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Abstract This paper investigates the existence of solutions for fractional differential inclu-
sions involving Caputo fractional derivative of any order together with nonlocal integral
boundary conditions. Our study includes the cases when the multivalued map involved in the
problem has convex as well as non-convex values. Some standard fixed point theorems for
multivalued maps are applied to establish the main results, which are well illustrated with
the aid of examples.
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Introduction

In this paper, we study the following nonlocal integral boundary value problem of Caputo
type fractional differential inclusions:
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⎧
⎪⎨

⎪⎩

c Dr
t0 x (t) ∈ F (t, x (t)) , t ∈ J = [t0, T ] , n − 1 < r < n,

x (k) (δ) = xk +
δ∫

t0
gk(s, x(s))ds, k = 0, 1 . . . , n − 1, δ ∈ (t0, T ) ,

(1.1)

where F : J ×R → P(R) is a multivalued map, P(R) is the family of all nonempty subsets
ofR, gk : J ×R → R is a given continuous function, and c Dr

t0 denotes the Caputo fractional
derivative of order r, n = [r ] + 1, [r ] denotes the integer part of the real number r .

Fractional differential equations and inclusions have been extensively studied by many
researchers in the recent years. It has been mainly due to the fact that fractional differential
operators appear naturally in a number of disciplines of pure and applied sciences such as
biophysics, blood flow phenomena, aerodynamics, electro-dynamics of complex medium,
viscoelasticity, circuits theory, control theory, etc., for instance, see [1–3]. The differential
inclusions also find decent applications in some areas of physics and control [4]. For some
recent work on fractional differential equations and inclusions, we refer the reader to a series
of papers [5–15] and the references cited therein. Recently, Ahmad et al. [12] discussed the
existence of solutions for a general differential equation of an arbitrary fractional order with
nonlocal integral boundary conditions at an interior point of the given finite interval.

In this article, motivated by aforementioned work, we obtain some existence theorems
for the inclusion problem (1.1) involving convex as well as nonconvex multivalued maps.
These results are based on the nonlinear alternative of Leray–Schauder type, a selection
theorem due to Bressan and Colombo, and a fixed point theorem due to Covitz and Nadler.
The methods employed to establish the desired results are standard; however their exposition
in the framework of problem (1.1) is new and enriches the literature dealing with fractional
differential inclusions with nonlocal integral boundary conditions. In passing, we remark that
the present work generalizes the problem addressed in [12] to its multivalued case.

This paper is organized as follows. In Sect. 2, we recall some preliminaries about frac-
tional calculus and multivalued mappings analysis. Section 3 contains the main results for
the fractional inclusion problem (1.1). We have also discussed some examples to show the
applicability of the accomplished work.

Preliminaries

First of all, we fix our terminology and recall some basic ideas of fractional calculus [16],
and multivalued analysis (see [17–20]) that we need in the sequel.

Let C(J,R) be the Banach space of all continuous real valued functions defined on J
endowed with the norm defined by ‖x‖ = sup{|x(t)|, t ∈ J }. By L1(J,R) we denote the
Banach space of allmeasurable functions x : J → Rwhich are Lebesgue integrable endowed
with the norm‖x‖L1 = ∫ T

t0
|x(t)|dt .

Definition 2.1 The fractional integral of order r with the lower limit zero for a function � is
defined as

I r�(t) = 1

�(r)

∫ t

0

�(s)

(t − s)1−r
ds, t > 0, r > 0,

provided the right hand-side is point-wise defined on [0,∞), where �(·) is the gamma
function, which is defined by �(r) = ∫ ∞

0 tr−1e−t dt .
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Definition 2.2 The Riemann-Liouville fractional derivative of order r > 0, n − 1 < r <

n, n ∈ N , is defined as

Dr
0+�(t) = 1

�(n − r)

(
d

dt

)n ∫ t

0
(t − s)n−r−1�(s)ds,

where the function �(t) has absolutely continuous derivative up to order (n − 1).

Definition 2.3 The Caputo derivative of order r for a function � : [0,∞) → R can be
written as

c Dr�(t) = Dr

(

�(t) −
n−1∑

k=0

tk

k!�
(k)(0)

)

, t > 0, n − 1 < r < n.

Remark 2.4 If �(t) ∈ Cn[0,∞), then

c Dr�(t) = 1

�(n − r)

∫ t

0

�(n)(s)

(t − s)r+1−n
ds = I n−r�(n)(t), t > 0, n − 1 < r < n.

Definition 2.5 For a normed space (X, ‖·‖), let Pcl(X) = {Y ∈ P(X) : Y is closed},
Pb(X) = {Y ∈ P(X) : Y is bounded}, Pcp(X) = {Y ∈ P(X) : Y is compact}, and
Pcp,c(X) = {Y ∈ P(X) : Y is compact and convex}.
Definition 2.6 Let F : X → P(X) be a multivalued map.

(i) F is convex (closed) valued if F(x) is convex (closed) for all x ∈ X .
(ii) F is boundedonbounded sets if F(B) = ⋃

x∈B F(x) is bounded in X for all B ∈ Pb(X).
(iii) F is an upper semi-continuous (u.s.c.) on X if for each x0 ∈ X , the set F(x0) is a

nonempty closed subset of X , and if for each open set N of X containing F(x0), there
exists an open neighborhood N0 of x0 such that F(N0) ⊆ N .

(iv) F is said to be completely continuous if F(B) is relatively compact for every B ∈ Pb(X).
(v) F has a fixed point if there is x ∈ X such that x ∈ F(x).
(vi) If F is completely continuous with nonempty compact values, then F is u.s.c if and

only if F has a closed graph, i.e., xn → x∗, yn → y∗, yn ∈ F(xn) imply y∗ ∈ F(x∗).

The fixed point set of the multivalued operator F will be denoted by Fix F .

Definition 2.7 A multivalued map F : J → P(R) with nonempty compact convex values
is said to be measurable if for every y ∈ R, the function

t → d(y, F(t)) = inf{|y − z| : z ∈ F(t)}
is measurable.

Definition 2.8 A multivalued map F : J × R → P(R) is said to be Carathéodory if: (i)
t → F(t, x) is measurable for each x ∈ R, (ii) x → F(t, x) is upper semi-continuous for
almost all t ∈ J . Further a Carathéodory function F is called L1-Carathéodory if for each
α > 0, there exists ϕα ∈ L1(J,R+) such that

‖F(t, x)‖ = sup{|v| : v ∈ F(t, x)} ≤ ϕα(t)

for all ‖x‖ ≤ α and for a.e. t ∈ J .

Definition 2.9 Let Y be a Banach space, Z a nonempty closed subset of Y . The multivalued
operator F : Z → P(Y ) is said to be lower semi-continuous (l.s.c.) if the set {z ∈ Z :
F(z) ∩ B 
= φ} is open for any open set B in Y.
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Definition 2.10 Let A be a subset of J ×R. A is said to be L⊗ B-measurable if A belongs
to the σ -algebra generated by all sets of the form L × B, where L is Lebesgue measurable
in J and B is Borel measurable in R.

Definition 2.11 A subset A of L1(J,R) is decomposable if for all u, v ∈ A and measurable
sets I ⊂ J, the function uχI + vχJ−I ∈ A, where χI stands for the characteristic function
of I.

Definition 2.12 If F : J × R → P(R) is a multivalued map with nonempty compact
values and u ∈ C(J,R), then the set of selections of F(·, ·), denoted by SF,u , is of lower
semi-continuous type if

SF,u = {w ∈ L1(J,R) : w(t) ∈ F(t, u(t)) for a.e. t ∈ J }
is lower semi-continuous with nonempty closed and decomposable values.

Definition 2.13 Let (X, d) be a metric space associated with the metric d . The Pompeiu–
Hausdorff distance of the closed subsets A, B ⊂ X is defined by

dH (A, B) = max{d∗(A, B), d∗(B, A)},
where d∗(A, B) = sup{d(a, B) : a ∈ A}, and d(x, B) = inf y∈B d(x, y).

Definition 2.14 A multivalued operator F on X with nonempty values in X is called:

(a) γ -Lipschitz if and only if there exists γ > 0 such that

dH (F(x), F(y)) ≤ γ d(x, y), for each x, y ∈ X,

(b) A contraction if and only if it is γ -Lipschitz with γ < 1.

The following lemmas will be used in what follows.

Lemma 2.15 [18] Let X be a Banach space. Let F : J × X → Pcp,c(X) be an L1-
Carathéodory multivalued map and let H be a linear continuous mapping from L1(J, X) to
C(J, X). Then the operator

� ◦ SF : C(J, X) → Pcp,c(C(J, X)),

x → (H ◦ SF )(x) = H(SF,x )

is a closed graph operator in C(J, X) × C(J, X).

Lemma 2.16 [21] Let Y be a separable metric space and let F : Y → P(L1(J,R)) be
a lower semi-continuous multivalued map with closed decomposable values. Then F(·) has
a continuous selection, i.e., there exists a continuous mapping (single valued) f : Y →
L1(J,R) such that f (y) ∈ F(y) for every y ∈ Y .

We conclude this section by stating the following fixed point theorems needed for the
forthcoming analysis.

Theorem 2.17 (Nonlinear alternative of Leray–Schauder type [22]) Let X be a Banach
space, X be a closed convex subset of X, U be an open subset of X with 0 ∈ U . Suppose
that F : U → Pcp,c(X ) is an upper semicontinuous compact map. Then either F has a fixed
point in U or there are § ∈ ∂U and λ ∈ (0, 1) such that § ∈ λF(§).
Theorem 2.18 (Covitz and Nadler [23]) Let (X, d) be a complete metric space. If F : X →
Pcl(X) is a contraction, then F has a fixed point.
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Existence Results

To define the solution for problem (1.1), we consider its linear variant given by
⎧
⎪⎨

⎪⎩

c Dr
t0 x(t) = f̃ (t), t ∈ J,

x (k) (δ) = xk +
δ∫

t0
gk(s)ds, k = 0, 1, . . . , n − 1, δ ∈ J,

(3.1)

where f̃ ∈ C(J,R).

Lemma 3.1 [12] The fractional nonlocal boundary value problem (3.1) is equivalent to the
integral equation

x(t) = I r f̃ (t) +
n−1∑

k=0

(t − δ)k

k!

⎛

⎝xk +
δ∫

t0

gk(s)ds − I r−k f̃ (δ)

⎞

⎠ , t ∈ J. (3.2)

Next, we formulate the hypotheses for proving the existence of solutions for problem
(1.1).

(A) F : J × R → P(R) is Carathéodory and has convex values;
(B) There exists a continuous nondecreasing function ψ : [0,∞) → (0,∞) and a function

p ∈ C(J,R+) such that

‖F(t, x)‖ = sup{|v| : v ∈ F(t, x)} ≤ p(t)ψ(|x |),
for each (t, x) ∈ J × R;

(C) There exist continuous nondecreasing functions ψk : [0,∞) → (0,∞) and functions
pk ∈ C(J,R+) such that

|gk(t, x)| ≤ pk(t)ψk(|x |), k = 0, 1, . . . , n − 1

for each (t, x) ∈ J × R; and
(D) There exists a number M > 0 such that

M

γ1ψ(M) ‖p‖ + γ2
> 1,

where

γ1 =
{

2

�(r + 1)
+

n−1∑

k=1

1

k!�(r − k + 1)

}

(T − t0)
r

and

γ2 =
n−1∑

k=0

|T − t0|k
k! (|xk | + δ−t0) ψk(‖η‖) ‖pk‖ .

Theorem 3.2 Assume that the conditions (A)–(D) hold. Then the fractional differential inclu-
sion problem (1.1) has at least one solution on J .

123



246 Differ Equ Dyn Syst (January 2020) 28(1):241–254

Proof Using Theorem 3.1, define an operator �F : C(J,R) → P(C(J,R)) by

�F (x) =
⎧
⎨

⎩
h ∈ C(J,R) : h(t) =

t∫

t0

(t − s)r−1

�(r)
f (s) ds

+
n−1∑

k=0

(t − δ)k

k!

⎛

⎝xk +
δ∫

t0

(

gk(s, x(s))ds − (δ − s)r−k−1 f (s)

�(r − k)

)

ds

⎞

⎠

⎫
⎬

⎭

for f ∈ SF,x . We show that �F satisfies the assumptions of the nonlinear alternative of
Leray–Schauder type. We complete the proof in several steps.

Step I �F (x) is convex for each x ∈ C(J,R). This step is obvious since SF,x is convex
(F has convex values), and therefore we omit its proof.

Step II We show that �F (x) maps bounded sets into bounded sets in C(J,R). For a
positive number η, let Bη = {x ∈ C(J,R) : ‖x‖ ≤ η} be a bounded set in C(J,R). Then,
for each h ∈ �F (x), x ∈ Bη, there exists f ∈ SF,x such that

h(t) =
t∫

t0

(t − s)r−1

�(r)
f (s) ds

+
n−1∑

k=0

(t − δ)k

k!

⎛

⎝xk +
δ∫

t0

(

gk(s, x(s))ds − (δ − s)r−k−1 f (s)

�(r − k)

)

ds

⎞

⎠ .

Then, for t ∈ J , we have

|h(t)| ≤
t∫

t0

(t − s)r−1 | f (s)|
�(r)

ds

+
n−1∑

k=0

|t − δ|k
k!

⎛

⎝|xk | +
δ∫

t0

(

|gk(s, x(s))| ds + (δ−s)r−k−1 | f (s)|
�(r − k)

)

ds

⎞

⎠

≤ ψ(‖x‖) ‖p‖
{

1

�(r + 1)
+

n−1∑

k=0

1

k!�(r − k + 1)

}

(T − t0)
r

+
n−1∑

k=0

|T − t0|k
k! (|xk | + δ−t0) ψk(‖x‖) ‖pk‖ .

Thus,

‖h‖ ≤ ψ(‖η‖) ‖p‖
{

2

�(r + 1)
+

n−1∑

k=1

1

k!�(r − k + 1)

}

(T − t0)
r

+
n−1∑

k=0

|T − t0|k
k! (|xk | + δ−t0) ψk(‖η‖) ‖pk‖ .

Step III We show that �F maps bounded sets into equicontinuous sets of C(J,R). Let
t1, t2 ∈ J with t1 < t2, and x ∈ Bη. In view of the hypothesis (C), for each h ∈ �F (x), we
obtain
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|h(t2) − h(t1)|

=
∣
∣
∣
∣
∣
∣

t1∫

t0

(t2−s)r−1 − (t1 − s)r−1

� (r)
f (s) ds +

t2∫

t1

(t2−s)r−1 f (s)

� (r)
ds

+
n−1∑

k=0

(
(t2 − δ)k

k! − (t1 − δ)k

k!
)

×
⎛

⎝xk +
δ∫

t0

(

gk(s, x(s))ds − (δ − s)r−k−1 f (s)

�(r − k)

)

ds

⎞

⎠

∣
∣
∣
∣
∣
∣

≤ ψ(‖x‖)
⎛

⎝

t1∫

t0

∣
∣(t2−s)r−1 − (t1 − s)r−1

∣
∣ p(s)

� (r)
ds +

t2∫

t1

(t2−s)r−1 p(s)

� (r)
ds

⎞

⎠

+
n−1∑

k=0

∣
∣
∣
∣
(t2 − δ)k

k! − (t1 − δ)k

k!
∣
∣
∣
∣

×
⎛

⎝|xk | + ψk(‖x‖)
δ∫

t0

pk(s)ds + ψ(‖x‖)
δ∫

t0

(δ − s)r−k−1 p(s)

�(r − k)
ds

⎞

⎠ .

The right hand side of the above inequality tends to zero independently of x ∈ Bη as
t2 − t1 → 0. As �F satisfies the above three assumptions, it follows by the Arzelá-Ascoli
Theorem that �F : C(J,R) → P(C(J,R)) is completely continuous.

Step IV We show that �F has a closed graph. Let xn → x∗, hn ∈ �F (xn) and hn → h∗.
Then we need to show that h∗ ∈ �F (x∗). Associated with hn ∈ �F (xn), there exists
fn ∈ SF,xn such that for each t ∈ J ,

hn(t) =
t∫

t0

(t − s)r−1 fn (s)

�(r)
ds +

n−1∑

k=0

(t − δ)k

k!

×
⎛

⎝xk +
δ∫

t0

(

gk(s, xn(s))ds − (δ − s)r−k−1 fn (s)

�(r − k)

)

ds

⎞

⎠ .

Thus we have to show that there exists f∗ ∈ SF,x∗such that for each t ∈ J ,

h∗(t) =
t∫

t0

(t − s)r−1 f∗ (s)

�(r)
ds +

n−1∑

k=0

(t − δ)k

k! (3.3)

×
⎛

⎝xk +
δ∫

t0

(

gk(s, x∗(s))ds − (δ − s)r−k−1 f∗ (s)

�(r − k)

)

ds

⎞

⎠ .
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Let us consider the continuous linear operator � : L1(J,R) → C(J,R) given by

f → �( f )(t) =
t∫

t0

(t − s)r−1 f (s)

�(r)
ds

+
n−1∑

k=0

(t − δ)k

k!

⎛

⎝xk +
δ∫

t0

(

gk(s, x(s))ds − (δ − s)r−k−1 f (s)

�(r − k)

)

ds

⎞

⎠ .

Observe that

|hn(t) − h∗(t)| ≤
t∫

t0

(t − s)r−1

�(r)
| fn (s) − f∗ (s)| ds

+
n−1∑

k=0

(t − δ)k

k!
δ∫

t0

(δ − s)r−k−1

�(r − k)
| fn (s) − f∗ (s)| ds

+
n−1∑

k=0

(t − δ)k

k!
δ∫

t0

|gk(s, xn(s)) − gk(s, x∗(s))| ds.

Thus, it follows by Lemma 2.15 that � ◦ SF is a closed graph operator. Further, we have
hn(t) ∈ �(SF,xn ); since xn → x∗, we have h∗ satisfying (3.3) for some f∗ ∈ SF,x∗ .

Step V We discuss a priori bounds on solutions. Let x be a solution of (1.1). Then there
exists f ∈ L1(J,R) with f ∈ SF,x such that, for t ∈ J , we have

x(t) =
t∫

t0

(t − s)r−1

�(r)
f (s) ds

+
n−1∑

k=0

(t − δ)k

k!

⎛

⎝xk +
δ∫

t0

(

gk(s, x∗(s))ds − (δ − s)r−k−1 f (s)

�(r − k)

)

ds

⎞

⎠ .

As in Step II, we find that

|x(t)| ≤ ψ(‖x‖) ‖p‖
{

2

�(r + 1)
+

n−1∑

k=1

1

k!�(r − k + 1)

}

(T − t0)
r

+
n−1∑

k=0

|T − t0|k
k! (|xk | + δ−t0) ψk(η) ‖pk‖ ,

which, after taking norm for t ∈ J, implies that

‖x‖
γ1ψ(‖x‖) ‖p‖ + γ2

≤ 1.

In view of assumption (D), there exists M such that ‖x‖ 
= M . Let us set

U = {x ∈ C(J,R) : ‖x‖ < M + 1}.
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Note that the operator �F : U → P(C(J,R)) is upper semi-continuous and completely
continuous. From the choice of U , there is no x ∈ ∂U such that x = λ�F (x) for some λ ∈
(0, 1). Consequently, by the nonlinear alternative of Leray–Schauder type, we deduce that
�F has a fixed point x ∈ U which is a solution of problem (1.1). This completes the proof.

��
The next result deals with the case when F is not necessarily convex valued and its proof

relies on the nonlinear alternative of Leray–Schauder type togetherwith the selection theorem
due toBressan andColombo [21] for lower semi-continuousmapswith decomposable values.
For that, we consider the following assumption instead of hypothesis (A):

(E) Let F : J ×R → P(R) be a nonempty compact-valued multivalued map such that (a)
(t, x) → F(t, x) is L ⊗ B measurable, and (b) x → F(t, x) is lower semi-continuous
for each t ∈ J.

Theorem 3.3 Assume that the hypotheses (B), (C), (D), and (E) hold. Then the fractional
differential inclusion problem (1.1) has at least one solution on J.

Proof In view of the hypotheses (B) and (E), we deduce that F is of l.s.c. type. Then, by
Lemma 2.16, there exists a continuous function f : C(J,R) → L1(J,R) such that f (x) ∈
F(x) for all x ∈ C(J,R). Next, we consider the problem

⎧
⎪⎪⎨

⎪⎪⎩

c Dr
t0 x(t) = f (x(t)), t ∈ J,

x (k) (δ) = xk +
δ∫

t0

gk(s, x(s))ds, k = 0, 1, . . . , n − 1, δ ∈ J.
(3.4)

Observe that if x ∈ C(J,R) is a solution of (3.4), then x is a solution to problem (1.1). In
order to transform problem (3.4) into a fixed point problem, we define an operator ϒ as

ϒx(t) =
t∫

t0

(t − s)r−1

�(r)
f (x(s)) ds

+
n−1∑

k=0

(t − δ)k

k!

⎛

⎝xk +
δ∫

t0

(

gk(s, x(s))ds − (δ − s)r−k−1 f (x(s))

�(r − k)

)

ds

⎞

⎠ .

As in the preceding result, one can show that the operator ϒ is completely continuous.
The rest of the proof is similar to that of Theorem 3.2, so we omit it. This completes the
proof. ��

In our last result, we discuss the existence of solutions for problem (1.1) with a nonconvex
valuedmap bymeans of a fixed point theorem for multivaluedmaps due to Covitz and Nadler
[23]. In the sequel, we need the following assumptions:

(F) Let F : J × R → Pcp(R) be such that F(·, x) : J → Pcp(R) is measurable for each
x ∈ R;

(G) dH (F(t, x), F(t, y)) ≤ z(t)|x−y| for almost all t ∈ J and x, y ∈ Rwith z ∈ C(J,R+)

and d(0, F(t, 0)) ≤ z(t) for almost all t ∈ J ;
(H) There exist functions pk ∈ C(J,R+) such that

|gk(t, x) − gk(t, y)| ≤ pk(t)|x − y|,
for t ∈ J, k = 0, 1, . . . , n − 1 and x, y ∈ R.
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Theorem 3.4 Assume that the conditions (F), (G) and (H) hold. Then the fractional differ-
ential inclusion problem (1.1) has at least one solution on J if

γ1 ‖z‖ + γ3 < 1,

where

γ3 =
n−1∑

k=0

(T − t0)k ‖pk‖
k! .

Proof Observe that the set SF,x is nonempty for each x ∈ C(J,R) by assumption (F), so
F has a measurable selection (see Theorem 3.6 in [17]). Now we show that the operator �F

satisfies the assumptions of Theorem 2.18. To show that �F (x) ∈ Pcl((C(J,R)) for each
x ∈ C(J,R), let (un)n≥0 ∈ �F (x) be such that un → u in C (J,R). Then u ∈ C(J,R) and
there exists vn ∈ SF,x such that, for each t ∈ J , we have

un(t) =
t∫

t0

(t − s)r−1

�(r)
vn(s)ds

+
n−1∑

k=0

(t − δ)k

k!

⎛

⎝xk +
δ∫

t0

(

gk(s, xn(s))ds − (δ − s)r−k−1vn(s)

�(r − k)

)

ds

⎞

⎠ .

Since F has compact values, we pass onto a subsequence to obtain that vn converges to v

in L1(J,R). Thus, v ∈ SF,x and for each t ∈ J ,

un(t) → u(t) =
t∫

t0

(t − s)r−1

�(r)
v(s)ds

+
n−1∑

k=0

(t − δ)k

k!

⎛

⎝xk +
δ∫

t0

(

gk(s, x(s))ds − (δ − s)r−k−1v(s)

�(r − k)

)

ds

⎞

⎠ .

Thus, u ∈ �F (x). Next we show that there exists τ < 1 such that

dH (�F (x),�F (y)) ≤ τ ‖x − y‖ ,

for each x, y ∈ C(J,R). Let x, y ∈ C(J,R) and h1 ∈ �F (x). Then there exists v1(t) ∈
F(t, x(t)) such that, for each t ∈ J , we have

h1(t) =
t∫

t0

(t − s)r−1

�(r)
v1(s)ds

+
n−1∑

k=0

(t − δ)k

k!

⎛

⎝xk +
δ∫

t0

(

gk(s, x(s))ds − (δ − s)r−k−1v1(s)

�(r − k)

)

ds

⎞

⎠ .

By hypothesis (G), we have

dH (F(t, x), F(t, y)) ≤ z(t)|x(t) − y(t)|.
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So, there exists w∗ ∈ F(t, y(t)) such that

|v1(t) − w∗| ≤ z(t)|x(t) − y(t)|, t ∈ J.

Define the multivalued map V : J → P(R) by

V (t) = {w∗ ∈ R : |v1(t) − w∗| ≤ z(t) |x(t) − y(t)|}.
Since V (t) ∩ F(t, y(t)) is measurable (see Proposition 3.4 in [17]), there exists a function
v2(t) which is a measurable selection for V . So v2(t) ∈ F(t, y(t)) and for each t ∈ J, we
have |v1(t) − v2(t)| ≤ z(t)|x(t) − y(t)|. Let us define

h2(t) =
t∫

t0

(t − s)r−1

�(r)
v2(s)ds

+
n−1∑

k=0

(t − δ)k

k!

⎛

⎝xk +
δ∫

t0

(

gk(s, y(s))ds − (δ − s)r−k−1v2(s)

�(r − k)

)

ds

⎞

⎠ .

Thus, for each t ∈ J , it follows that

|h1(t) − h2(t)| ≤
t∫

t0

(t − s)r−1

�(r)
|v1(s) − v2(s)| ds

+
n−1∑

k=0

(t − δ)k

k!
δ∫

t0

(δ − s)r−k−1

�(r − k)
|v1(s) − v2(s)| ds

+
n−1∑

k=0

(t − δ)k

k!
δ∫

t0

|gk(s, x(s)) − gk(s, y(s))| ds

≤
{{

(T − t0)r

�(r + 1)
+

n−1∑

k=0

(T − t0)r

k!�(r − k + 1)

}

‖z‖

+
n−1∑

k=0

(T − t0)k ‖pk‖
k!

}

‖x − y‖ .

Hence

‖h1 − h2‖ ≤ (γ1 ‖z‖ + γ3) ‖x − y‖.
Analogously, interchanging the roles of x and y, we obtain

dH (�F (x),�F (y)) ≤ (γ1 ‖z‖ + γ3) ‖x − y‖
≤ τ‖x − y‖,

where τ < 1. Thus it follows by Theorem 2.18 that the operator�F has a fixed point x which
is a solution of problem (1.1). This completes the proof. ��
Remark 3.5 We obtain the existence results for an initial value problem of general fractional
differential inclusions with initial conditions: x (k)(t0) = bk, k = 0, 1, 2, . . . , n − 1, by
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taking θ = t0 in the results of this paper, while the results for general fractional differential
inclusions with classical nonlinear integral conditions:

x (k)(T ) = bk +
T∫

t0

gk(s, x(s))ds, k = 0, 1, 2, . . . , n − 1,

follow by fixing θ = T in the obtained results.

Example 3.6 Consider the following fractional differential inclusion problem

⎧
⎪⎪⎨

⎪⎪⎩

c D5.5
0 x (t) ∈ F (t, x (t)) , t ∈ [0, 1],

x (k)
( 1
2

) = 1 +
1/2∫

0

ke−x(t)dt, k = 0, 1, . . . , 5,
(3.5)

where F : [0, 1] × R → P(R) is a multivalued map given by

F(t, x) =
{

y ∈ R : 0 ≤ y ≤
3
√

t |x |
3 (1 + |x |)

}

.

Observe that

t → F(t, x) =
{

y ∈ R : 0 ≤ y ≤
3
√

t |x |
3 (1 + |x |)

}

is measurable for each x ∈ R, since both the lower and upper functions are measurable on
[0, 1]×R. Moreover, the mapping x → F(t, x) is upper semi-continuous for all t ∈ J . Thus
F is a Carathéodory and clearly has convex values satisfying

‖F(t, x)‖ ≤ p(t)ψ(‖x‖) for each (t, x) ∈ [0, 1] × R,

where p(t) = 3
√

t, andψ(x) = 1/3. If we let gk(t, x(t)) = ke−x(t), k = 0, 1, 2, . . . , 5, then

|gk(t, x)| ≤ pk(t),

where pk = k, and ψk(x) = 1, for k = 0, 1, 2, . . . , 5. In a straightforward manner, we find
that

γ1 = 2

�(6.5)
+ 1

�(5.5)
+ 1

�(4.5)
+ 1

�(3.5)
+ 1

�(2.5)
+ 1

�(1.5)
= 2.3

γ2 = 3

2

(

1 + 2

2
+ 3

6
+ 4

24
+ 5

120

)

= 0.209.

Therefore, choosing M such that

M >
1

4
(2.3) + 0.209 = 0.784,

we conclude that there exists a solution of problem (3.5) on [0, 1] by Theorem 3.2.

Next, for F(t, x) =
[

0,
3
√

t |x |
2 (1 + |x |)

]

, we deduce that

sup{|y| : y ∈ F(t, x)} ≤
3
√

t |x |
3 (1 + |x |)

≤ 1

3
for each (t, x) ∈ [0, 1] × R,

123



Differ Equ Dyn Syst (January 2020) 28(1):241–254 253

and

dH (F(t, x), F(t, y)) = dH

([

0,
3
√

t |x |
3 (1 + |x |)

]

,

[

0,
3
√

t |y|
3 (1 + |y|)

])

≤
3
√

t

3
|x − y|.

Here z(t) =
3
√

t

3
, with ‖z‖ ≈ 0.33, and

γ1 ‖z‖ + γ3 ≈ 2.3 (0.33) + 0.14 < 1.

The compactness of F togetherwith the above calculations lead to the existence of solution
of the problem (3.5) by Theorem 3.4.
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