying these parameters, it was observed that, if high quality
additional food is provided to the predator, the predation pressure increases towards the target
prey. Whereas low quality additional food would decrease the target prey. In these works,
modified versions of Rosenzweig–MacArthur’s models have been developed to represent
the predator–prey dynamics. The conclusions of these studies agreed with the experimental
observations [4,13,14].

In [31], the predators functional response towards the target prey is of Holling type II,
in which, the predators ability to detect available food is independent of prey density. The
outcomes of this study caution the ecomanagers on the choice of quality and quantity of
the additional food supplements used. In [3,27,35] modelling studies involving two prey
one predator with Holling type III functional response for the predator is done. In these
works the second prey type is, implicitly, assumed to be constant. In [27] it is concluded
that the predators exhibit a different behaviour at low prey densities. It is observed that
the system exhibits apparent competition only when the predators are provided with high
quality additional food. Also, this study reveals that provision of additional food can drive
the system to desired population state of the ecosystem. It is also possible to eliminate either
of the species by suitable quality and quantity of additional food. This study suggest possible
eco-friendly strategies to the ecomanagers.

In nature, we see that there are situations wherein Predators catchability towards the prey
decreases at sufficiently high prey density, due to either prey interference or prey toxicity.
This behaviour of the prey at high density is known as inhibitory effect of the prey and the
predators functional response is coined as Holling type IV functional response [18]. Some
examples include the following: Musk ox are more successful at fending off wolves when in
herds than when alone [10]. Spider mites, at high densities, produce webbing interferes with
its predators response [6].
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From the above discussions, it is clear that, study of the predator–prey dynamics under the
provision of additional food supplements to the predator is an important field of study. We
also observe that, there are a wide range of species (prey) in nature, which exhibit inhibitory
effect at high density. Hence, a study of additional food provided, predator–prey systems
involving Holling type IV response is important in the current context. A preliminary study
of a predator–prey model involving type IV functional response in the absence of additional
food has been done in [18].

In this paper, we do a detailed study for additional food provided predator–prey model
involving type IV functional response. We see that initially in the absence of additional
food the system is prey dominated due to the inhibitory effect of the prey. We investigate
the consequences of provision of additional food to predators in such systems. We observe
and conclude that by provision of high quality additional food will help the predators to
overcome the inhibitory effect of the target prey. Stable coexistence of the predator and the
prey can also be obtained. Further increase of supply of additional food can even eliminate
the prey from the ecosystem. On the other hand provision of low quality of additional food
ensures the sustenance of the inhibitory effect of the prey and the system continues to be prey
dominated. This qualitative and quantitative study reveals several other interesting insights
and conclusions that can be applied for biological conservation of living systems and the eco
managers can be cautioned appropriately.

The Initial System

Derivation of Holling Type IV Functional Response

Let N and P denote the density of the prey and predator respectively. We see that broadly,
the total time taken by the predator to consume the prey is given by

�T = �TS + �TN ,

where �TS is the time taken by the predator to search the prey and �TN is the time taken
by the predator to handle the prey. Now, we see that the handling time for the prey caught
equals the handling time for one prey item times the total number of prey caught and the prey
caught is proportional to the search time and the total prey. Hence, number of prey caught is
proportional to �TS ∗ N (= C ∗ �TS ∗ N ), where C is the proportionality constant, which
denotes the catchability of the prey and equals e1

bN2+1
, where, e1 represents the search rate

of the predator per unit prey availability and b represents the inhibitory effect or the group
defense of the prey. For sufficiently large (small) b, the catchability of the predator decreases
(increases) because of the inhibitory effect of the prey. Now, let handling time for one prey
item be h1. Hence, we see that, the total handling time for the prey (�TN ) equals h1 times
number of prey caught, which is given by,

�TN = h1�TSN
e1

bN 2 + 1
(1)

The number of prey encountered per unit time is given by, Total no. of prey caughttotal time , which equals,

= �TSN
e1

bN2+1

�TS + �TN
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= �TSN
e1

bN2+1

�TS + �TSNh1
e1

bN2+1

= N e1
bN2+1

1 + Nh1
e1

bN2+1

= Ne1
(bN 2 + 1) + Ne1h1

= Ne1
bN 2 + Ne1h1 + 1

=
N
h1

1
e1h1

bN 2 + N + 1
e1h1

So, the functional response of the predator (which is nothing but the number of prey
encountered per unit time) in the presence of group defense of the prey, is given by, F(N ) =

N
h1

1
e1h1

bN2+N+ 1
e1h1

. Now, let c = 1
h1

and a = 1
e1h1

. So, F(N ) = cN
a(bN2+1)+N

.Hence, theHolling

Type IV functional response of the predator (considering the inhibitory effect) towards the
prey is given by,

F(N ) = cN

a(bN 2 + 1) + N
.

The Model

Let us now consider the following predator–preymodel involving type IV functional response
for the predators, given by,

Ṅ = r N

(
1 − N

K

)
− F(N )P,

Ṗ = ε1F(N )P − mP,

or equivalently,

Ṅ = r N

(
1 − N

K

)
− cN

a(bN 2 + 1) + N
P, (2)

Ṗ = eN

a(bN 2 + 1) + N
P − mP. (3)

Here r, K represent the intrinsic growth rate and carrying capacity of the prey.m represents
the death rate or starvation rate of the predators in the absence of the prey. Here b represents
the inhibitory effect or the group defense of the prey.We have the parameters c and a, standing
for the maximum rate of predation and half saturation value of the predators in the absence of
inhibitory effect, to be 1

h1
and 1

e1h1
. Also, if ε1 stands for the nutritive value of the prey item,

then the maximum growth rate of predators due to consuming the prey is given by e = ε1
h1

with 0 < ε1 < 1. ε1 is also referred to as conversion factor that represents the rate at which
the prey biomass gets converted into predator biomass.

Wenownon-dimensionalize the system (2)–(3) so as to decrease the number of parameters,
in order to reduce the complexity involved in the analysis.
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Let N = ax; t = rT; P = y ra
c ; which implies, dN = adx; dt

r = dT; dP = dy ra
c and also let

γ = K

a
, ω = ba2, β = e

r
, δ = m

r
. (4)

Now, dN
dT = r N

(
1 − N

K

) − cN
a(bN2+1)+N

P , becomes,

dx

dt
= x

(
1 − x

γ

)
−

[
xy

ωx2 + x + 1

]

Also, dP
dT = eN

a(bN2+1)+N
p − mP , becomes,

dy

dt
= β

[
xy

(ωx2 + 1) + x

]
− δy.

So, the system (2)–(3 ) reduces to

ẋ = x

(
1 − x

γ

)
−

[
xy

ωx2 + x + 1

]
,

ẏ = β

[
xy

ωx2 + x + 1

]
− δy.

Letting

f̄ (x) = x

ωx2 + x + 1
, (5)

ḡ(x) = (
ωx2 + x + 1

) (
1 − x

γ

)
, (6)

system (2)–(3) takes the form

ẋ = (ḡ(x) − y) f̄ (x), (7)

ẏ = (β f̄ (x) − δ)y. (8)

Here, the behavior of the system’s carrying capacity (K ) can be understood by the behavior
of the parameter γ. Similarly, the inhibitory effect (b) of the prey can be understood by the
change of the parameter ω (refer (4)).

We observe that the prey and predator isoclines of (7)–(8) are given by

y = (ωx2 + x + 1)

(
1 − x

γ

)
, x1,2 = (β − δ) ∓

√
(β − δ)2 − 4ωδ2

2ωδ
,

respectively. The prey isocline of (7)–(8) can exist in four different ways in the first quadrant.
These different situations are illustrated in the Fig. 1. The conditions governing each of
these cases can be obtained from the behavior of the derivative function ḡ

′
(x). We see that

ḡ
′
(x) = 0 implies that

3ωx2 + 2(1 − ωγ )x + (1 − γ ) = 0. (9)

The product and sum of the roots of the above equation equal 1−γ
3ω and 2(ωγ−1)

3ω respectively
and the discriminant of the above quadratic equation (9) is given by 4((1−ωγ )2−3ω(1−γ )).
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Fig. 1 Prey isoclines of the initial system (7)–(8) with β = 2.2 and δ = 0.4

Case 1 (1 − γω)2 − 3ω(1 − γ ) > 0, γ < 1 and 1 − ωγ < 0.
The equation ḡ

′
(x) = 0 has two positive real roots and the prey isocline y = ḡ(x) has a

crest and trough which can be seen from the frame A of Fig. 1.
Case 2 (1 − γω)2 − 3ω(1 − γ ) > 0 and γ > 1.

The equation ḡ
′
(x) = 0 has a positive and a negative real root. The prey isocline y = ḡ(x)

has a crest which can be seen from the frame B of Fig. 1.
Case 3 (1 − γω)2 − 3ω(1 − γ ) > 0, 1 − ωγ > 0 and γ < 1.

The equation ḡ
′
(x) = 0 has 2 negative real roots and the prey isocline y = ḡ(x) is

monotonically decreasing, which can be seen from the frame C of Fig. 1.
Case 4 (1 − γω)2 − 3ω(1 − γ ) < 0.

The equation ḡ
′
(x) = 0 has only complex conjugate roots and the prey isocline y = ḡ(x)

is again monotonically decreasing as in case 3, which can be seen from the frame D of Fig. 1.
We see that the system (7)–(8) has E0 = (0, 0) and E1 = (γ, 0) as its axial equilibrium

points. Depending on the choice of the parameters of the system, we have the emergence of
the interior equilibria

E2 = (x1, y1) =
⎛
⎝ (β − δ) −

√
(β − δ)2 − 4δ2ω

2δω
, ḡ(x1)

⎞
⎠ ,

E3 = (x2, y2) =
⎛
⎝ (β − δ) +

√
(β − δ)2 − 4δ2ω

2δω
, ḡ(x2)

⎞
⎠ ,

The equilibrium point E2 exists for γ > x1 and both equilibria E2 & E3 exist for γ > x2.

Local and Global Dynamics

In order to analyze the stability nature of the system (7)–(8) at its equilibrium points, we
consider its community matrix denoted by J as follows:
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J(x,y) =
(
ḡ

′
(x) f̄ (x) + f̄

′
(x)(ḡ(x) − y) − f̄ (x)

β f̄
′
(x)y β f̄ (x) − δ

)
.

Evaluating J(x,y) at each of the axial equilibrium points E0 = (0, 0), E1 = (γ, 0), we
obtain,

J(0,0) =
(
1 0
0 −δ

)
, (10)

J(γ,0) =
(
ḡ

′
(γ ) f̄ (γ ) − f̄ (γ )

0 β
[

γ

ωγ 2+γ+1

]
− δ

)
. (11)

From J(0,0), the determinant is −δ, which shows that E0 = (0, 0) is always a saddle. From

J(γ,0), the determinant is ḡ
′
(γ ) f̄ (γ )

(
β

[
γ

(ωγ 2+1)+γ

]
− δ

)
. This implies that the determinant

is positive if
(
β

[
γ

(ωγ 2+γ+1)

]
− δ

)
< 0, since ḡ

′
(γ ) = −1

γ
(ωγ 2 + γ + 1) < 0 and f̄ (γ ) =

γ

ωγ 2+γ+1
> 0. Evaluating the communitymatrix at the interior equilibria point E2 = (x1, y1)

and E3 = (x2, y2), we obtain,

J(x1,y1) =
(
ḡ

′
(x1) f̄ (x1) − f̄ (x1)
β f̄

′
(x1) 0

)
, (12)

J(x2,y2) =
(
ḡ

′
(x2) f̄ (x2) − f̄ (x2)
β f̄

′
(x2) 0

)
. (13)

From the above equations, we see that, the determinant of J(xi ,yi ), i = 1, 2, is given by
β f̄ (xi ) f̄

′
(xi ).

To understand the nature of these interior equilibria, we do the following analysis.

Now, let h̄(x) = (β f̄ (x) − δ), i.e., h̄(x) = −δωx2+(β−δ)x−δ

ωx2+x+1
. We see that, if ω >

(β−δ)2

4δ2

(i.e., roots of h̄(x) are complex conjugates), h̄(x) < 0 for all x > 0. If ω <
(β−δ)2

4δ2
, then h̄(x)

has two real roots x1 & x2(predator isoclines). In this case sum of the roots of h̄(x) is given
by (β−δ)

δω
(if β > δ) and product of the roots is given by 1

ω
(> 0). So, it can be concluded that

for ω <
(β−δ)2

4δ2
, h̄(x) has two positive roots x1 & x2. And so, h̄(x) is positive between its

roots
h̄(x) > 0, x1 < x < x2 (14)

and negative outside of this interval,

h̄(x) < 0, 0 < x < x1 or x > x2. (15)

Inequalities (14) and (15) imply that

h̄
′
(x1) > 0, h̄

′
(x2) < 0. (16)

From definition of h̄(x), we see that h̄
′
(x) = β f̄

′
(x). Hence,

f̄
′
(x1) > 0, f̄

′
(x2) < 0. (17)

The characteristic equation associated with the community matrix evaluated at the interior
equilibrium E2 = (x1, y1) is given by

λ2 − Tr J |(x1,y1)λ + Det J |(x1,y1) = 0. (18)
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We see that the existence of interior equilibrium E2 implies thatω <
(β−δ)2

4δ2
.Hence, it is clear

that the Det J |(x1,y1)(= β f̄ (x1) f̄
′
(x1)) is positive as f̄ (x1) = x1

ωx21+x1+1
> 0 and f̄

′
(x1) > 0.

From Routh–Hurwitz criterion [18], the necessary condition for E2(= (x1, y1)) to be locally
asymptotically stable is Tr J |(x1,y1) < 0 and it is unstable if Tr J |(x1,y1) > 0. We have the
trace given by

Tr J |(x1,y1) =
(

(3ωx1
2 + 2x1(1 − ωγ ) + (1 − γ ))

(−1

γ

))
f̄ (x1). (19)

From the above equation, we see that the trace is negative whenever the slope of the prey
isocline is negative (as the term in the brackets of R.H.S. of (19) represents the slope of the
prey isocline (= ḡ

′
(x)) at (x1, y1)). Now, let H(x) = (

3ωx2 + 2x(1 − ωγ ) + (1 − γ )
)
.

Hence the interior equilibrium (x1, y1) is locally asymptotically stable if H(x1) > 0 and
unstable if H(x1) < 0.

Conjecture 1 The interior equilibrium E2 = (x1, y1) loses its stability through Hopf bifur-
cation when Tr J |(x1,y1) = 0 with respect to the bifurcation parameter ω(while the other
parameters are fixed). This can be seen from Table 2 which deals with the global dynamics
of the initial system by varying the conditions on ω. Also, a necessary condition for the
occurrence of Hopf bifurcation can be obtained from the following equation.

H(x1) = (3ωx1
2 + 2x1(1 − ωγ ) + (1 − γ )) = 0. (20)

Substituting for x1 in the above equation, we obtain the following parametric relation

3w

⎡
⎣ (β − δ) −

√
(β − δ)2 − 4δ2w

2δw

⎤
⎦
2

+ (2 − 2wγ )

⎡
⎣ (β − δ) −

√
(β − δ)2 − 4δ2w

2δw

⎤
⎦ + (1 − γ ) = 0

which is a necessary condition for the occurrence of Hopf bifurcation.
Also, from (17), we see that f̄

′
(x2) < 0, which implies that Det J |(x2,y2) < 0 further

implying that the product of eigen values is negative (as f̄
′
(x2) < 0). Hence, interior equi-

librium E3 = (x2, y2) continues to remain as saddle through out its existence.
As seen from previous discussion regarding the behavior of prey isocline, the nature of

the interior equilibrium depends upon the shape of the prey isocline. This is discussed below
in four different cases.

• If the equation H(x) = 0 has both positive roots (H1, H2 with 0 < H1 < H2), then
(x1, y1) is stable whenever x1 does not belong to (H1, H2)(region wherein ḡ

′
(x1) < 0)

and is unstable if x1 belongs to (H1, H2)(region wherein ḡ
′
(x1) > 0).

• If the equation H(x) = 0 has a positive root and a negative root (H1, H2 with H1 <

0 < H2), then (x1, y1) is stable whenever x1 does not belong to (0, H2)(region wherein
ḡ

′
(x1) < 0) and is unstable if x1 belongs to (0, H2)(region wherein ḡ

′
(x1) > 0) in the

positive quadrant.
• If the equation H(x) = 0 has both negative roots (H1, H2 with H1 < H2 < 0), then,

(x1, y1) is always asymptotically stable (since, ḡ
′
(x1) < 0 always).

• If the equation H(x) = 0 does not admit any real root, then as in previous case, (x1, y1)
is always asymptotically stable.
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The instability of the interior equilibrium E2 in above cases induces a locally asymptoti-
cally stable limit cycle into the system (refer Conjecture).

The local and global dynamics of the system (7)–(8) can be summarised as follows.

• We observe that the system (7)–(8) admits only the axial equilibria (0, 0), (γ, 0) and does

not even admit the predator isoclines x1 and x2, whenever, w >
(β−δ)2

4δ2
.

• Whenever w <
(β−δ)2

4δ2
and γ < x1, the system (7)–(8) admits axial equilibria and the

predator isoclines but does not admit any interior equilibrium.

• If, w <
(β−δ)2

4δ2
, x1 < γ < x2, the system (7)–(8) admits axial equilibria as well as the

interior equilibrium E2 = (x1, y1).
If ḡ

′
(x1) < 0, the interior equilibrium E2 = (x1, y1) is stable.

If ḡ
′
(x1) > 0, the interior equilibrium E2 = (x1, y1) is unstable.

Thus the interior equilibrium E2 = (x1, y1) undergoes Hopf bifurcation when
ḡ

′
(x1) = 0, that is, whenever,

3wx21 + (2 − 2wγ )x1 + (1 − γ ) = 0,

where x1 = (β−δ)−
√

(β−δ)2−4δ2w
2δw (refer conjecture).

• If w <
(β−δ)2

4δ2
, γ > x2, the system (7)–(8) admits axial equilibria and the interior

equilibrium E2 = (x1, y1) and the saddle interior equilibrium E3 = (x2, y2).

Hence, we consider the following curves in the positive quadrant of the (ω, γ ) space:

γ − (β − δ) − √
(β − δ)2 − 4δ2ω

2δω
= 0 (21)

Transcritical bifurcation curve (TBC1) at x1 = γ

γ − (β − δ) + √
(β − δ)2 − 4δ2ω

2δω
= 0 (22)

Transcritical bifurcation curve (TBC2) at x2 = γ

3ω

[
(β − δ) − √

(β − δ)2 − 4δ2ω

2δω

]2

+ (2 − 2ωγ )

[
(β − δ) − √

(β − δ)2 − 4δ2ω

2δω

]

+ (1 − γ ) = 0 (23)

Hopf bifurcation curve (HBC) at (x1, y1)

ω −
(

(β − δ)2

4δ2

)
= 0 (24)

Saddle node bifurcation/discriminant curve (DISC).
We see that each of the curves (21)–(24) divide the positive quadrant of (ω, γ ) space into

two regions which characterize the nature of the associated equilibrium point of (7)–(8).
From the discussions presented above, it can be seen that the global dynamics of the

considered system can be understood under the following six natural conditions((Con-I)–
(Con-VI)) pertaining to the existence, stability nature and occurrence of Hopf bifurcation
associated with the interior equilibrium points of the system (7)–(8). These conditions can
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further be subdivided into sub conditions, depending on the behavior of the prey isocline
and the location of the interior equilibrium in the positive quadrant. These 15 sub conditions
along with the six main conditions are summarized in the Table 1.

The bifurcation analysis of the system (7)–(8) can be seen in the Fig. 2. In this bifurcation
diagram we consider the bifurcation curves (21)–(24) along with the 15 sub conditions
mentioned in Table 1. The different regions in this diagram correspond to the different sub
conditions discussed in Table 1.

The global dynamics of the initial system are summarized in Table 2 dealing with the
nature of the equilibria in each of the regions in the (ω, γ ) space. Also the space and time
complexity analysis for the border cases are shown in Table 4 in Appendix.

Biological Insights

From the dynamics of the system (7)–(8), we see that, as long as the carrying capacity of the
prey is less than one, higher growth rate of predators due to consumption of the prey item
directly results in a stabilized interactive system with increased predator and decreased prey
densities at the equilibrium. Also it can happen that the equilibrium predator density may
suffer nonmonotonicity leading to oscillations in the interacting population. Presence of prey
which promotes higher growth rate in the predators remove the oscillation from the system
and later stabilize the system at low prey and high predator densities. For higher prey carrying
capacity (greater than 1), although the equilibrium density of prey decreases with increase
in predators growth rate, the equilibrium predator density may suffer non monotonicity
leading to oscillations in the interacting population. It can happen that the predator population
can collapse on further increase of carrying capacity beyond a critical value, which can be
catastrophic for the predator. This behaviour can be attributed to the paradox of enrichment.
Therefore for the system (2)–(3) with a given prey carrying capacity(less than the critical
value), the growth rate of the predators dictates the ability of the predator to limit the prey in
the environment.

The Additional Food Provided System

Derivation of Holling Type IV Functional Response for the Additional Food
Provided System

Now, let additional food supplements of biomass A be provided to predators uniformly in
the habitat as is the case with the prey and predators. We now see that the total time taken
by the predator to consume the available food(both the target prey and the additional food)
is given by �T = �TS + �TN + �TA, where �TS is the time taken by the predator
to search the prey, �TN is the time taken by the predator to handle the prey and �TA is
the time taken by the predator to handle the additional food provided. From (1), we have
�TN = h1�TSN

e1
bN2+1

. Now, the handling time for the additional food equals the handling
time for one additional food item times the total density of additional food encountered. Also,
the additional food encountered is proportional to the search time and the additional food
density. Hence, additional food encountered is proportional to �TS ∗ A = C2 ∗ �TS ∗ A,
where C2 is the proportionality constant, which denotes the catchability of the additional
food and equals e2. Here, e2 represents the search rate of the predator per unit quantity of
additional food. Now, let handling time for one additional food item be h2. Hence, we see
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Fig. 2 Bifurcation diagram for the system (7)–(8) with β = 2.2 and δ = 0.4

that, the total handling time for the additional food(�TA) equals h2 times additional food
encountered, which is given by, h2�TS A e2.

The number of prey encountered per unit time is given by, Total No. of Prey caught
Total Time , which

equals,
�TS N

e1
bN2+1

�TS+�TN+�TA

= N e1
bN2+1

1 + Nh1
e1

bN2+1
+ Ae2h2

= Ne1
(bN 2 + 1) + Ne1h1 + Ae2h2(bN 2 + 1)

= Ne1
(Ae2h2 + 1)bN 2 + Ne1h1 + (Ae2h2 + 1)

=
N
h1(

A e2h2
e1h1

+ 1
e1h1

)
bN 2 + N +

(
A e2h2
e1h1

+ 1
e1h1

) .

The quantity of additional food encountered per unit time is given by,
Total additional food encountered

Total Time , which equals, �TS Ae2
�TS+�TS Nh1

e1
bN2+1

+�TS Ae2h2

= Ae2
1 + Nh1

e1
bN2+1

+ Ae2h2

= Ae2(bN 2 + 1)

(bN 2 + 1) + Ne1h1 + Ae2h2(bN 2 + 1)

= Ae2(bN 2 + 1)

(Ae2h2 + 1)bN 2 + Ne1h1 + (Ae2h2 + 1)

= A e2
e1

1
h1

(bN 2 + 1)(
A e2h2
e1h1

+ 1
e1h1

)
bN 2 + N +

(
A e2h2
e1h1

+ 1
e1h1

) .
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So, the functional response of the predator towards the prey(the number of prey encoun-
tered per unit time) in the presence of inhibitory effect of the prey, is given by,

F(N ) =
N
h1(

A
e2h2
e1h1

+ 1
e1h1

)
bN2+N+

(
A

e2h2
e1h1

+ 1
e1h1

) . Now, let c = 1
h1

and a = 1
e1h1

. So, F(N ) =
cN(

A
e2h2
e1h1

+a
)
bN2+N+

(
A

e2h2
e1h1

+a
) . Hence, the Holling Type IV functional response of the preda-

tor towards the prey is given by,

F(N ) = cN(
A e2h2

e1h1
+ a

)
bN 2 + N +

(
A e2h2
e1h1

+ a
) (25)

The functional response of the predator towards the additional food (the quantity of additional

food encountered per unit time), is given by,G(A) = A
e2
e1

1
h1

(bN2+1)(
A

e2h2
e1h1

+ 1
e1h1

)
bN2+N+

(
A

e2h2
e1h1

+ 1
e1h1

) . So,

G(A) = A
e2
e1
c(bN2+1)(

A
e2h2
e1h1

+a
)
bN2+N+

(
A

e2h2
e1h1

+a
) .Hence, the functional response of the predator towards

the additional food is given by,

G(A) = A e2
e1
c(bN 2 + 1)(

A e2h2
e1h1

+ a
)
bN 2 + N +

(
A e2h2

e1h1
+ a

) (26)

The Model

From the above discussions and derivations, we see that the initial system(involving group
defense of the prey) (2)–(3) under the provision of additional food gets modified to the
following predator–prey model.

Ṅ = r N

(
1 − N

K

)
− F(N )P,

Ṗ = (ε1F(N ) + ε2G(A))P − mP,

or equivalently,

Ṅ = r N

(
1 − N

K

)
− cN

(A e2h2
e1h1

+ a)bN 2 + N + (A e2h2
e1h1

+ a)
P, (27)

Ṗ = ε1cN + ε2A
e2
e1
c(bN 2 + 1)(

A e2h2
e1h1

+ a
)
bN 2 + N +

(
A e2h2

e1h1
+ a

) P − mP. (28)

Let ε2 stand for the nutritive value of the additional food. We let η = e2ε2
e1ε1

, α = h2ε1
h1ε2

and e = ε1c. Here the term η A2

N = A( e2Ae1N
)/( ε1

ε2
) denotes the quantity of additional food

perceptible to the predator with respect to the prey relative to the nutritional value of prey
to the additional food. Let α = ε1

h1
/ ε2
h2

. The term α = ε1
h1

/ ε2
h2

, which is the ratio between
the maximum growth rates of the predator when it consumes the prey and additional food
respectively, indicates the relative efficiency of the predator to convert either of the available
food into predator biomass. Thus, given the preywith specific conversion factor,α is inversely
related to the conversion factor of the additional food into predator biomass and directly
related to the handling time of the additional food. Observe that the above system reduces to
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the system (2)–(3) when A = 0. Here also the parameters c and a, stand for the maximum
rate of predation and half saturation value of the predators in the absence of inhibitory effect,
which equals 1

h1
and 1

e1h1
respectively.

With the above definitions of η and α, the system (27)–(28) becomes

Ṅ = r N

(
1 − N

K

)
−

(
cN

(Aηα + a)[bN 2 + 1] + N

)
P, (29)

Ṗ = e

(
N + ηA(bN 2 + 1)

(Aηα + a)[bN 2 + 1] + N

)
P − mP. (30)

We now study dynamics of the additional food provided predator–prey system (29)–
(30). As earlier we non-dimensionalize the system (29)–(30) so as to reduce the complexity
involved in the analysis.

Let N = ax ; t = rT ; P = y ra
c ; which implies, dN = adx; dt

r = dT; dP = dy ra
c and let

γ = K
a ; ξ = η A

a ; ω = ba2; β = e
r ; δ = m

r ;
So, dN

dT = r N
(
1 − N

K

) −
(

cN
(Aηα+a)[bN2+1]+N

)
P , becomes

dx

dt
= x

(
1 − x

γ

)
−

[
xy

(1 + αξ)(ωx2 + 1) + x

]

and dP
dT = e

(
N+ηA(bN2+1)

(Aηα+a)[bN2+1]+N

)
P − mP , becomes,

dy

dt
= β

[
x + ξ(ωx2 + 1)

(1 + αξ)(ωx2 + 1) + x

]
y − δy.

So, the system (29) - (30) reduces to

ẋ = x

(
1 − x

γ

)
−

[
xy

(1 + αξ)(ωx2 + 1) + x

]

ẏ = β

[
x + ξ(ωx2 + 1)y

(1 + αξ)(ωx2 + 1) + x

]
− δy.

Letting

f (x) = x

(1 + αξ)(ωx2 + 1) + x
, (31)

g(x) = ((1 + αξ)(ωx2 + 1) + x)

(
1 − x

γ

)
, (32)

system (29)–(30) takes the form

ẋ = (g(x) − y) f (x) (33)

ẏ =
(

β f (x)

[
1 + ξ

x
(ωx2 + 1)

]
− δ

)
y (34)

Here, the behavior of the system’s carrying capacity (K ) can be understood by the behavior of
the parameterγ.Similarly, the inhibitory effect(b)of the prey can be understoodby the change
of the parameter ω.Also, from the construction of the model, we see that the parameters β, δ

and γ can be treated to be ecosystem characteristic parameters while ξ (quantity of additional
food) and α (quality of additional food) can be considered to be control parameters.
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Fig. 3 Prey isoclines of the additional food provided system (33)–(34) with β = 2.2 & δ = 0.4

Stability Analysis

We observe that the prey and predator isoclines of (33)–(34) are given by

y = ((1 + αξ)(ωx2 + 1) + x)

(
1 − x

γ

)
,

x1,2 = (β − δ) ∓
√

(β − δ)2 − 4ω[δ(1 + αξ) − βξ ]2
2ω[δ(1 + αξ) − βξ ] ,

respectively. It is clear that the prey isocline of (33)–(34) is an increasing function of both α

and ξ in [0, γ ) which intersects the y-axis at (0, 1+ αξ) and x-axis at (γ, 0). Basing on the
equations of the prey isoclines of (7) and (33), we can conclude that provision of additional
food causes an upward displacement to the prey isocline of (33) (relative to that of (7)) in
the interval [0, γ ). Further, as in the initial system (7)–(8) the prey isocline for the additional
food provided system (33)–(34) also exhibits four different shapes.

The conditions governing each of these cases can be obtained from the behavior of the
derivative function g

′
(x). We see that g

′
(x) = 0 implies that

(3ωx2(1 + αξ) + 2x(1 − ωγ (1 + αξ)) + (1 + αξ) − γ ) = 0. (35)

The product and sum of the roots of the above equation equal (1+αξ)−γ
3ω(1+αξ)

and 2(ωγ (1+αξ)−1)
3ω(1+αξ)

respectively and the discriminant of the above quadratic equation (35) is given by 4((1 −
γω(1 + αξ))2 − 3ω(1 + αξ)((1 + αξ) − γ )).

Case 1 (1−γω(1+αξ))2−3ω(1+αξ)((1+αξ)−γ ) > 0 ,γ < 1+αξ and 1−ωγ (1+αξ)<0.
The equation g

′
(x) = 0 has two positive real roots and the prey isocline y = g(x) has a

crest and trough which can be seen from the frame A of Fig. 3.
Case 2 (1 − γω(1 + αξ))2 − 3ω(1 + αξ)((1 + αξ) − γ ) > 0 and γ > (1 + αξ).

The equation g
′
(x) = 0 has a positive and a negative real root. The prey isocline y = g(x)

has a crest which can be seen from the frame B of Fig. 3.
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Case 3 (1 − γω(1 + αξ))2 − 3ω(1 + αξ)((1 + αξ) − γ ) > 0, 1 − ωγ (1 + αξ) > 0 and
γ < (1 + αξ).

The equation g
′
(x) = 0 has 2 negative real roots and the prey isocline y = g(x) is

monotonically decreasing, which can be seen from the frame C of Fig. 3.
Case 4 (1 − γω(1 + αξ))2 − 3ω(1 + αξ)((1 + αξ) − γ ) < 0.

The equation g
′
(x) = 0 has only complex conjugate roots and the prey isocline y = g(x)

is again monotonically decreasing as in case 3, which can be seen from the frame D of Fig. 3.

Coming to the predator isoclines of (33)–(34), we see that they are straight lines as that of
(7)–(8) but now a function of α and ξ. We observe that the isocline x2 always moves towards
right with provision of additional food.

We see that the systems (7)–(8) and (33)–(34) have E0 = E∗
0 = (0, 0) and E1 = E∗

1 =
(γ, 0) as their common equilibrium points. Depending on the choice of parameters of the
system, we have the emergence of the interior equilibria

E∗
2 = (x∗

1 , y
∗
1 ) =

⎛
⎝ (β − δ) −

√
(β − δ)2 − 4ω[δ(1 + αξ) − βξ ]2
2ω[δ(1 + αξ) − βξ ] , g(x∗

1 )

⎞
⎠ ,

E∗
3 = (x∗

2 , y
∗
2 ) =

⎛
⎝ (β − δ) +

√
(β − δ)2 − 4ω[δ(1 + αξ) − βξ ]2
2ω[δ(1 + αξ) − βξ ] , g(x∗

2 )

⎞
⎠ .

The equilibria appear when γ > x∗
1 , γ > x∗

2 respectively. From the expressions of the

interior equilibria, we see that whenever α = β
δ
, the equilibrium prey components of the

systems (7)–(8) and (33)–(34) are one and same, whereas the equilibrium predator population
increases for (33)–(34)with respect to (7)–(8). If (7)–(8) does not admit an interior equilibrium
then (33)–(34) shall never admit interior equilibrium whenever α >

β
δ
. On the contrary, if

α <
β
δ
then system (33)–(34) admits interior equilibrium even if (7)–(8) does not, provided

ξ ∈
(

β−(1−2
√

w)δ

2
√

w(β−δα)
, δ

(β−δα)

)
. To get more insights on the the consequences of providing

additional food to the predators, we perform the stability analysis of the system (33)–(34)
and compare it with that of (7)–(8).

In order to analyze the stability nature of the system (33)–(34), we consider its community
matrix J given by,

J(x∗,y∗) =
(

g
′
(x∗) f (x∗) + f

′
(x∗)(g(x∗) − y) − f (x∗)(

β f
′
(x∗)

(
1 + ξ

x∗ (ωx∗2 + 1)) + β f (x∗) ξ

x∗2 (ωx∗2 − 1
))

y β f (x∗)
(
1 + ξ

x∗ (ωx∗2 + 1)
)

− δ

)
.

Evaluating J(x∗,y∗) at each of the axial equilibrium points E∗
0 = (0, 0), E∗

1 = (γ, 0), we
obtain,

J(0,0) =
(
1 0
0 βξ

1+αξ
− δ

)
, (36)

J(γ,0) =
(
g

′
(γ ) f (γ ) − f (γ )

0 β
[

γ+ξ(ωγ 2+1)
(1+αξ)(ωγ 2+1)+γ

]
− δ

)
. (37)

From J(0,0), the determinant is βξ
1+αξ

− δ, which shows that E∗
0 = (0, 0) is a saddle node,

whenever (βξ − δ(1 + αξ)) < 0 and unstable otherwise.

From J(γ,0), the determinant is g
′
(γ ) f (γ )

(
β

[
γ+ξ(ωγ 2+1)

(1+αξ)(ωγ 2+1)+γ

]
− δ

)
. This implies that

the determinant is positive if
(
β

[
γ+ξ(ωγ 2+1)

(1+αξ)(ωγ 2+1)+γ

]
− δ

)
< 0, since g

′
(γ ) = −1

γ
((1 +
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αξ)(ωγ 2 + 1) + γ ) < 0 and f (γ ) = γ

(1+αξ)(ωγ 2+1)+γ
> 0. Evaluating the community

matrix at the interior equilibria point E∗
2 = (x∗

1 , y
∗
1 ) and E∗

3 = (x∗
2 , y

∗
2 ), we obtain,

J(x∗
1 ,y∗

1 ) =
⎛
⎝ g

′
(x∗

1 ) f (x
∗
1 ) − f (x∗

1 )(
β f

′
(x∗

1 )(1 + ξ
x∗
1
(ωx∗

1
2 + 1)) + β f (x∗

1 )
ξ

x∗
1
2 (ωx

∗
1
2 − 1)

)
y∗
1 0

⎞
⎠ ,

(38)

J(x∗
2 ,y∗

2 ) =
⎛
⎝ g

′
(x∗

2 ) f (x
∗
2 ) − f (x∗

2 )(
β f

′
(x∗

2 )
(
1 + ξ

x∗
2
(ωx∗

2
2 + 1)

)
+ β f (x∗

2 )
ξ

x∗
2
2 (ωx

∗
2
2 − 1)

)
y∗
2 0

⎞
⎠ .

(39)

Now, let h(x) = β f (x)
(
1 + ξ

x (ωx2 + 1)
)

− δ, i.e., h(x) = (βξ−δ(1+αξ))(ωx2+1)+(β−δ)x
(1+αξ)(ωx2+1)+x

.

Clearly, for ω >
(β−δ)2

4(βξ−δ(1+αξ))2
, h(x) < 0, for all x > 0. It can be seen that the predator

isoclines, x∗
1 & x∗

2 are the roots of h(x) and the necessary condition for the existence of x∗
1

and x∗
2 is βξ − δ(1 + αξ) < 0. Hence

h(x) > 0, x∗
1 < x < x∗

2 (40)

and
h(x) < 0, 0 < x < x∗

1 or x > x∗
2 . (41)

Inequalities (40) and (41) imply that

h
′
(x∗

1 ) > 0, h
′
(x∗

2 ) < 0. (42)

From definition of h(x), we see that h
′
(x) = β f

′
(x)

(
1 + ξ

x (ωx2 + 1)
)

+β f (x) ξ

x2
(ωx12 −

1), implying that,

β f
′
(x∗

1 )

(
1 + ξ

x∗
1
(ωx∗

1
2 + 1)

)
+ β f (x∗

1 )
ξ

x∗
1
2 (ωx∗

1
2 − 1) > 0, (43)

β f
′
(x∗

2 )

(
1 + ξ

x∗
2
(ωx∗

2
2 + 1)

)
+ β f (x∗

2 )
ξ

x∗
2
2 (ωx∗

2
2 − 1) < 0. (44)

Now, the characteristic equation associated with the community matrix evaluated at the
interior equilibrium E∗

2 = (x∗
1 , y

∗
1 ) is given by

λ2 − Tr J |(x∗
1 ,y∗

1 )λ + Det J |(x∗
1 ,y∗

1 ) = 0. (45)

The determinant Det J |(x∗
1 ,y∗

1 ) is given by β f (x∗
1 )

(
β f

′
(x∗

1 )
(
1 + ξ

x∗
1
(ωx∗

1
2 + 1)

)

+β f (x∗
1 )

ξ

x∗
1
2

(
ωx∗

1
2 − 1

))
. From (43), we conclude that Det J |(x∗

1 ,y∗
1 ) > 0, as f (x1∗) =

x1∗
(1+αξ)(ωx1∗2+1)+x1∗ > 0. Hence by Routh–Hurwitz criterion [18], (x∗

1 , y
∗
1 ) is locally asymp-

totically stable if Tr J |(x∗
1 ,y∗

1 ) < 0 and unstable if Tr J |(x∗
1 ,y∗

1 ) > 0. We have

Tr J |(x∗
1 ,y∗

1 ) =
(
3ωx∗

1
2
(1 + αξ) + 2x∗

1 (1 − ωγ (1 + αξ)) + (1 + αξ) − γ
)(−1

γ

)
f (x∗

1 )

(46)
to be negative whenever the slope of the prey isocline is negative (as the term in the brackets
of R.H.S. of (46) represents the slope of the prey isocline (= g

′
(x)) at (x∗

1 , y
∗
1 ). Now,

123



Differ Equ Dyn Syst (January–July 2018) 26(1–3):213–246 233

let H(x) = (
3ωx2(1 + αξ) + 2x(1 − ωγ (1 + αξ)) + (1 + αξ) − γ

)
. Hence the interior

equilibrium (x∗
1 , y

∗
1 ) is locally asymptotically stable if H(x∗

1 ) > 0 and unstable if H(x∗
1 ) < 0.

Conjecture 2 The interior equilibrium E∗
2 = (x∗

1 , y
∗
1 ) loses its stability through Hopf bifur-

cation when Tr J |(x∗
1 ,y∗

1 ) = 0 with respect to the bifurcation parameter ξ - quantity of
additional food(while the other parameters are fixed). This can be seen from figures 4, 6,
8 and Table 3 which deal with the global dynamics of the additional food provided system
with respect to the variation of ξ . Also, a necessary condition for the occurrence of Hopf
bifurcation can be obtained from the following equation.

H(x∗
1 ) = (3ωx∗

1
2
(1 + αξ) + 2x∗

1 (1 − ωγ (1 + αξ)) + (1 + αξ) − γ ) = 0. (47)

Substituting for x∗
1 in the above equation, we obtain the following parametric relation

3w(1 + αξ)

⎡
⎣ (β − δ) −

√
(β − δ)2 − 4ω[δ(1 + αξ) − βξ ]2
2ω[δ(1 + αξ) − βξ ]

⎤
⎦
2

+ (2 − 2wγ (1 + αξ))

⎡
⎣ (β − δ) −

√
(β − δ)2 − 4ω[δ(1 + αξ) − βξ ]2
2ω[δ(1 + αξ) − βξ ]

⎤
⎦

+ (1 + αξ) − γ = 0

which is a necessary condition for the occurrence of Hopf bifurcation.
Now, from (44), we see that Det J |(x∗

2 ,y∗
2 ) < 0, which implies that the product of eigen

values is negative. Hence, interior equilibrium E3 = (x∗
2 , y

∗
2 ) continues to remain as saddle

through out its existence.
As seen in the initial system (7)–(8), for the additional food provided system (33)–(34)

also, the nature of the interior equilibrium depends upon the shape of the prey isocline. This
is discussed below in four different cases.

• If the equation H(x) = 0 has both positive roots (H1, H2 with 0 < H1 < H2), then
(x∗

1 , y
∗
1 ) is stable whenever x

∗
1 does not belong to (H1, H2)(region wherein g

′
(x∗

1 ) < 0)
and is unstable if x∗

1 belongs to (H1, H2)(region wherein g
′
(x∗

1 ) > 0).
• If the equation H(x) = 0 has a positive root and a negative root (H1, H2 with H1 <

0 < H2), then (x∗
1 , y

∗
1 ) is stable whenever x

∗
1 does not belong to (0, H2)(region wherein

g
′
(x∗

1 ) < 0) and is unstable if x∗
1 belongs to (0, H2)(region wherein g

′
(x∗

1 ) > 0) in the
positive quadrant.

• If the equation H(x) = 0 has both negative roots (H1, H2 with H1 < H2 < 0), then,
(x∗

1 , y
∗
1 ) is always asymptotically stable (since, g

′
(x∗

1 ) < 0 always).
• If the equation H(x) = 0 does not admit any real root, then as in previous case, (x∗

1 , y
∗
1 )

is always asymptotically stable.

The instability of the interior equilibrium E∗
2 in above cases induces a locally asymptoti-

cally stable limit cycle into the system.

Global Dynamics and Controllability for the Additional Food Provided System
with Respect to Region I of the Initial System

From J(0,0), J(γ,0) and J(x∗
1 ,y∗

1 ), we infer that the nature of the equilibrium points (0, 0), (γ, 0)

and (x∗
1 , y

∗
1 ) depends on the signs of the expressions βξ

1+αξ
− δ (an eigen value of J(0,0)),
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β
(

γ+ξ(wγ 2+1)
(1+αξ)(wγ 2+1)+γ

)
− δ (an eigen value of J(γ,0)) and g′(x∗

1 ) = 0 (Hopf bifurcation

indicator). The second interior equilibrium (x∗
2 , y

∗
2 ) continues to remain saddle through-

out its existence. We see that the necessary condition for the interior equilibria to exist is
(β − δ)2 − 4w(−βξ + δ(1 + αξ))2 > 0.

Hence, we consider the following curves (related to the expressions mentioned above) in
the positive quadrant of the (α, ξ) space:

βξ − δ(1 + αξ) = 0 (48)

Prey elimination curve (PEC) at (0, 0)

β(γ + ξ(wγ 2 + 1)) − δ((1 + αξ)(wγ 2 + 1) + γ ) = 0 (49)

Transcritical bifurcation curve (TBC) at (γ, 0)

3w(1 + αξ)

⎡
⎣ (β − δ) −

√
(β − δ)2 − 4ω[δ(1 + αξ) − βξ ]2
2ω[δ(1 + αξ) − βξ ]

⎤
⎦
2

+(2 − 2wγ (1 + αξ))

⎡
⎣ (β − δ) −

√
(β − δ)2 − 4ω[δ(1 + αξ) − βξ ]2
2ω[δ(1 + αξ) − βξ ]

⎤
⎦

+(1 + αξ) − γ = 0 (50)

Hopf bifurcation curve (HBC) at (x∗
1 , y

∗
1 )

(β − δ)2 − 4w(−βξ + δ(1 + αξ))2 = 0 (51)

Discriminant curve (DISC)
We see that each of the curves (48)–(51) divide the positive quadrant of (α, ξ) space

into two regions which characterize the nature of the associated equilibrium point of (33)–
(34). Equation (51) gives the region of existence of the predator isoclines(possible region of
existence of interior equilibria). It can be observed that α = β

δ
is an asymptote for the curves

(48), (49) and (51).
In this paper, we study the consequences of providing additional food to the region

I(comprising of regions I-1, I-2 and I-3) of the initial system (7)–(8) and derive conclusions
basing on the global dynamics of the additional food provided system (33)–(34).

In this regard, we study, the dynamics of the additional food provided system (33)–
(34) through the curves (48)–(51) under the conditions I-1, I-2, I-3 in Table 1. For the
sake of brevity, the dynamics of the additional food provided system for the remaining
conditions((Con-II)-(Con-VI)) will be discussed in the future continuation work.

On provision of additional food to the region I of the initial system, we observe the
following dynamics, depicted in Figs. 4, 6, and 8. In the first scenario there is a possibility
that the system can undergo a single Hopf bifurcation(under condition I-1), in the second the
system can undergo double Hopf bifurcation(under condition I-2) whereas in the third(under
condition I-3), the system does not undergo Hopf bifurcation.

We now discuss the significance of each of the regions presented in Fig. 4.

• Region A1 of Fig. 4
For a fixed α(<

β
δ
) as ξ increases from zero, we enter the region A1 of Fig. 4. The

system dynamics can be seen form the behavior of the isoclines which are shown in the
frame A of Fig. 5. Clearly the system does not even admit predator isoclines and all the
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Fig. 4 Additional food provided system (33)–(34) for β = 2.2, δ = 0.4, ω = 8.0, and γ = 1.2. The
parameters chosen satisfy the condition I − 1 inTable 1. This figure represents the division of control parameter
space by the discriminant curve (DISC) (51), the prey elimination curve (PEC) (48), the Hopf bifurcation curve
(HBC) (50), the transcritical bifurcation curve (TBC) (49) and the curve α = β

δ

Fig. 5 Isoclines for additional food provided system (33)–(34) for β = 2.2, δ = 0.4, ω = 8.0, & γ = 1.2,
under condition I − 1

solutions tend to the axial equilibrium (γ, 0). Here the equilibrium (0, 0) coexists with
saddle nature.

• Region A2 of Fig. 4
By further provision of additional food, the predator isoclines come into existence as

soon as the system touches the discriminant curve (i.e., when ξ = β−(1−2
√

w)δ

2
√

w(β−δα)
) and an

unstable interior equilibrium is born. On this discriminant curve, all the solutions of the
system goes to either interior equilibrium or the axial equilibrium (γ, 0) depending on
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Fig. 6 Additional food provided system (33)–(34) for β = 2.2, δ = 0.4, ω = 7, and γ = 0.63. The
parameters chosen satisfy the condition I − 2 inTable 1. This figure represents the division of control parameter
space by the discriminant curve (DISC) (51), the prey elimination curve (PEC) (48), the Hopf bifurcation curve
(HBC) (50), the transcritical bifurcation curve (TBC) (49) and the curve α = β

δ

the initial value. (0, 0) continues to remain as saddle. On further provision of additional

food (i.e., for, ξ >
β−(1−2

√
w)δ

2
√

w(β−δα)
), we move to the region A2. The system dynamics can

be seen from the behavior of isoclines as depicted in frame B of Fig. 5. Two interior
equilibria E∗

2 and E∗
3 tend to exist. The interior equilibrium E∗

2 is unstable whereas the
second interior equilibrium E∗

3 has a saddle nature. The latter equilibrium continues to
remain saddle throughout its existence. The instability of E∗

2 induces a stable limit cycle.
Due to this there exists a separatrix such that the solution trajectories that lie above this
manifold converge to the stable limit cycle surrounding E∗

2 and the trajectories which lie
below converge to stable equilibrium E∗

1 . On further increase of ξ the limit cycle runs
into the saddle point E∗

3 and forms a homoclinic orbit. After the disappearance of the
limit cycle all the solutions tend toward E∗

1 .

Increasing ξ further, the second interior equilibrium E∗
3 vanishes by undergoing tran-

scritical bifurcation with (γ, 0), at ξ = δ(wγ 2+1)−γ (β−δ)

(wγ 2+1)(β−αδ)
. Upon further increase in ξ,

enter region A3.
• Region A3 of Fig. 4

The system dynamics for this region can be understood from frame C of Fig. 5. In this
region all the solutions of the system goes to the stable limit cycle induced due to the
instability of interior equilibrium E∗

2 . The axial equilibrium E∗
1 becomes saddle and

E∗
0 continues to remain as saddle. Further provision of additional food leads to Hopf

bifurcation of E∗
2 and the system moves to the region A4.

• Region A4 of Fig. 4
The behavior of the system isoclines for this region can be seen from frame D of Fig.
5. The interior equilibrium point E∗

2 becomes stable. The solution trajectories will tend
to the stable interior point E∗

2 . The axial equilibria, E∗
0 and E∗

1 continue to remain as
saddle. Continuous supply of additional food in this region leads us to touch the prey
elimination curve (i.e., when ) and the prey goes to zero and we move into region A5.
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Fig. 7 Isoclines for additional food provided system (33)–(34) for β = 2.2, δ = 0.4, ω = 8.0, & γ = 1.2,
under condition I − 2

• Region A5 of Fig. 4
We have very interesting dynamics happening in this region. From frame E of Fig. 5, it
can be seen that the system does not admit a positive interior equilibrium and also there is
an unbounded growth for the predators in this region. The predators in this region survive
only on the additional food provided. Withdrawal of additional food drives the predator
population to zero.

• Region A6 of Fig. 4
For a fixed α(>

β
δ
) as ξ increases from zero, we enter the region A6 of Fig. 4. The system

dynamics can be seen form the behavior of the isoclines which are shown in the frame F
of Fig. 5. As in region A1, the system does not even admit predator isoclines and all the
solutions tend to the axial equilibrium E∗

1 . Here the equilibrium E∗
0 coexists with saddle

nature.

We now discuss the significance of the region B2(which exhibits interesting dynamics)
presented in Fig. 6. The dynamics for the remaining regions B1, B3–B8 will be similar to
that of the regions A1–A6 of Fig. 4.

• Region B2 of Fig. 6
On provision of additional food in region B1, the predator isoclines come into existence
as soon as the system touches the discriminant curve and an stable interior equilibrium
is born, which can be seen from frame B of Fig. 7. On this discriminant curve, all the
solutions of the system goes to either interior equilibrium or the axial equilibrium E∗

1
depending on the initial value. E∗

0 continues to remain as saddle. On further provision
of additional food, we move to the region B2. The system dynamics can be seen from
the behavior of isoclines as depicted in frame C of Fig. 7. Two interior equilibria E∗

2
and E∗

3 tend to exist. The interior equilibrium E∗
2 is stable whereas the second interior

equilibrium E∗
3 has a saddle nature. This interior equilibrium continues to remain saddle

throughout its existence. The stable manifold of the saddle point E∗
3 separates the phase

plane into two domains of attraction. The solution trajectories that lie above this manifold
converge to E∗

2 and the trajectories which lie below converge to E∗
1 .
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Fig. 8 Additional food provided system (33)–(34) for β = 2.2, δ = 0.4, ω = 6.7, and γ = 0.42.
The parameters chosen satisfy the condition I − 3 in Table 1. This figure represents the division of control
parameter space by the discriminant curve (DISC) (51), the prey elimination curve (PEC) (48), the transcritical
bifurcation curve (TBC) (49) and the curve α = β

δ

Increasing ξ further, there exists a critical value of α, denoted by α
′
, where, both TBC

and HBC intersect.

Conjecture 3 For 0 < α < α
′
, the interior equilibrium E∗

2 undergoes Hopf bifurcation
with respect to the bifurcation parameter ξ - quantity of additional food(while the other
parameters are fixed) and we enter region B3 or it can happen that for α ≥ α

′
the second

interior equilibrium E∗
3 can vanish by undergoing transcritical bifurcation(with respect to the

bifurcation parameter ξ ) with (γ, 0), at ξ = δ(wγ 2+1)−γ (β−δ)

(wγ 2+1)(β−αδ)
. In this situation, there exists

another critical value of α(<
β
δ
) given by α∗, such that if α

′
< α < α∗, we enter region B4.

For all α > α∗, we move to the region B6.

Similar dynamics can be discussed for regions C1–C5 of Fig. 8.
The global dynamics of the additional food provided system for the different scenarios

discussed above is summarized in the Table 3. The space and time complexity analysis for
the border cases are shown in Table 5 in Appendix.

The analysis presented above helps us to study some of the controllability aspects per-
taining to the system (33)–(34) with respect to the control parameters α and ξ . The analysis
suggests that, for an appropriate choice of additional food, the system can either be driven to
a desired equilibrium level or to a limit cycle surrounding the desired equilibrium. If (x̃, ỹ)
is the desired equilibrium state for the system, then (x̃, ỹ) can become an equilibrium point
of the system (33)–(34), provided α > 0 and ξ > 0 are chosen to satisfy

x̃ = (β − δ) −
√

(β − δ)2 − 4ω[δ(1 + αξ) − βξ ]2
2ω[δ(1 + αξ) − βξ ] , (52)

ỹ = (
(1 + αξ)(ωx̃2 + 1) + x̃

) (
1 − x̃

γ

)
. (53)
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Table 3 Global dynamics of the Additional food provided system under Condition-I

Figure Nature of the equilibria

Figure 4 Figure 6 Figure 8 E∗
0 E∗

1 E∗
2 E∗

3

A1 B1 C1 Saddle Stable – –

– B2 C2 Saddle Stable Stable Saddle

A2 B3 – Saddle Stable Unstable Saddle

GAS limit cycle

Homoclinic Orbit

– B4 – Saddle Saddle Stable –

A3 B5 – Saddle Saddle Unstable –

GAS limit cycle

A4 B6 C3 Saddle Saddle Stable –

A5 B7 C4 Saddle Stable – –

A6 B8 C5 Saddle Stable – –

If H(x̃) < 0 then this equilibrium (x̃, ỹ) can be reached asymptotically. On the other hand,
if H(x̃) > 0 then the equilibrium would be unstable, as a result, solutions in the vicinity of
this equilibrium approach a limit cycle surrounding (x̃, ỹ). For the given system parameters
β, δ and γ and the desired equilibrium (x̃, ỹ), the components of intersection of these two
curves (52)–(53) give us the values of α and ξ for which the considered system admits (x̃, ỹ)
as its equilibrium.

The analysis also suggests that, for an appropriate choice of additional food, the equilib-
rium (x̃, ỹ) will remain as a saddle throughout its existence, provided, the values of α and ξ

are chosen to satisfy the following equations(for a given choice of β, δ, γ and (x̃, ỹ),

x̃ = (β − δ) +
√

(β − δ)2 − 4ω[δ(1 + αξ) − βξ ]2
2ω[δ(1 + αξ) − βξ ] , (54)

ỹ = ((1 + αξ)(ωx̃2 + 1) + x̃)

(
1 − x̃

γ

)
. (55)

Consequences of Providing Additional Food to Predators

In this section, we discuss the consequences of providing additional food to the predators,
when they exhibit type IV functional response towards the available food. It can be seen from
the above discussions that the quality of additional food α and its position with respect to β

δ

plays a crucial role in determining the eventual state of the system. In fact it is interesting to
note that the system takes two different directions basing on the relationship between α and
β
δ
. As defined in [23,31], we characterize the additional food to be of high quality if α <

β
δ

and it is of low quality if α >
β
δ
. Here quality reflects the ability of the predators to control

the prey by consuming the additional food. From the expressions of α, β and δ, we observe
that the additional food is of high (low) quality if the maximum growth rate of the predators
due to consumption of additional food ( ε2

h2
) is greater (less) than the natural death rate (m)

of the predators.
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If the system (7)–(8) does not support the predator–prey coexistence initially (i.e., the sys-
tem does not admit an interior equilibrium in the absence of additional food), then coexistence
cannot be achieved by providing low quality additional food to predators. Whereas provision

of additional food of high quality with supply level satisfying β−(1−2
√

w)δ

2
√

w(β−δα)
< ξ < δ

β−δα
,

brings coexistence into the system.
On further increase of additional food supply from δ

β−δα
, the prey ceases to exist and the

predators survive only on the additional food provided to them. Thus provision of additional
food of high quality helps the predators to overcome the inhibitory effect of the prey, there by
getting the coexistence of predator–prey system. Thus, initially even though the eco system
is prey dominated, provision of additional food of high quality to the predators gets in the
coexistence of the predator and prey. And also, the eradication of the prey can be realized by
further provision of high quality additional food.

When α = β
δ
, if the system does not admit any interior equilibrium in the absence of

additional food then the system will not admit any interior equilibrium by providing any
amount of additional food of the considered quality.

We observe from the control parameter space analysis that characteristics (quality) of
additional food (which is the ratio ofmaximum growth rates of the predator due to consuming
the prey and the additional food) plays a crucial role in the controllability of the considered
ecosystem. This system can be steered to either prey dominated or predator dominated system
for a suitable choice of food supply (subject to the parameters satisfying certain conditions).

Upon the extinction of prey from the ecosystem the predator can also be eliminated
completely by with drawing the additional food from the ecosystem.

Discussion and Conclusions

The study of predator–prey dynamics in presence of additional food to predators and conse-
quences of such provision on the interacting species in the ecosystem has off late been a topic
of interest in the fields of theoretical as well as practical biological control [4,5,13,22,26,28–
31,34,36]. The aim and goal of these studies is to derive strategies for biological control of
pests (treated as prey) using their natural enemies (treated as predators) or biological con-
servation of either of the interacting species. From some of the recent theoretical works
[23,27–31], we see that the quality and quantity of additional food supplied to the predators
play an important role in controlling the pest in the agro-ecosystems and also in the conser-
vation of the interacting species. In these works the functional response of predators towards
available food was assumed to be of Holling types II and III. The outcomes of the study have
confirmed some of the observations made by the experimental scientists. Some limitation of
the study presented in [31] include the unbounded growth for predators and also maintaining
the predators at any level with the same amount of additional food supply. This limitation
was overcome when mutual interference was assumed among predators [23].

In this work, a detailed study is done on the dynamics of a predator–prey model wherein
the predator is provided with additional food and the Holling type IV functional response has
been assumed for the predator towards the available food, where initially the system is prey
dominated due to inhibitory effect of the prey. As in [23,27–31], wemake no distinction (such
as complementary, substitutable, essential or alternative) for the additional food provided to
the predators. The quality of the additional food is characterized by its nutritive value and
handling time. It is termed as low quality if the maximum growth rate of the predator due
to consumption of additional food is less than the natural death rate of the predator and it is

123



Differ Equ Dyn Syst (January–July 2018) 26(1–3):213–246 241

of high quality if the above mentioned relation reverses. The study undertaken in this work
indicates that the considered system exhibits apparent competition only when the predators
are provided with high quality additional food. The system analysis bifurcates the qualitative
study into three significant cases that depend on the quality of the additional food as presented
below.

Case 1 (Low Quality Additional Food)

First, let us consider the case where the maximum growth rate of the predator due to consum-
ing additional food is less than the natural death rate of the predator(low quality additional
food).

In this case, we clearly have either the handling time for the predator of the additional
food to be higher or the nutritive value the additional food to be lower than that of the target
prey. In this case we find that, if initially the predators are unable to survive due to the group
defense(inhibitory effect) of the prey, then providing any amount of additional food of low
quality can not bring in coexistence between the prey and the predator. This is due to the fact
that, if in the absence of additional food itself the predators are not able to predate on the
prey, then providing additional food of lower quality will not improve the sustenance of the
predators. Moreover the presence of additional food distracts the predators (from the target
prey) which are time limited. So in this situation controlling the prey using biological means
cannot be achieved.

Case 2 (High Quality Additional Food)

Now let us consider the casewhere themaximumgrowth rate of the predator due to consuming
additional food is greater than the natural death rate of the predator(high quality additional
food). The system admits three different behaviors basing on the initial value chosen in the
region I of the (ω, γ ) parameter space(refer Fig. 2).

If the system does not support coexistence between the prey and predator in the absence
of additional food due to the inhibitory effect of the prey, then coexistence(either stable or
unstable) can be brought into the system by providing additional food of high quality.

On supply of additional food if the system admits a stable interior equilibrium point, then
the stable coexistence can continue to remain with increased additional food level till the prey
vanishes from the system. Or this stable coexistence can depend on the quality and quantity
of the additional food. If the quality of additional food is greater than a critical α∗ then the
stable coexistence will continue to remain with increased additional food level till the prey
vanishes from the system. On the other hand, if the quality of the additional food is less than
the said critical value α∗, provision of additional food, induces oscillations into the system.
With further increase in the quantity of additional food, the system once again stabilizes at
low prey equilibrium density. While retaining the stability, this low equilibrium value of the
prey continues to decrease with increase in the additional food quantity and the prey goes to
extinction for a specific level of additional food supply. This behavior may be attributed to
the fact that provision of additional food of very high quality increases the fecundity of the
predators which in turn increases the predation pressure on the prey. Also, the abundance of
predators in the environment and their dependence on both additional food as well as prey
brings in oscillations into the system. Beyond a certain level of food supply, the predator fails
to track the prey due to its low density and at this stage the system gets stabilized. Further
increase in the quantity of additional food increases the predators which in turn leads to the
extinction of the prey population. Thus the prey can be controlled biologically in this case.

123



242 Differ Equ Dyn Syst (January–July 2018) 26(1–3):213–246

In the other case if the system admits an unstable interior equilibrium with initial supply
of additional food, then on further increase in the quantity the oscillations in the system can
be subdued and stable coexistence can be achieved. Continuous supply of additional food
further, will extinct the prey, thereby achieving the biological control. The initial oscillations
in the system can be attributed to the relatively high carrying capacity of the system with
respect to the earlier cases. Due to the continuous supply of high quality additional food from
hereon, the predators fecundity and ferocity increases thereby getting the stable coexistence.
As in the earlier situation further increase in the quantity of additional food leads to the
extinction of the prey population.

Case 3 (Borderline Case)

Finally, we consider the case where the maximum growth rate of the predator due to consum-
ing additional food is equal to the natural death rate of the predator. If initially in the absence
of additional food the system does not admit any interior equilibrium then providing any
amount of such additional food will not bring the coexistence into the system. This behavior
can be attributed to the group defense(inhibitory effect) of the prey.

In summary we see that the modified version of predator–prey model with Holling type IV
functional response with provision of additional food exhibits very interesting dynamics. We
see that, by providing additional food of a appropriate choice, it is possible to drive both the
prey and predator population to a desired level thus allowing to biologically control the sys-
tem. The quality and supply level of the additional food plays an important role in the control
of the system. It is possible to eliminate the oscillations or oscillations can be brought in by
providing additional food of appropriate choice and supply level. Also, the predators can be
eliminated by providing themwith low quality additional food, which essentially reduces the
per capita growth rate of the predators compared to its natural death rate, there by relieving
the prey from predation pressure. While the prey can be eliminated from the system by pro-
viding high quality additional food, care must be taken in the choice of the quality. Providing
additional food of very high quality can destabilize the system and bring in oscillations which
can be avoided by an appropriate choice on the quality of the additional food.

We conclude that with provision of additional food as a tool, a predator–prey system (with
inhibitory effect of the prey towards predator) can be controlled and steered to a desirable
state. With appropriate choice on the quality and quantity of additional food, the predator–
prey system can be stabilized at a state with low prey and high predator densities or high prey
and low predator densities. It is also possible to eliminate either of the interacting species
through provision of suitable additional food to predators. This analysis offers eco-friendly
strategies to manage a predator–prey system. The vital role of the quality and quantity of the
additional food in the system dynamics cautions the manager on the choice of the additional
food for realizing the goal in the biological control programme. An arbitrary choice of the
additional food can result in completely opposite results to the desired ones.
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