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Abstract A disease transmission model of SEIRS type with a wide class of nonlinear inci-
dence functions in a constant population is proposed. This model has two equilibria: a
disease-free equilibrium and an endemic equilibrium. To our knowledge, the global asymp-
totic stability of the endemic equilibrium is not investigated in the general case. In the present
paper, we use a geometric approach to offer a useful solution of this problem.

Keywords SEIRS epidemic model · Nonlinear incidence function · Global asymptotic
stability · Geometric approach · Compound matrix

Introduction

In most communicable diseases such as cholera, pertussis, influenza and malaria, it has
been observed that recovered individuals can return to the susceptible period (temporary
immunity). This observation has beendescribedbySIRSandSEIRSmodels (see [17–19,23]).
The above model utilize an ordinary differential system with four equations to represent the
flow of individuals between Susceptible (S), Exposed (E), Infectious (I) and Recovered (R)
compartments. The major contribution of this representation is the simultaneous modeling
of the latent period (the period during which the individual is said to be exposed but not
infectious) and the temporary immunity of the recovered individuals. In the present paper,
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we propose the following SEIRS model with a wide class of nonlinear incidence function
(the number of new exposed per unit time) in a constant population :

dS
dt = A − dS − f (S, I ) + δR,

dE
dt = f (S, I ) − (d + σ)E,

d I
dt = σ E − (d + γ )I,

dR
dt = γ I − (d + δ)R.

(1.1)

The initial conditions are

S(0) > 0, E(0) ≥ 0, I (0) > 0, R(0) ≥ 0 (1.2)

Here A = dN is the recruitment rate, where N = S + E + I + R is the total number
of population, S is the number of susceptible individuals, I is the number of infectious
individuals, E is the number of exposed individuals, R is the number of recovered individuals,
d is the natural death, f (S, I ), is the incidence function, γ is the recovery rate of the infectious
individuals, σ is the rate at which exposed individuals become infectious and δ is the rate of
loss of immunity.

A fundamental problem in epidemicmodel is to determine the incidence functions because
they has played an important role in the study of the transmission of the infection. All
studies on epidemiological modeling have suggested that this disease transmission shall
have a nonlinear incidence (see [2,3,24,39]). In our proposition, the incidence f (S, I ) is a
continuously differentiable function on ]0,+∞[×]0,+∞[ satisfying [12]:

(H0) : f (0, I ) = f (S, 0) = 0;
(H1) : f is a strictly monotone increasing function of S, for any fixed I > 0, and f is a

strictly monotone increasing function of I, for any fixed S > 0;
(H2) : φ(S, I ) = f (S,I )

I is a bounded and monotone decreasing function of I > 0, for any
fixed S ≥ 0, and K (S) = lim I→0+ φ(S, I ) is a continuous and monotone increasing
function on S ≥ 0.

This proposition includes the following forms:

1. The saturated incidence βSI
α+S+I proposed in [1], where β and α are the positive constants;

2. The bilinear incidence βSI introduced in [14,20,37,42,43];
3. The standard incidence βSI

N advanced in [11,15];

4. The saturated incidence βSI
1+α1S+α2 I

proposed in [1,5–7,20,22,38,40,41], where α1 and
α2 are the positive constants.

However, hypotheses (H1) and (H2) cannot be applied generally in the following cases:

1. The first one is βSq I p

1+α I s [16,19,26,31,35], where α ≥ 0, p, q and s are the positive
constants;

2. The second one is β I (1 + ν I q)S [2,10,29], where ν ≥ 0 and 0 < q ≤ 1.

Many authors have studied the dynamical behavior of System (1.1) with various incidence
functions (see [8,23,28,28,30,33] and references therein). Much attention has been paid to
the analysis of the global stability of the disease-free equilibrium and the endemic equilibrium
of this system. Liu et al. [30] considered an SEIRS epidemic model with f (S, I ) = βS p I q .
They showed that the qualitative behavior is not affected by changing q from unity, but
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is affected significantly by changing p from unity: For 0 < p < 1 the disease free equi-
librium is always unstable and the endemic equilibrium is asymptotically stable and for
p > 1 they proved that System (1.1) has three equilibria due to a saddle-node bifurcation
of the positive equilibrium at the threshold. In [33], Li and Muldowney have studied Sys-
tem (1.1) with bilinear incidence function which takes the form f (S, I ) = βSI . Using a
geometric approach to global stability, they established that when the rate of loss of immu-
nity δ is close to unity, the unique endemic equilibrium is globally asymptotically stable.
A geometric approach was also found in [32] to determine the global stability of SEIRS
model with f (S, I ) = βSg(I ). The authors established that the unique endemic equilib-
rium is globally asymptotically stable if g(I ) satisfies |Ig′(I )| ≤ g(I ). Later, Cheng and
Yang [8], proposed to complete the study of the global stability in [32] for all parameters
μ, σ, γ and δ,, they relaxed the constraint |Ig′(I )| ≤ g(I ) by the following condition
|Ig′(I )|(1 + τ) ≤ g(I ) and they presented the complete resolution of the global stability
issue of the bilinear SEIRS model for the full range of μ, σ, γ and δ, in the parameter space.
In [28] Li et al. considered System (1.1) with bilinear incidence. they applied a geomet-
ric approach to global stability problems to show that when the basic reproduction number
is greater than one, then there exists a δ > 0 such that the unique endemic equilibrium
of (1.1) is globally asymptotically stable when δ ≤ δ. In [23] Khan et al. presented the
System (1.1) with f (S, I ) = βSI


(I ) where 
 is a positive function with 
(0) = 1 and

 ′ ≥ 0. The authors showed the global stability of the endemic equilibrium by a geometric
approach.

In the present paper, a SEIRS epidemic model with a wide class of nonlinear incidence
(called here a generalized SEIRS epidemic model) is proposed. By a geometric approach,
the global asymptotic stability of the unique endemic equilibrium is proved when the basic
reproduction number is greater than unity.

The rest of the paper is organized as follows: In “Basic Properties of the Generalized
SEIRS Model” section, the basic proprieties of the generalized SEIRS epidemic model (1.1)
are investigated. In “Local Asymptotic Stability of the Endemic Equilibrium” section, the
local asymptotic stability of the endemic equilibrium is established. In “Global Asymptotic
Stability of the Endemic Equilibrium” section, the global asymptotic stability of the endemic
equilibrium are discussed. In “Discussion” section, a brief discussion is presented to conclude
this paper.

Basic Properties of the Generalized SEIRS Model

In this section, we state the basic proprieties of the generalized SEIRS epidemic model (1.1).
The total population size N satisfies the equation N = S + E + I + R, which reduces the
system (1.1) to the following system:

dS

dt
= A + δN − (d + δ)S − f (S, I ) − δE − δ I,

dE

dt
= f (S, I ) − (d + σ)E, (2.1)

d I

dt
= σ E − (d + γ )I.
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Therefore, the biologically feasible region for the system (2.2)

T = {(S, E, I ) ∈ R
3+ : S + E + I ≤ N }

is bounded and positively invariant.
We define the basic reproduction number of system (2.2) by

R0 = σ
∂ f (N ,0)

∂ I

(d + γ )(d + σ)
.

In our first basic result, we show the existence and the uniqueness of the equilibrium
points.

Proposition 2.1 On the one hand, the system (2.2) always has a disease-free equilibrium
P0 = (N , 0, 0) provided that hypothesis (H0) is satisfied. On the other hand, under the
hypotheses (H1) and (H2), if R0 > 1, then system (2.2) also admits a unique endemic
equilibrium: P∗ = (S∗, E∗, I ∗).

Proof It is easy to verify that if f (S, 0) = 0, the vector (N , 0, 0) always is an equilibrium
of system (2.2).

Next, we prove the existence of the unique endemic equilibrium. If (S, E, I ) is an equi-
librium of System (2.2), then we have the following system:

A + δN − (d + δ)S − f (S, I ) − δE − δ I = 0,

f (S, I ) − (d + σ)E = 0, (2.2)

σ E − (d + γ )I = 0.

If I 	= 0, we have

S = σ(A + δN ) − (d + σ + δ)(d + γ )I − σδ I

σ(d + δ)
,

E = d + γ

σ
I, (2.3)

f (S, I ) = (d + γ )(d + σ)

σ
I.

We consider the following function

h(I ) := φ

(
σ(A + δN ) − (d + σ + δ)(d + γ )I − σδ I

σ(d + δ)
, I

)
− (d + γ )(d + δ)

σ
.

By (H1) and (H2), we have h is continuous and strictly monotone decreasing function of
I > 0, and for R0 > 1,

lim
I→0+ h(I ) = (d + γ )(d + δ)

σ
(R0 − 1) > 0,

and

h

(
σ(A + δN )

σδ + (d + γ )(d + σ + δ)

)
= −

(
(d + γ )(d + δ) + σδ

σ

)
< 0.

Hence, there exist a unique endemic equilibrium P∗ = (S∗, E∗, I ∗). This complete the
proof. 
�

Next, we discuss the global asymptotic stability of the disease-free equilibrium P0 .
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Theorem 2.2 (i) If R0 ≤ 1, then the disease-free equilibrium P0 is globally asymptotically
stable.

(ii) If R0 > 1, then the disease free equilibrium P0 is unstable.

Proof Set V = σ E + (d + σ)I , then

V ′ = (d + γ )(d + σ)I

(
σφ(S, I )

(d + γ )(d + σ)
− 1

)
≤ (d + γ )(d + σ)I (R0 − 1),

if R0 ≤ 1, then V ′ ≤ 0. Furthermore, V ′ = 0 if and only if I = 0. Therefore the largest
compact invariant set in {(S, E, I ) ∈ T/V ′ = 0}, when R0 ≤ 1, is the singleton {P0}.
LaSalle’s Invariance Principle implies that P0 is globally asymptotically stable in T . 
�

Local Asymptotic Stability of the Endemic Equilibrium

In this section, we discuss the local and the global asymptotic stability of the endemic
equilibrium of the generalized SEIRS epidemic model (1.1).

In order to prove our main results, we will need to demonstrate the following results:

Lemma 3.1 The following statements are logically equivalent:

(i) The function φ(S, I ) = f (S,I )
I is monotone of I > 0, for any fixed S ≥ 0.

(ii) f (S,I )
I − ∂ f (S,I )

∂ I has a constant sign.

Proof Consider the function φ(S, I ) = f (S,I )
I . Then, the partial derivative of φ, with respect

to I is given by

∂φ(S, I )

∂ I
= I ∂ f (S,I )

∂ I − f (S, I )

I 2
,

and a simple calculation, leads to

f (S, I )

I
− ∂ f (S, I )

∂ I
= −I.

∂φ(S, I )

∂ I
.

This immediately allows to demonstrate the proposed equivalence. 
�
The following corollary is an immediate consequence of Lemma 3.1 .

Corollary 3.2 The following statements are logically equivalent:

(i) φ(S, I ) = f (S,I )
I is a monotone decreasing function of I > 0, for any fixed S ≥ 0.

(ii) f (S,I )
I − ∂ f (S,I )

∂ I ≥ 0.

Now let us start to discuss the local asymptotic stability of the endemic equilibrium P∗.
Theorem 3.3 Suppose the hypotheses (H1) and (H2) hold.

If R0 > 1, then the endemic equilibrium P∗ is locally asymptotically stable.

Proof Let x = S − S∗, y = E − E∗ and z = I − I ∗.
Then by linearizing system (2.2) around P∗, we have

dx

dt
= −

(
d + ∂ f (S∗, I ∗)

∂S
+ δ

)
x(t) −

(
∂ f (S∗, I ∗)

∂ I
+ δ

)
z(t) − δy(t),

dy

dt
= −(d + σ)y(t) + ∂ f (S∗, I ∗)

∂S
x(t) + ∂ f (S∗, I ∗)

∂ I
z(t), (3.1)

dz

dt
= σ y(t) − (d + γ )z(t)
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The characteristic equation associated to system (3.2) is given by

λ3 + aλ2 + bλ + c = 0, (3.2)

where

a = 3d + γ + σ + δ + ∂ f (S∗, I ∗)
∂S

,

b = (d + γ )(d + σ) − σ
∂ f (S∗, I ∗)

∂ I
+ (2d + γ + σ)

(
d + δ + ∂ f (S∗, I ∗)

∂S

)

+δ
∂ f (S∗, I ∗)

∂S
,

c= (d + δ)

[
(d + γ )(d + σ) − σ

∂ f (S∗, I ∗)
∂ I

]
+ ∂ f (S∗, I ∗)

∂S

[
(d + δ + σ)(d + γ ) + σδ

]
.

Firstly, from hypothesis (H1),we have
∂ f (S∗,I ∗)

∂S ≥ 0, which implies that a > 0. Secondly,
by using the second and the third equations in system (2.2), We find that

(d + γ )(d + σ) − σ
∂ f (S∗, I ∗)

∂ I
= σ

(
f (S∗, I ∗)

I ∗ − ∂ f (S∗, I ∗)
∂ I

)
.

Hence, the Corollary 3.2 implies that b > 0, c > 0, and

ab − c = σ(2d + γ + σ)

(
f (S∗, I ∗)

I ∗ − ∂ f (S∗, I ∗)
∂ I

)

+
(
3d + γ + σ + δ + ∂ f (S∗, I ∗)

∂S

)

×
[
(2d + γ + σ)

(
d + δ + ∂ f (S∗, I ∗)

∂S

)
+ δ

∂ f (S∗, I ∗)
∂S

]

−∂ f (S∗, I ∗)
∂S

[
(d + δ + σ)(d + γ ) + σδ

]
> 0.

So, by the Routh–Hurwitz criterion, we obtain the local stability of P∗ for R0 > 1. This
concludes the proof of Theorem 3.3. 
�

Global Asymptotic Stability of the Endemic Equilibrium

In order to study the global asymptotic stability of the endemic equilibrium P∗, we use the
geometrical approach which is developed in the papers of Smith [36] and Li and Muldowney
[28]. We obtain simple sufficient conditions that P∗ is globally asymptotically stable when
R0 > 1.

To show the existence of a compact set in the interior of T that is absorbing for (2.2) is
equivalent to proving that (2.2) is uniformly persistent, which means that there exists a con-
stant c > 0 such that every solution (S, E, I ) of (2.2) with the initial data (S(0), E(0), I (0))
in the interior of T satisfies

lim inf
t→∞ S(t) ≥ c, lim inf

t→∞ E(t) ≥ c, lim inf
t→∞ I (t) ≥ c (4.1)

Here c is independent of initial data in T , see [28]. We can prove the following result.
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Proposition 4.1 The system (2.2) is uniformly persistent if and only if R0 > 1.

Proof By Theorem 4.3 in [13], we can see that uniform persistence of system (2.2) is equiva-
lent to instability of the disease-free equilibrium P0 = ( A

d , 0, 0). Combine the local stability
analysis for this equilibrium in Theorem 3.3 and Theorem 4.3 in [13], we know that system
(2.2) is uniformly persistent if and only if R0 > 1. 
�

We state our main result in the following theorem.

Theorem 4.2 Assume that R0 > 1. Then there exists δ > 0 such that the unique endemic
equilibrium P∗ is globally asymptotically stable when δ ≤ δ.

Proof By Proposition 4.1, when R0 > 1, there exists a compact set K in the interior of T
that is absorbing for (2.2). The proof of the theorem consists of choosing a suitable vector
norm in R

3 and a 3 × 3 matrix-valued function A(x) so that

q2 := lim sup
t→∞

sup
x0∈K

1

t

∫ t

0
μ1(B(x(s, x0)))ds < 0 (4.2)

where B = Ag A−1 + AJ [2]A−1, x = (S, E, I ) and g(x) denote the vector field of (2.2), i.e.
dx(t)
dt = g(x). The Jacobian matrix J = ∂g

∂x associated with a general solution x(t) of (2.2)
is given by:

J =
⎛
⎝−d − δ − ∂ f (S,I )

∂S −δ − ∂ f (S,I )
∂S − δ

∂ f (S,I )
∂S −d − σ

∂ f (S,I )
∂ I

0 σ −d − γ

⎞
⎠

The second additive compound matrix J [2] of the Jacobian matrix J is given by

J [2] =
⎛
⎜⎝

−2d − δ − σ − ∂ f (S,I )
∂S

∂ f (S,I )
∂ I

∂ f (S,I )
∂ I + δ

σ −2d − γ − δ − ∂ f (S,I )
∂S −δ

0 ∂ f (S,I )
∂S −2d − γ − σ

⎞
⎟⎠

Set the function A(x) = A(S, E, I ) = diag{1, E
I , E

I }. Then,

Ag A
−1 = diag

{
0,

E ′

E
− I ′

I
,
E ′

E
− I ′

I

}
,

where the matrix Ag is obtained by replacing each entry ai j of A(x) by its derivative in the
direction of g. The matrix B = Ag A−1 + AJ [2]A−1 can be written in the following block
form

B =
(
B11 B12

B21 B22

)
, (4.3)

where B11 = −2d − δ − σ − ∂ f (S,I )
∂S ,

B12 = I

E
,
(

∂ f (S,I )
∂ I

∂ f (S,I )
∂ I + δ

)
, B21 =

(
σ E
I
0

)

B22 =
(

E ′
E − I ′

I − 2d − δ − γ − ∂ f (S,I )
∂S −δ

∂ f (S,I )
∂S

E ′
E − I ′

I − 2d − σ − γ

)

Let (u, v, w) denote the vectors in R
3, we select a norm in R

3 as

|(u, v, w)| = max{|u|, |v| + |w|},
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and let μ1 denote the Lozinskiĭ measure with respect to this norm. Using the method of
estimating μ1 in ([34]), we have

μ1(B) ≤ sup(g1, g2) (4.4)

where

g1 = μ1(B11) + |B12| (4.5)

g2 = μ1(B22) + |B21|, (4.6)

|B12|, |B21| are matrix norms with respect to the l1 vector norm. We have

μ1(B11) = −2d − δ − σ − ∂ f (S, I )

∂S
, (4.7)

|B21| = σ E

I
, (4.8)

|B12| =
(

∂ f (S, I )

∂ I
+ δ

)
I

E
. (4.9)

To calculate μ1(B22), we add the absolute value of the off-diagonal one in each column
of B22, and then take the maximum of two sums (see [9]), we obtain

μ1(B22) = E ′

E
− I ′

I
− 2d − δ − γ − ∂ f (S, I )

∂S
(4.10)

g1 = −2d − δ − σ − ∂ f (S, I )

∂S
+

(
∂ f (S, I )

∂ I
+ δ

)
I

E
, (4.11)

g2 = σ E

I
+ E ′

E
− I ′

I
− 2d − γ + max{−δ;−σ + δ} (4.12)

Rewriting the second and the third equations in (2.2), we obtain respectively,

E ′

E
= f (S, I )

E
− (d + σ) (4.13)

I ′

I
= σ E

I
− (d + γ ) (4.14)

Substituting (4.13) into (4.11) and (4.14) into (4.12), respectively, we have

g1 = E ′

E
− d − δ − ∂ f (S, I )

∂S
− I

E

[(
f (S, I )

I
− ∂ f (S, I )

∂ I

)
− δ

]
. (4.15)

g2 = E ′

E
− d + max{−δ;−σ + δ} (4.16)

By the inequality in Corollary 3.2, we have

g1 ≤ E ′

E
− d − δ − ∂ f (S, I )

∂S
+ δ

I

E
(4.17)

If 2δ ≤ σ , then

g2 ≤ E ′

E
− d − δ (4.18)

μ1(B) ≤ E ′

E
− d − δ + max

{
0, δ

I

E
− ∂ f (S, I )

∂S

}
(4.19)
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and by the uniform persistence in Proposition 4.1, there exists c > 0 and t0 > 0 such that
t > t0 implies c ≤ E(t) ≤ A

d and c ≤ I (t) ≤ A
d , for all (S(0), E(0), I (0)) ∈ K .

Set

δ1 := inf

{
cd

A

∂ f (S, I )

∂S
, c ≤ S, I ≤ A

d

}
,

Therefore, there exists δ = min{δ1; σ
2 } such that if δ ≤ δ, then

μ1(B) ≤ E ′

E
− d − δ. (4.20)

We thus have for δ ≤ δ,

1

t

∫ t

0
μ1(B)dt <

1

t

∫ t0

0
μ1(B)dt + 1

t
log

E(t)

E(t0)
− (d + δ)

t − t0
t

<
−(d + δ)

2
, (4.21)

for all (S(0), E(0), I (0)) ∈ K , which implies

q2 < 0 (4.22)

This concludes the proof. 
�

Discussion

In this paper we analyzed global asymptotic stability of of the generalized SEIRS epidemic
model (1.1). The incidence function f (S, I ) employed in this paper can be applied generally
for a wide class of incidence functions such as the bilinear incidence, the standard incidence
and the saturated incidence, which have appeared in many studies in the literature.

The dynamics of the generalized SEIRS epidemic model demonstrates the threshold phe-
nomenon as follows : the disease-free equilibrium is globally asymptotically stable when the
basic reproduction number, R0 is less than unity and when R0 is greater than unity, there
is an unique endemic equilibrium, which is globally asymptotically stable provided that the
rate of loss of immunity δ is less than a critical value δ. The above result is obtained by the
geometric approach.
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