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Introduction

The random genetic drift model developed implicitly by Fisher in [11] and explicitly by
Wright in [25], and henceforth called the Wright–Fisher model, is one of the most popular
stochastic models in population genetics [2,9]. In its simplest form, it is concerned with the
evolution of the probabilities between non-overlapping generations in a population of fixed
size of two alleles at a single diploid locus that are obtained from random sampling in the
parental generation, without additional biological mechanisms like mutation, selection, or
a spatial population structure. Generalizations to multiple alleles, several loci, inclusion of
mutations and selection etc. then constituted an important part of mathematical population
genetics. It is our aim to develop a general mathematical perspective on the Wright–Fisher
model and its generalizations. In the present paper, we treat the case of multiple alleles at a
single site. In a companion paper [23], we have discussed the simplest case of two alleles in
more detail. Generalizations will be addressed in subsequent papers.

Let us first describe the basic mathematical contributions of Wright and Kimura. In 1945,
Wright approximated the discrete process by a diffusion process that is continuous in space
and time (continuous process, for short) and that can be described by a Fokker–Planck equa-
tion. In 1955, by solving this Fokker–Planck equation derived from theWright–Fishermodel,
Kimura obtained an exact solution for the Wright–Fisher model in the case of two alleles
(see [15]). Kimura [16] also developed an approximation for the solution of the Wright–
Fisher model in the multi-allele case, and in 1956, he obtained ([17]) an exact solution of this
model for three alleles and concluded that this can be generalized to arbitrarily many alleles.
This yields more information about the Wright–Fisher model as well as the corresponding
continuous process. Kimura’s solution, however, is not entirely satisfactory. For one thing, it
depends on very clever algebraic manipulations so that the general mathematical structure is
not very transparent, and this makes generalizations very difficult. Also, Kimura’s approach
is local in the sense that it does not naturally incorporate the transitions resulting from the
(irreversible) loss of one or more alleles in the population. Therefore, for instance the integral
of his probability density function on its defined domain is not equal to 1.

As mentioned, while the original model of Wright and Fisher works with a finite pop-
ulation in discrete time, many mathematical insights into its behavior are derived from its
diffusion approximation. After the original work ofWright andKimura just described, amore
systematic approach was developed within the theory of strongly-continuous semigroups
and Markov processes. In this framework, the diffusion approximation for the multi-allele
Wright–Fisher model was derived by Ethier and Nagylaki [6,7], and a proof of convergence
of theMarkov chain to the diffusion process can be found in [5]. (In this paper, we are not con-
cerned with deriving the diffusion approximation, but actually, this can be derived in a rather
direct manner without having to appeal to the general theory, as we shall show elsewhere.)
One may then derive existence and uniqueness results for solutions of the Fokker–Planck
equation from the theory of strongly continuous semigroups [5,6,14]. As the diffusion oper-
ator of the diffusion approximation becomes degenerate at the boundary, the analysis at the
boundary becomes difficult, and this issue is not addressed by the aforementioned results.
Recent work of Epstein and Mazzeo [3,4], however, treats the boundary regularity with
general PDE methods.

The full structure of the Wright–Fisher model and its diffusion approximation, however,
is only revealed when one can connect the dynamics before and after the loss of an allele, or
in analytic terms, if one can extend the process from the interior of the probability simplex
to all its boundary strata. In particular, this is needed to preserve the normalization of the
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probability distribution. Therefore, in this paper, we develop the definition of a general
solution that naturally includes the transitions resulting from the disappearance of alleles
and derive the formalism for its solution. Since this formalism is rather explicit, it will
allow us to derive and generalize the known explicit formulas for the quantities associated
with the Wright–Fisher diffusion model like expected waiting times for the loss of one or
several alleles in a systematic manner. The key for our approach are evolution equations for
the moments of the probability density and the duality between the forward and backward
Kolmogorov equations. We show that there exists a unique global solution of the Fokker–
Planck equation. Since, as explained, our concept of a solution is different from (and, as we
believe, better adapted to the structure of the Wright–Fisher model than) those treated in the
literature, insofar as it extends to the boundary, these results do not follow from the general
results of the literature mentioned above.

In the present paper, we only treat genetic drift in the absence of mutation, selection, and
recombination. Extensions that can be obtained on the basis of the formalism presented here,
in particular to general recombination schemes, will be presented in subsequent publications.

The Global Solution of the Wright-Fisher Model

In this section, we shall first establish some notation, and then prove some propositions as
well as the main theorem of this paper.

Notations

�n := {(x1, x2, . . . , xn+1) : xi ≥ 0,
∑n+1

i=1 xi = 1} is the standard n-simplex in
R
n+1 representing the probabilities or relative frequencies of alleles A1, . . . , An+1 in our

population. Often, however, it is advantageous to work in R
n instead of Rn+1, and with

e0 := (0, . . . , 0) ∈ R
n, ek := (0, . . . , 1︸︷︷︸

kth

, . . . , 0) ∈ R
n , we therefore define

�n := intco{e0, . . . , en} :=
{

n∑

k=0

xkek, (x, x0) =
(

x1, . . . , xn, 1 −
n∑

k=1

xk
)

∈ int�n

}

.

Moreover, we shall need the subsimplices corresponding to subsets of alleles, using the
following notations

Ik := {{i0, . . . , ik}, 0 ≤ i0 < · · · < ik ≤ n}, k ∈ {1, . . . , n},
V0 := {e0, . . . , en},

the domain representing a population of one allele,

V (i0,...,ik )
k := intco{ei0 , . . . , eik }, k ∈ {1, . . . , n},

the domain representing a population of alleles {Ai0 , . . . , Aik },
Vk := {intco{ei0 , . . . , eik } for some i0 < · · · < ik ∈ 0, n}, k ∈ {1, . . . , n},

=
⊔

(i0,...,ik )∈Ik
V (i0,...,ik )
k ,

the domain representing a population of (k + 1) alleles,
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V k :=
⋃

(i0,...,ik )∈Ik
V

(i0,··· ,ik )
k , k ∈ {1, . . . , n},

=
k⊔

i=0

Vi ,

the domain representing a population of at most (k + 1) alleles.

We shall also need some function spaces:

H (i0,...,ik )
k : = C∞

(

V (i0,...,ik )
k

)

,

Hk := C∞(V k), k ∈ {1, . . . , n},
H := { f : V n → [0,∞] measurable such that [ f, g]n < ∞,∀g ∈ Hn},

where [ f, g]n :=
∫

V n

f (x)g(x)dμ(x) =
n∑

k=0

∫

Vk

f (x)g(x)dμk(x),

=
n∑

k=0

∑

(i0,...,ik )∈Ik

∫

V
(i0,...,ik )

k

f (x)g(x)dμ
(i0,...,ik )
k (x),

with μ
(i0,...,ik )
k a probability measure on V (i0,...,ik )

k .

We can now define the differential operators for our Fokker–Planck equation:

L(i0,...,ik )
k : H (i0,...,ik )

k → H (i0,...,ik )
k , L(i0,...,ik )

k f (x) = 1

2

∑

i, j∈{i1,...,ik }

∂2(ai j (x) f (x))

∂xi∂x j
,

(L(i0,...,ik )
k )∗ : H (i0,...,ik )

k → H (i0,...,ik )
k , (L(i0,...,ik )

k )∗g(x) = 1

2

∑

i, j∈{i1,...,ik }
ai j (x)

∂2g(x)

∂xi∂x j
,

Lk : Hk → Hk, (Lk)|H (i0,...,ik )

k
= L(i0,...,ik )

k ,

L∗
k : Hk → Hk, (L∗

k)|H (i0,...,ik )

k
= (L(i0,...,ik )

k )∗,

where the coefficients are defined by

ai j (x) := xi (δi j − x j ), i, j ∈ {1, . . . , n}.
Finally, we shall need

w
(i0,...,ik )
k (x) :=

∏

i∈I (i0,...,ik )

k

xi , k ∈ {1, . . . , n}.

Proposition 2.1 For each 1 ≤ k ≤ n, m ≥ 0, |α| = α1 + · · · + αk = m, the polynomial of

degree m in k variables x = (xi1 , . . . , xik ) in V (i0,...,ik )
k

X (k)
m,α(x) = xα +

∑

|β|<m

a(k)
m,βx

β, (1)
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where the a(k)
m,β are inductively defined by

a(k)
m,β = −

k∑

i=1
(βi + 2)(βi + 1)a(k)

m,β+ei

(m − |β|)(m + β + 2k + 1)
, ∀|β| < m,

is the eigenvector of L(i0,...,ik )
k corresponding to the eigenvalue λ

(k)
m = (m+k)(m+k+1)

2 .

Proof We have

L(i0,...,ik )
k X (k)

m,α(x) = 1

2

∑

i∈{i1,...,ik }

∂2

(∂xi )2

[

xi (1 − xi )
(
xα +

∑

|β|<m

a(k)
m,βx

β
)]

−
∑

i 	= j∈{i1,...,ik }

∂2

∂xi∂x j

[

xi x j
(
xα +

∑

|β|<m

a(k)
m,βx

β
)]

= 1

2

∑

i∈{i1,...,ik }

∂2

(∂xi )2

[

xα+ei − xα+2ei +
∑

|β|<m

a(k)
m,βx

β+ei

−
∑

|β|<m

a(k)
m,βx

β+2ei

]

−
∑

i 	= j∈{i1,...,ik }

∂2

∂xi∂x j

[

xα+ei+e j +
∑

|β|<m

a(k)
m,βx

β+ei+e j

]

= 1

2

∑

i

[

(αi + 1)αi xα−ei − (αi + 2)(αi + 1)xα

+
∑

|β|<m

a(k)
m,β(β i + 1)β i xβ−ei −

∑

|β|<m

a(k)
m,β(β i + 2)(β i + 1)xβ

]

−
∑

i 	= j

[

(αi + 1)(α j + 1)xα +
∑

|β|<m

a(k)
m,β(β i + 1)(β j + 1)xβ

]

=
[

− 1

2

∑

i

(αi + 2)(αi + 1) −
∑

i 	= j

(αi + 1)(α j + 1)

]

xα

+ terms of lower degree

=
[

− 1

2

(∑

i

αi + k
)(∑

i

αi + k + 1
)]

xα + terms of lower degree

= − (m + k)(m + k + 1)

2
xα + terms of lower degree.

By equalizing coefficients we obtain

λ(k)
m = (m + k)(m + k + 1)

2
and

a(k)
m,β = −

k∑

i=1
(βi + 2)(βi + 1)a(k)

m,β+ei

(m − |β|)(m + β + 2k + 1)
, ∀|β| < m.

This completes the proof. 
�
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Remark 2.2 • When k = 1, X (1)
m,m(x1) is the mth−Gegenbauer polynomial (up to a con-

stant). Thus, the polynomials X (k)
m,α(x) can be understood as a generalization of the

Gegenbauer polynomials to higher dimensions.
• Because of this representation of eigenvectors, we can easily see that X (n)

m,α(x) is a basis
of C2(Vn).

Proposition 2.3 If X ∈ C2(V (i0,...,ik )
k ) is an eigenvector of L(i0,...,ik )

k corresponding to λ,

then w
(i0,...,ik )
k X is an eigenvector of (L(i0,...,ik )

k )∗ corresponding to λ.

Proof If X ∈ C2(V (i0,...,ik )
k ) is an eigenvector of L(i0,...,ik )

k corresponding to λ, it follows that

−λ(w
(i0,...,ik )
k (x)X) = 1

2
w

(i0,...,ik )
k (x)

∑

i, j∈{i1,...,ik }

∂2

∂xi∂x j

(
xi (δi j − x j )X

)

= 1

2
w

(i0,...,ik )
k (x)

∑

i, j∈{i1,...,ik }

(
xi (δi j − x j )

) ∂2X

∂xi∂x j

+ 1

2
w

(i0,...,ik )
k (x)

∑

i, j∈{i1,...,ik }

∂
(
xi (δi j − x j )

)

∂xi
∂X

∂x j

+ 1

2
w

(i0,...,ik )
k (x)

k∑

i, j=1

∂
(
xi (δi j − x j )

)

∂x j

∂X

∂xi

+ 1

2
w

(i0,...,ik )
k (x)

∑

i, j∈{i1,...,ik }

∂2
(
xi (δi j − x j )

)

∂xi∂x j
X

= 1

2

k∑

i, j=1

(
xi (δi j − x j )

)(

w
(i0,...,ik )
k (x)

∂2X

∂xi∂x j

)

+ 1

2

∑

j∈{i1,...,ik }
w

(i0,...,ik )
k (x)

(
1 − (k − 1)x j

) ∂X

∂x j

+ 1

2

∑

i∈{i1,...,ik }
w

(i0,...,ik )
k (x)

(
1 − (k − 1)xi

) ∂X

∂xi

− k(k + 1)

2
w

(i0,...,ik )
k (x)X

= 1

2

∑

i, j∈{i1,...,ik }

(
xi (δi j − x j )

)(

w
(i0,...,ik )
k (x)

∂2X

∂xi∂x j

)

+ 1

2

∑

i, j∈{i1,...,ik }

(
xi (δi j − x j )

) ∂w
(i0,...,ik )
k (x)

∂xi
∂X

∂x j

+ 1

2

∑

i, j∈{i1,...,ik }

(
xi (δi j − x j )

) ∂w
(i0,...,ik )
k (x)

∂x j

∂X

∂xi

+ 1

2

∑

i, j∈{i1,...,ik }

(
xi (δi j − x j )

) ∂2w
(i0,...,ik )
k (x)

∂xi∂x j
X
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= 1

2

∑

i, j∈{i1,...,ik }

(
xi (δi j − x j )

) ∂2(w
(i0,...,ik )
k X)(x)

∂xi∂x j

=
(
L(i0,...,ik )
k

)∗(
w

(i0,...,ik )
k (x)X

)
.

This completes the proof. 
�

Proposition 2.4 Let ν be the exterior unit normal vector of the domain V (i0,...,ik )
k . Then we

have

∑

j∈{i1,...,ik }
ai jν

j = 0 on ∂V (i0,...,ik )
k , ∀i ∈ {i1, . . . , ik}. (2)

Proof In fact, on the surface (xs = 0), for some s ∈ {i1, . . . , ik} we have ν = −es , and
hence

∑
j∈{i1,...,ik } ai jν

j = ais = xs(δsi − xi ) = 0. On the surface (xi0 = 0) we have

ν = 1√
k
(ei1 + · · · + eik ), hence

∑
j∈{i1,...,ik } ai jν

j = 1√
k

∑
j∈{i1,...,ik } ai j = 1√

k
xi xi0 = 0.

This completes the proof. 
�

Proposition 2.5 L(i0,...,ik )
k and (L(i0,...,ik )

k )∗ are weighted adjoints in H (i0,...,ik )
k , i.e.

(
L(i0,...,ik )
k X, w

(i0,...,ik )
k Y

)
=
(
X,
(
L(i0,...,ik )
k

)∗ (
w

(i0,...,ik )
k Y

))
, ∀X, Y ∈ H (i0,...,ik )

k .

Proof Weput F (k)
i (x) :=∑ j∈{i1,...,ik }

∂(ai j (x)X (x))
∂x j . Because ofw(i0,...,ik )

k Y ∈ C∞
0 (V

(i0,...,ik )
k ),

the second Green formula, and Proposition 2.4, we have

(
L(i0,...,ik )
k X, w

(i0,...,ik )
k Y

)
= 1

2

∑

i, j∈{i1,...,ik }

∫

V
(i0 ,...,ik )

k

∂2(ai j (x)X (x))

∂xi∂x j
w

(i0,...,ik )
k (x)Y (x)dx

= 1

2

∑

i∈{i1,...,ik }

∫

V
(i0 ,...,ik )

k

∂F (k)
i (x)

∂xi
w

(i0,...,ik )
k (x)Y (x)dx

= 1

2

∑

i∈{i1,...,ik }

∫

∂V
(i0 ,...,ik )

k

F (k)
i (x)νiw

(i0,...,ik )
k (x)Y (x)do(x)

− 1

2

∑

i∈{i1,...,ik }

∫

V
(i0 ,...,ik )

k

F (k)
i (x)

∂(w
(i0,...,ik )
k (x)Y (x))

∂xi
dx

= −1

2

∑

i∈{i1,...,ik }

∫

V
(i0 ,...,ik )

k

F (k)
i (x)

∂(w
(i0,...,ik )
k (x)Y (x))

∂xi
dx

= −1

2

∑

i, j∈{i1,...,ik }

∫

V
(i0 ,...,ik )

k

∂(ai j (x)X (x))

∂x j

∂(w
(i0,...,ik )
k (x)Y (x))

∂xi
dx
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= −1

2

∑

i, j∈{i1,...,ik }

∫

∂V
(i0 ,...,ik )

k

ai j (x)ν j X (x)
∂(w

(i0,...,ik )
k (x)Y (x))

∂xi
do(x)

+
(
X, L∗

k (w
(i0,...,ik )
k Y )

)

= (X, L∗
k (wkY )

)
.


�
Proposition 2.6 In V

(i0,...,ik )
k , {X (k)

m,α}m≥0,|α|=m is a basis of H (i0,...,ik )
k which is orthogonal

with respect to the weights w
(i0,...,ik )
k , i.e.,

(
X (k)
m,α, w

(i0,...,ik )
k X (k)

j,β

)
= 0, ∀ j 	= m, |α| = m, |β| = j.

Proof {X (k)
m,α}m≥0,|α|=m is a basis of H (i0,...,ik )

k because {xα}α is a basis of this space. To
prove the orthogonality we apply the Propositions 2.1, 2.3, 2.7 as follows

−λ(k)
m

(
X (k)
m,α, w

(i0,...,ik )
k X (k)

j,β

)
=
(
L(i0,...,ik )
k X (k)

m,α, w
(i0,...,ik )
k X (k)

j,β

)

=
(
X (k)
m,α, (L(i0,...,ik )

k )∗(w(i0,...,ik )
k X (k)

j,β)
)

= −λ
(k)
j

(
X (k)
m,α, w

(i0,...,ik )
k X (k)

j,β

)
.

Because λ
(k)
m 	= λ

(k)
j , this finishes the proof. 
�

Proposition 2.7 (i) The spectrum of the operator L(i0,...,ik )
k is

Spec(L(i0,...,ik )
k ) =

⋃

m≥0

{

λ(k)
m = (m + k)(m + k + 1)

2

}

=: 
k

and the eigenvectors of L(i0,...,ik )
k corresponding to λ

(k)
m are of the form

X =
∑

|α|=m

d(k)
m,αX

(k)
m,α,

i.e., the eigenspace corresponding to λ
(k)
m is of dimension

(k+m−1
k−1

)
;

(ii) The spectrum of the operator Lk is the same.

Proof (i) Proposition 2.1 implies that 
k ⊆ Spec(L(i0,...,ik )
k ). Conversely, for λ /∈ 
k , we

will prove that λ is not an eigenvalue of L(i0,...,ik )
k . In fact, assume that X ∈ H (i0,...,ik )

k

such that L(i0,...,ik )
k X = −λX in H (i0,...,ik )

k . Because {X (k)
m,α}m,α is an orthogonal basis of

H (i0,...,ik )
k with respect to the weights w

(i0,...,ik )
k (Proposition 2.4), we can represent X by

X =
∞∑

m=0

∑
|α|=m d(k)

m,αX
(k)
m,α . It follows that

∞∑

m=0

∑

|α|=m

d(k)
m,α(−λ(k)

m )X (n)
m,α =

∞∑

m=0

∑

|α|=m

d(k)
m,αL

(i0,...,ik )
k X (k)

m,α

= L(i0,...,ik )
k X

= −λ

∞∑

m=0

∑

|α|=m

d(k)
m,αX

(k)
m,α.
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For any j ≥ 0, |β| = j , multiplying by wk X
(k)
j,β and then integrating on V n we have

∑

|α|= j

d(k)
j,αλ

(k)
j

(
X (k)

j,α, w
(i0,...,ik )
k X (k)

j,β

)

=
∑

|α|= j

d(k)
j,αλ

(
X (k)

j,α, w
(i0,...,ik )
k X (k)

j,β

)
, ∀ j ≥ 0, |β| = j,

⇒
(
X (k)

j,α, w
(i0,...,ik )
k X (k)

j,β

)

β,α

(
d(k)
j,αλ

(k)
j

)

α

=
(
X (k)

j,α, w
(i0,...,ik )
k X (k)

j,β

)

β,α

(
d(k)
j,αλ
)

α
, ∀ j ≥ 0, |β| = j,

⇒ d(k)
j,αλ

(k)
j = d(k)

j,αλ, ∀ j ≥ 0, |β| = j, because det
(
X (k)

j,α, w
(i0,...,ik )
k X (k)

j,β

)

β,α
	= 0

⇒ d(k)
j,α = 0, ∀ j ≥ 0, |α| = j, because λ 	= λ

(k)
j .

It follows that X = 0 in H (i0,...,ik )
k . Therefore

Spec(L(i0,...,ik )
k ) =

⋃

m≥0

{

λ(k)
m = (m + k)(m + k + 1)

2

}

= 
k .

Moreover, assume that X ∈ H (i0,...,ik )
k is an eigenvector of L(i0,...,ik )

k corresponding to

λ
(k)
j , i.e., L(i0,...,ik )

k X = −λ j X . We represent X by

X =
∞∑

m=0

∑

|α|=m

d(k)
m,αX

(k)
m,α.

It follows that
∞∑

m=0

∑

|α|=m

d(k)
m,α(−λ(k)

m )X (k)
m,α =

∞∑

m=0

∑

|α|=m

d(k)
m,αL

(i0,...,ik )
k X (k)

m,α

= L(i0,...,ik )
k X

= −λ
(k)
j

∞∑

m=0

∑

|α|=m

d(k)
m,αX

(k)
m,α.

For any i 	= j , |β| = i , multiplying by wk X
(k)
i,β and then integrating on V n we have

∑

|α|=i

d(k)
i,α λ

(k)
i

(
X (k)
i,α , w

(i0,...,ik )
k X (k)

i,β

)

=
∑

|α|=i

d(k)
i,α λ

(k)
j

(
X (k)
i,α , w

(i0,...,ik )
k X (k)

i,β

)
, ∀i 	= j, |β| = i,

⇒
(
X (k)
i,α , w

(i0,...,ik )
k X (k)

i,β

)

β,α
(d(k)

i,α λ
(k)
i )α

=
(
X (k)
i,α , w

(i0,...,ik )
k X (k)

i,β

)

β,α
(d(k)

i,α λ
(k)
j )α, ∀i 	= j, |β| = i,

⇒ d(k)
i,α λ

(k)
i = d(k)

i,α λ
(k)
j , ∀i 	= j, |β| = i, because det

(
X (k)
i,α , w

(i0,...,ik )
k X (k)

i,β

)

β,α
	= 0,

⇒ d(k)
i,α = 0, ∀i 	= j, |α| = i, because λ

(k)
i 	= λ

(k)
j .
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It follows that

X =
∑

|α|= j

d(k)
j,αX

(k)
j,α.

This completes the proof.

(ii) is obvious. 
�
Definition of the Solution

Weshall now formally derive the Fokker–Planck equation as the diffusion limit of theWright–
Fisher model and introduce our solution concept for this equation. We consider a diploid
population of fixed size N with n + 1 possible alleles A1, . . . , An+1, at a given locus.
Suppose that the individuals in the population are monoecious, that there are no selective
differences between these alleles and no mutations. There are 2N alleles in the population
in any generation, so it is sufficient to focus on the number Ym = (Y 1

m, . . . , Yn
m) of alleles

A1, . . . , An at generation time m. Assume that Y0 = i0 = (i10 , . . . , i
n
0 ) and according to

the Wright–Fisher model, the alleles in generation m + 1 are derived by sampling with
replacement from the alleles of generation m. Thus, the transition probability is

P(Ym+1 = j |Ym = i) = (2N )!
( j0)!( j1)! . . . ( jn)!

n∏

k=0

(
i k

2N

) j k

,

where

i, j ∈ S(2N )
n =

{

i = (i1, . . . , in) : i k ∈ {0, 1, . . . , 2N },
n∑

k=1

i k ≤ 2N

}

,

and

i0 = 2N − |i | = 2N − i1 − · · · − in; j0 = 2N − | j | = 2N − j1 − · · · − jn .

After rescaling

t = m

2N
, Xt = Yt

2N
,

we have a discreteMarkov chain Xt valued in {0, 1
2N , . . . , 1}n with t = 1 now corresponding

to 2N generations. It is easy to see that

X0 = p = i0
2N

,

E(δXi
t ) = 0,

E(δXi
t .δX

j
t ) = (Xi

t )(δi j − X j
t ),

E(δXt )
α = (δt) for |α| ≥ 3. (3)

We now denote bymα(t) the αth−moment of the distribution about zero at the t th generation,
i.e.,

mα(t) = E(Xt )
α.

Then

mα(t + 1) = E(Xt + δXt )
α.
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Expanding the right hand side and noting (3) we obtain the following recursion formula,
under the assumption that the population number N is sufficiently large to neglect terms of
order 1

N2 and higher,

mα(t + 1) =
{

1 − |α|(|α| − 1)

2

}

mα(t) +
n∑

i=1

αi (αi − 1)

2
mα−ei (t). (4)

Under this assumption, the moments change very slowly per generation and we can replace
this system of difference equations by a system of differential equations:

ṁα(t) = −|α|(|α| − 1)

2
mα(t) +

n∑

i=1

αi (αi − 1)

2
mα−ei (t). (5)

With the aim of finding a continuous process which approximates the above discrete
process, we should look for a continuous Markov process {Xt }t≥0 valued in [0, 1]n with the
same conditions as (3) and (5). Denoting by u(x, t) the probability density function of this
continuous process, the condition (3) implies (see for example [9, p. 137], or for a more
rigorous analysis [6–8]) that u is a solution of the Fokker–Planck (Kolmogorov forward)
equation

{
ut = Lnu in Vn × (0,∞),

u(x, 0) = δp(x) in Vn; (6)

and the condition (5) implies

[ut , xα]n =
[

u,−|α|(|α| − 1)

2
xα +

n∑

i=1

αi (αi − 1)

2
xα−ei

]

n

= [u, L∗(xα)]n, ∀α,

and hence, since the polynomials are dense in Hn w.r.t. the product [., .]n ,
[ut , φ]n = [u, L∗

nφ]n, ∀φ ∈ Hn . (7)

This leads us to the following definition of a solution.

Definition 2.8 We call u ∈ H a solution of the Fokker–Planck equation associated with the
Wright–Fisher model if

ut = Lnu in Vn × (0,∞), (8)

u(x, 0) = δp(x) in Vn, (9)

[ut , φ]n = [u, L∗
nφ]n, ∀φ ∈ Hn . (10)

We point out that the last of these equations implicitly contains the boundary behavior
that we wish to impose upon our solution. This will become clear from our construction in
the next section.

The Global Solution

In this subsection, we shall construct the solution and prove the existence as well as the
uniqueness of the solution. The process of finding the solution is as follows: We first find the
general solution of the Fokker–Planck equation (21) by the separation of variables method.
Then we construct a solution depending on certain parameters. We then use the conditions of
(9, 10) to determine the parameters. Finally, we verify that we have indeed found the solution.
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Step 1 Working on Vn , assume that un(x, t) = X (x)T (t) is a solution of the Fokker–Planck
equation (21). Then we have

Tt
T

= Ln X

X
= −λ.

Clearly λ is a constant which is independent on T, X . From the Proposition 2.7 we obtain
the local solution of the Eq. (21) of the form

un(x, t) =
∞∑

m=0

∑

|α|=m

c(n)
m,αX

(n)
m,α(x)e−λ

(n)
m t ,

where

λ(n)
m = (n + m)(n + m + 1)

2

is the eigenvalue of Ln and

X (n)
m,α(x), |α| = m

are the corresponding eigenvectors of Ln .
For m ≥ 0, |β| = m, we conclude from Proposition 2.3 that

L∗
n

(
wn X

(n)
m,β

)
= −λ(n)

m wn X
(n)
m,β .

It follows that
[
ut , wn X

(n)
m,β

]

n
=
[
u, L∗

n

(
wn X

(n)
m,β

)]

n
(the moment condition)

= −λ(n)
m

[
u, wn X

(n)
m,β

]

n
.

Therefore
[
u, wn X

(n)
m,β

]

n
=
[
u(·, 0), wn X

(n)
m,β

]

n
e−λ

(n)
m t

= wn(p)X (n)
m,β(p)e−λ

(n)
m t .

Thus,

wn(p)X (n)
m,β(p)e−λ

(n)
m t =

[
u, wn X

(n)
m,β

]

n

=
(
un, wn X

(n)
m,β

)

n
(because wn vanishes on boundary)

=
∑

|α|=m

c(n)
m,α

(
X (n)
m,α, wn X

(n)
m,β

)

n
e−λ

(n)
m t .

It follows that

(
c(n)
m,α

)

α
=
[(

(X (n)
m,α, wn X

(n)
m,β)n

)

α,β

]−1(

wn(p)X (n)
m,β(p)

)

β

.

Step 2 The solution u ∈ H satisfying (21) will be found in the following form

u(x, t) =
n∑

k=1

uk(x, t)χVk (x) +
n∑

i=0

ui0(x, t)δei (x). (11)
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We use the condition (10) to obtain iteratively values of uk, k = n − 1, . . . , 0. In fact,
assume that we want to calculate u(0,...,n−1)

n−1 (x1, . . . , xn−1, 0, t).
We note that, if we choose

φ(x) = x1 · · · xn X (n−1)
k,β (x1, . . . , xn−1), |β| = k,

then φ(x) vanishes on faces of dimension at most n−1 except the face V 0,...,n−1
n−1 . Therefore,

the expectation of φ will be

[u, φ]n = (un, φ)n +
(
u(0,...,n−1)
n−1 , φ

)

n−1
.

The left hand side can be calculated easily by the condition (10)

[ut , φ]n = [u, L∗
n(φ)]n = −λ

(n−1)
k [u, φ]n . (12)

It follows that

[u, φ]n = φ(p)e−λ
(n−1)
k t .

The first part of the right hand side is

(un, φ)n =
∑

m,α

c(n)
m,α

(∫

Vn
X (n)
m,α(x)φ(x)dx

)

e−λ
(n)
m t .

Therefore we can expand u(0,...,n−1)
n−1 (x1, . . . , xn−1, 0, t) as follows

u(0,...,n−1)
n−1 (x1, . . . , xn−1, 0, t) =

∑

m≥0

c(n−1)
m (x)e−λ

(n−1)
m t

=
∑

m≥0

∑

l≥0

∑

|α|=l

c(n−1)
m,l,α X (n−1)

l,α (x1, . . . , xn−1)e−λ
(n−1)
m t .

Putting this formula into Eq. (12), we shall obtain all the coefficients c(n−1)
m,l,α . Thus, we

shall obtain u(0,...,n−1)
n−1 (x1, . . . , xn−1, 0, t). Similarly we shall obtain un−1. And finally we

shall obtain all uk, k = n − 1, . . . , 0. Thus, we shall obtain the global solution in the form

u(x, t) =
n∑

k=1

ukχVk (x) +
n∑

i=0

ui0(x, t)δei (x).

=
n∑

k=1

∑

m≥0

∑

l≥0

∑

|α|=l

c(k)
m,l,αX

(k)
l,α(x)e−λ

(k)
m tχVk (x) +

n∑

i=0

ui0(x, t)δei (x). (13)

It is not difficult to show that u is a solution of the Fokker–Planck equation associated with
the WF model.
Step 3 We can easily see that this solution is unique. In fact, assume that u1, u2 are two
solutions of the Fokker–Planck equation associated with the WF model. Then u = u1 − u2
will satisfy

ut = Lnu in Vn × (0,∞),

u(x, 0) = 0 in V n,

[ut , φ]n = [u, L∗φ]n, ∀φ ∈ Hn .
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It follows that

[ut , 1]n = [u, L∗
n(1)]n = 0,

[ut , xi ]n = [u, L∗
n(x

i )]n = 0,
[

ut , w
(i0,...,ik )
k X (k)

j,αχ
V

(i0,...,ik )

k

]

n
=
[

u, L∗
n(w

(i0,...,ik )
k X (k)

j,αχ
V

(i0,...,ik )

k
)

]

n

=
[

u, L∗
k(w

(i0,...,ik )
k X (k)

j,αχ
V

(i0,...,ik )

k
)

]

n

= −λ
(k)
j

[

u, w
(i0,...,ik )
k X (k)

j,αχ
V

(i0,...,ik )

k

]

n
.

Therefore

[u, 1]n = [u(·, 0), 1]n = 0,

[u, xi ]n = [u(·, 0), xi ]n = 0,
[

u, w
(i0,...,ik )
k X (k)

j,αχ
V

(i0,...,ik )

k

]

n
=
[

u(·, 0), w(i0,...,ik )
k X (k)

j,αχ
V

(i0,...,ik )

k

]

n
e−λ

(k)
j t = 0.

Since {1, {xi }i , {w(i0,...,ik )
k X (k)

j,αχVk (i0,...,ik )}1≤k≤n,(i0,...,ik )∈Ik , j≥0,|α|= j } is also a basis of Hn it
follows that u = 0 ∈ H .

In conclusion, we have established:

Theorem 2.9 The Fokker Planck equation associated with the Wright–Fisher model with
n + 1 alleles possesses the unique solution

u(x, t) =
n∑

k=1

ukχVk (x) +
n∑

i=0

ui0(x, t)δei (x)

=
n∑

k=1

∑

m≥0

∑

l≥0

∑

|α|=l

c(k)
m,l,αX

(k)
l,α(x)e−λ

(k)
m tχVk (x) +

n∑

i=0

ui0(x, t)δei (x). (14)

Example 2.10 To illustrate this process, we consider the case of three alleles.
We shall construct the global solution for the problem

⎧
⎨

⎩

∂u
∂t = L2u, in V2 × (0,∞),

u(x, 0) = δp(x), x ∈ V2,
[ut , φ]2 = [u, L∗

2φ]2, for all φ ∈ H2,

where the global solution of the form

u = u2χV2 + u0,11 χV 0,1
1

+ u0,21 χV 0,2
1

+ u0,01 χV 0,0
1

+ u10χV 1
0

+ u20χV 2
0

+ u00χV 0
0
,

and the product is

[u, φ]2 =
∫

V2
u2φ|V2dx +

∫ 1

0
u0,11 (x1, 0, t)φ(x1, 0)dx1 +

∫ 1

0
u0,21 (0, x2, t)φ(0, x2)dx2

+ 1√
2

∫ 1

0
u1,21 (x1, 1 − x1, t)φ(x1, 1 − x1)dx1

+ u10(1, 0, t)φ(1, 0) + u20(0, 1, t)φ(0, 1) + u00(0, 0, t)φ(0, 0).

123



Differ Equ Dyn Syst (October 2019) 27(4):467–492 481

Step 1: We find the local solution u2

u2(x, t) =
∑

m≥0

∑

α1+α2=m

c(2)
m,α1,α2 X

(2)
m,α1,α2(x)e−λ

(2)
m t .

To define the coefficients c(2)
m,α1,α2 we use the initial condition and the orthogonality of the

eigenvectors X (2)
m,α1,α2 to get

w2(p)X (2)
m,β1,β2(p) =

[
u(0), w2X

(2)
m,β1,β2

]

2

=
(
u2(0), w2X

(2)
m,β1,β2

)

2
because w2 vanishes on the boundary

=
∑

α1+α2=m

c(2)
m,α1,α2

(
X (2)
m,α1,α2 , w2X

(2)
m,β1,β2

)
for all β1 + β2 = m.

Since the matrix

(
X (2)
m,α1,α2 , w2X

(2)
m,β1,β2

)

(α1,α2),(β1,β2)

is positive definite, we therefore have unique values of the c(2)
m,α1,α2 . It follows that we have

a unique local solution u2.
Step 2: We will use the moment condition to define all other coefficients of the global

solution.
Firstly, we define the coefficients of u1,21 as follows

u1,21 (x1, 1 − x1, t) =
∑

m≥0

cm(x1)e−λ
(1)
m t (15)

=
∑

m,l≥0

cm,l X
(1)
l (x1)e−λ

(1)
m t . (16)

We note that

L∗
2

(
x1x2X (1)

k (x1)
)

= −λ
(1)
k x1x2X (1)

k (x1).

Therefore

[
ut , x

1x2X (1)
k (x1)

]

2
=
[
u, L∗

2

(
x1x2X (1)

k (x1)
)]

2
= −λ

(1)
k

[
u, x1x2X (1)

k (x1)
]

2
.

It follows that

[
u, x1x2X (1)

k (x1)
]

2
= p1 p2X (1)

k (p1)e−λ
(1)
k t .
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Thus we have

p1 p2X (1)
k (p1)e−λ

(1)
k t =

[
u, x1x2X (1)

k (x1)
]

2

=
(
u2, x

1x2X (1)
k (x1)

)

2
+
(
u1,21 , x1(1 − x1)X (1)

k (x1)
)

1

because x1x2 vanish on the other boundaries,

=
∑

m≥0

( ∑

|α|=m

c(2)
m,α

(∫

V2
x1x2X (2)

m,α(x1, x2)X (1)
k (x1)dx

))

e−λ
(2)
m t

+
∑

m≥0

cm,k

(
X (1)
k , w1X

(1)
k

)
e−λ

(1)
m t

because of the orthogonality of (·, ·)1 with respect to w1,

=
∑

m≥0

rme
−λ

(2)
m t +

∑

m≥0

cm,kdke
−λ

(1)
m t .

By equating the coefficients of eαt we obtain u1,21 . Similarly we obtain u1. Then, we define
the coefficients of u10 from the first moment.

Note that when φ = xi , L∗
2(φ) = 0, therefore [ut , φ]2 = 0 or

[u, xi ]2 = [u(0), xi ] = pi .

It follows that

p1 = [u, x1] = (u2, x
1)2 + (u0,11 , x1)1 + (u1,21 , x1)1 + u10(1, 0, t).

Thus we obtain u10(1, 0, t). Similarly we get all u0. Therefore we obtain the global solution
u.

It is easy to check that u is a global solution. To prove the uniqueness we proceed as
follows: Assume that u is the difference of any two global solutions, i.e., u satisfies

⎧
⎨

⎩

ut = L2u in V2 × (0,∞),

u(x, 0) = 0 in V2
[ut , φ]2 = [u, L∗

2φ]2 for all φ ∈ H2.

We shall prove that

[u, φ]2 = 0 ∀φ ∈ H2. (17)

In fact,

[ut , 1]2 = [u, L∗
2(1)]2 = 0 ⇒ [u, 1]2 = [u(0), 1]2 = 0,

[ut , xi ]2 = [u, L∗
2(x

i )]2 = 0 ⇒ [u, xi ]2 = [u(0), xi ]2 = 0,

[ut , w1(x
i )X (1)

m (xi )]2 = [u, L∗
2(w1(x

i )X (1)
m (xi ))]2 = −λ(1)

m [u, w1(x
i )X (1)

m (xi )]2.

It implies that
[
u, w1(x

i )X (1)
m (xi )

]

2
=
[
u(0), w1(x

i )X (1)
m (xi )

]

2
e−λ

(1)
m t = 0.
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Therefore
[
ut , w2(x

1, x2)X (2)
m,α(x1, x2)

]

2
=
[
u, L∗

2(w2(x
1, x2)X (2)

m,α(x1, x2))
]

2

= −λ(2)
m

[
u, w2(x

1, x2)X (2)
m,α(x1, x2)

]

2
,

⇒
[
u, w2(x

1, x2)X (2)
m,α(x1, x2)

]

2
=
[
u(0), w2(x

1, x2)X (2)
m,α(x1, x2)

]

2
e−λ

(2)
m t = 0 .

We need only to prove that Eq. (17) holds for all

φ(x1, x2) = (x1)m(x2)n, ∀m, n ≥ 0.

(1) If n = 0,m ≥ 0, we see that φ can be generated from {1, x1, w1(x1)X
(1)
m (x1)}, therefore

[u, φ]2 = 0;
(2) Ifm = 0, n ≥ 0, we see that φ can be generated from {1, x2, w1(x2)X

(1)
m (x2)}, therefore

[u, φ]2 = 0;
(3) If n = 1,m ≥ 1, we expand (x1)m−1 by

(x1)m−1 =
∑

k≥0

ck X
(1)
k (x1).

Note that

L∗
2

(
x1x2X (1)

k (x1)
)

= −λ
(1)
k x1x2X (1)

k (x1).

Therefore
[
ut , x

1x2X (1)
k (x1)]2 = [u, L∗

2

(
x1x2X (1)

k (x1)
)]

2
= −λ

(1)
k [u, x1x2X (1)

k (x1)]2.
It follows that

[u, x1x2X (1)
k (x1)]2 = [u(0), x1x2X (1)

k (x1)]2e−λ
(1)
k = 0.

Therefore

[u, φ]2 =
∑

k≥0

ck[u, x1x2X (1)
k (x1)]2 = 0;

(4) If n ≥ 2,m ≥ 1 we proceed by induction w.r.t. n. We have

(x1)m(x2)n = x1x2(x1 + x2 − 1)(x1)m−1(x2)n−2 + (x1)m(1 − x1)(x2)n−1

= −w2(x
1, x2)(x1)m−1(x2)n−2 + (x1)m(1 − x1)(x2)n−1.

By the inductive assumption, we have
[
u, (x1)m(1 − x1)(x2)n−1]

2 = 0.

Then, we expand (x1)m−1(x2)n−2 by

(x1)m−1(x2)n−2 =
∑

m,α

c(2)
m,αX

(2)
m,α(x1, x2).

Therefore
[
u, w2(x

1, x2)(x1)m−1(x2)n−2]
2 =

∑

m,α

c(2)
m,α

[
u, w2(x

1, x2)X (2)
m,α(x1, x2)

]

2
= 0.
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It follows that [u, (x1)m(x2)n]2 = 0.

Thus, u = 0.

Applications

In this section, we present some applications of our global solution to the evolution of the
process (Xt )t≥0 such as the expectation and the second moment of the absorption time, the
probability distribution of the absorption time for having k + 1 alleles, the probability of
having exactly k + 1 alleles, the αth moments, the probability of heterogeneity, and the rate
of loss of one allele in a population having k + 1 alleles. Several of our formulas are known
from other methods, see [9,15–17,19,20], but we emphasize here the general and unifying
approach.

The Absorption Time for Having k + 1 Alleles

The moments of the sojourn and absorption times were derived by Nagylaki [22] for two
alleles, and by Lessard and Lahaie [18] in the multi-allele case. We denote by T k+1

n+1 (p) =
inf{t > 0 : Xt ∈ V k |X0 = p} the first time when the population has (at most) k + 1 alleles.
T k+1
n+1 (p) is a continuous random variable valued in [0,∞) and we denote by φ(t, p) its

probability density function. It is easy to see that V k is invariant under the process (Xt )t≥0,
i.e. if Xs ∈ V k then Xt ∈ V k for all t ≥ s (once an allele is lost from the population, it can
never again be recovered). We have the equality

P

(
T k+1
n+1 (p) ≤ t

)
= P(Xt ∈ V k |X0 = p) =

∫

V k

u(x, p, t)dμ(x).

It follows that

φ(t, p) =
∫

V k

∂

∂t
u(x, p, t)dμ(x).

Therefore the expectation for the absorption time of having k + 1 alleles is (see [9, p. 194]):

E(T k+1
n+1 (p)) =

∫ ∞

0
tφ(t, p)dt

=
∫

V k

∫ ∞

0
t

∂

∂t
u(x, p, t)dtdμ(x)

=
k∑

j=1

∑

(i0,...,i j )∈I j

∑

m≥0

∑

|α|=m

c( j)
m,α

∫

V
(i0,...,i j )

j

X ( j)
m,α(x)

(∫ ∞

0
t

∂

∂t
e−λ

( j)
m tdt

)

dμ
(i0,...,i j )
j (x)

+
n∑

i=0

n∑

k=1

∑

m≥0

∑

|α|=m

c(k)
m,αa

(k)
m,α,i

(∫ ∞

0
t

∂

∂t
e−λ

(k)
m tdt

)

=
k∑

j=1

∑

(i0,...,i j )∈I j

∑

m≥0

∑

|α|=m

c( j)
m,α

∫

V
(i0,...,i j )

j

X ( j)
m,α(x)

(

− 1

λ
( j)
m

)

dμ
(i0,...,i j )
j (x)

+
n∑

i=0

n∑

k=1

∑

m≥0

∑

|α|=m

c(k)
m,αa

(k)
m,α,i

(

− 1

λ
(k)
m

)

;
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and the second moment of this absorption time is (see [1,20]):

E(T k+1
n+1 (p))2 =

∫ ∞

0
t2φ(t, p)dt

=
∫

V k

∫ ∞

0
t2

∂

∂t
u(x, p, t)dtdμ(x)

=
k∑

j=1

∑

(i0,...,i j )∈I j

∑

m≥0

∑

|α|=m

c( j)
m,α

∫

V
(i0,...,i j )

j

X ( j)
m,α(x)

(∫ ∞

0
t2

∂

∂t
e−λ

( j)
m tdt

)

dμ
(i0,...,i j )
j (x)

+
n∑

i=0

n∑

k=1

∑

m≥0

∑

|α|=m

c(k)
m,αa

(k)
m,α,i

(∫ ∞

0
t2

∂

∂t
e−λ

(k)
m tdt

)

=
k∑

j=1

∑

(i0,...,i j )∈I j

∑

m≥0

∑

|α|=m

c( j)
m,α

∫

V
(i0,...,i j )

j

X ( j)
m,α(x)

(

− 2

(λ
( j)
m )2

)

dμ
(i0,...,i j )
j (x)

+
n∑

i=0

n∑

k=1

∑

m≥0

∑

|α|=m

c(k)
m,αa

(k)
m,α,i

(

− 2

(λ
(k)
m )2

)

.

In order to see what this means, we consider the case of three alleles:

u(x1, x2; t) = u2(x
1, x2; t)χV2 + u0,11 (x1, 0; t)χV 0,1

1

+ u0,21 (0, x2; t)χV 0,2
1

+ u0,01 (x1, 1 − x1; t)χV 0,0
1

+ u10(t)δe1 + u20(t)δe2 + u00(t)δe0 ,

and the product is

[u, φ]2 = (u2, φ)2 + (u0,11 , φ(·, 0))1 + (u0,21 , φ(0, ·))1 + (u0,11 , φ(·, 1 − ·))1
+ u10(1, 0; t)φ(1, 0) + u20(0, 1; t)φ(0, 1) + u00(0, 0; t)φ(0, 0)

=
∫

V2
u2(x

1, x2; t)φ(x1, x2)dx1dx2 +
∫ 1

0
u0,11 (x1, 0; t)φ(x1, 0)dx1

+
∫ 1

0
u0,21 (0, x2; t)φ(0, x2)dx2 + 1√

2

∫ 1

0
u1,21 (x1, 1 − x1; t)φ(x1, 1 − x1)dx1

+ u10(1, 0; t)φ(1, 0) + u20(0, 1; t)φ(0, 1) + u00(0, 0; t)φ(0, 0).

By expansion of eigenvectors, we have

u2(x; p; t) =
∑

m≥0

∑

|α|=m

c(2)
m,α(p)X (2)

m,α(x)e−λ
(2)
m t ,

where c(2)
m,α(p) is uniquely defined. We represent u1(x; t) by

u0,11 (x1, 0; t) =
∑

m≥0

a0,1m (x1)e−λ
(1)
m t ; (18)

u0,21 (0, x2; t) =
∑

m≥0

a0,2m (x2)e−λ
(1)
m t ; (19)

u1,21 (x1, 1 − x1; t) =
∑

m≥0

a1,2m (x1)e−λ
(1)
m t , (20)
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where the coefficients a·,·
m (x1) are defined as follows:

Putting

ψn(x
1) := x1(1 − x1)X (1)

n (x1),

we note that ψn(0) = ψn(1) = 0 and

L∗
2ψn(x

1) = −λ(1)
n ψn(x

1).

It follows that [
ut , ψn(x

1)
]

2
=
[
u, L∗

2(ψn(x
1))
]

2

= −λ(1)
n

[
u, ψn(x

1)
]

2
.

Therefore

ψn(p
1)e−λ

(1)
n t =

[
u(0), ψn(x

1)
]

2
e−λ

(1)
n t =

[
u, ψn(x

1)
]

2

=
(
u2, ψn(x

1)
)

2
+
(
u1, ψn(x

1)
)

1
+ (u0, ψn(x

1))0

=
∑

m≥0

∑

|α|=m

c(2)
m,α

(
X (2)
m,α, ψn(x

1)
)

2
e−λ

(2)
m t +

∑

m≥0

(
am(x1), ψn(x

1)
)

1
e−λ

(1)
m t

where am(x1) := a0,1m (x1) + a1,2m (x1) and note that ψn(0) = ψn(1) = 0

=
(
a0(x

1), ψn(x
1)
)

1
e−λ

(1)
0 t +

∑

m≥1

{(
am(x1), ψn(x

1)
)

1

+
∑

|α|=m−1

c(2)
m,α

(
X (2)
m,α, ψn(x

1)
)

2

}

e−λ
(1)
m t

(because of λ(1)
m = λ

(2)
m−1).

We obtain by equating the coefficients in terms of e−λt

(
a0(x

1), ψn(x
1)
)

1
= δ0,nψn(p

1)

(
am(x1), ψn(x

1)
)

1
= δm,nψn(p

1) −
∑

|α|=m−1

c(2)
m−1,α

(
X (2)
m−1,α, ψn(x

1)
)

2
, if m ≥ 1.

(21)

Remark 3.1 The coefficients ofu2 occur in the representation of the coefficients ofu1 because
of the probability flux.

Similarly because of

L∗
2(x

1) = 0,
[
ut , x

1
]

2
=
[
u, L∗

2(x
1)
]

2
= 0.

We have
p1 =

[
u(0), x1

]

2
=
[
u, x1

]

2

=
(
u2, x

1
)

2
+
(
u1, x

1
)

1
+ (u0, x

1)0.
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Thus,

u10(p; t) = p1 −
∑

m≥0

∑

|α|=m

c(2)
m,α(p)

(
X (2)
m,α, x1

)

2
e−λ

(2)
m t

−
∑

m≥0

(
a0,1m , x1

)

1
e−λ

(1)
m t

−
∑

m≥0

(
a1,2m , x1

)
e−λ

(1)
m t

= p1 −
(
a0(x

1), x1
)

1
e−λ

(1)
0 t −

∑

m≥1

{(
am(x1), x1

)

1

+
∑

|α|=m−1

c(2)
m−1,α

(
X (2)
m−1,α, x1

)

2

}

e−λ
(1)
m t .

The expectation for the absorption time of having only 1 allele is

E(T 1
3 (p)) =

∫ ∞

0
tφ(t, p)dt

=
∫ ∞

0
t

∂

∂t

(
u10(p; t) + u20(p; t) + u00(p; t)

)
dt.

We first calculate the first term; the other terms will be obtained similarly. To do this, we
expand x1 in terms of the ψn(x1)

x1 =
∑

n≥0

dnψn(x
1).

We construct a sequence of entropy functions on [0, 1] as follows.
• E0(x) = −x
• Er (x) is the unique solution of the boundary value problem

{
L∗
1(Er (x)) = −r Er−1(x)

Er (0) = Er (1) = 0.

By some simple calculations, we obtain some first entropy functions

(1) E0(x) = −x
(2) E1(x) = −2(1 − x) log(1 − x)
(3) E2(x) = −8xz(x) + 8(1 − x) log(1 − x)
(4) E3(x) = 48(1 − x)u(x) + 96[xz(x) − (1 − x) log(1 − x)]
where

z(x) =
∫ 1

x

ln(1 − y)

y
dy, u(x) =

∫ 1

x

z(y)

1 − y
dy.

Lemma 3.2 The entropy functions satisfy
(
X (1)
m , x1

)

1

λ
(1)
m

=
(
E1(x

1), X (1)
m

)

1
,

2
(
X (1)
m , x1

)

1
(
λ

(1)
m

)2 =
(
E2(x

1), X (1)
m

)

1
,
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and more generally,

r !
(
X (1)
m , x1

)

1(
λ

(1)
m

)r =
(
Er (x

1), X (1)
m

)

1
, r ≥ 2.

Proof We have

λ(1)
m

(
E1(x

1), X (1)
m

)

1
=
(
E1(x

1), λ(1)
m X (1)

m

)

1

=
(
E1(x

1),−L1

(
X (1)
m

))

1

=
(

− L∗
1

(
E1(x

1)
)
, X (1)

m

)

1
, because of E1(0) = E1(1) = 0

=
(

− L∗
1

(
E1(x

1)
)
, X (1)

m

)

1

=
(
x1, X (1)

m

)

1
.

Similarly we have
(
λ(1)
m

)2(
E2(x

1), X (1)
m

)

1
= λ(1)

m

(
E2(x

1), λ(1)
m X (1)

m,α

)

1

= λ(1)
m

(
E2(x

1),−L1

(
X (1)
m,α

))

1

= λ(1)
m

(
− L∗

1

(
E2(x

1)
)
, X (1)

m

)

1
, because of E2(0) = E2(1) = 0

= λ(1)
m

(
− L∗

1

(
E2(x

1)
)
, X (1)

m

)

1

= λ(1)
m

(
2E1(x

1), X (1)
m

)

1

=
(
2x1, X (1)

m

)

1
, because of the above calculation.

The proof for all r is similar. 
�
From the Lemma, we can expand E1(x1) as

E1(x
1) =

∑

n≥0

dn

λ
(1)
n

ψn(x
1).

Therefore we have
∫ ∞

0
t
∂u10(p; t)

∂t
dt

=
(
a0(x

1), x1
)

1

∫ ∞

0
tλ(1)

0 e−λ
(1)
0 t dt

+
∑

m≥1

{(
am(x1), x1

)

1
+

∑

|α|=m−1

c(2)
m−1,α

(
X (2)
m−1,α, x1

)

2

}∫ ∞

0
tλ(1)

m e−λ
(1)
m t dt

=
(
a0(x1), x1

)

1

λ
(1)
0

+
∑

m≥1

(
am(x1), x1

)

1
+∑|α|=m−1 c

(2)
m−1,α

(
X (2)
m−1,α, x1

)

2

λ
(1)
m

=
∑

n≥0

dn

⎧
⎪⎨

⎪⎩

(
a0(x1), ψn(x1)

)

1

λ
(1)
0

+
∑

m≥1

(
am(x1), ψn(x1)

)

1
+∑|α|=m−1 c

(2)
m−1,α

(
X (2)
m−1,α, ψn(x1)

)

2

λ
(1)
m

⎫
⎪⎬

⎪⎭

123



Differ Equ Dyn Syst (October 2019) 27(4):467–492 489

=
∑

n≥0

dn

{
δ0,nψn(p1)

λ
(1)
0

+
∑

m≥1

δm,nψn(p1)

λ
(1)
m

}

, because of (21)

=
∑

m≥0

dm

λ
(1)
m

ψm(p1)

= E1(p
1).

Thus, we have

E(T 1
3 (p)) = E1(p

1) + E1(p
2) + E1(p

3).

Remark 3.3 We can obtain the r th moments of this absorption time by the same method, i.e.

E(T 1
3 (p))r = Er (p

1) + Er (p
2) + Er (p

3).

The Probability Distribution of the Absorption Time for Having k + 1 Alleles

We note that XTk+1
n+1 (p) is a random variable valued in Vk . We consider the probability that

this random variable takes its value in V (i0,...,ik )
k , i.e., the probability of the population at the

first time having at most k + 1 alleles to consist precisely of the k + 1 alleles {Ai0 , . . . , Aik }.
Let gk be a function of k variables defined inductively by

g1(p
1) = p1;

g2(p
1, p2) = p1

1 − p2
g1(p

2) + p2

1 − p1
g1(p

1);

gk+1(p
1, . . . , pk+1) =

k+1∑

i=1

pi

1 −∑ j 	=i p
j
gk(p

1, . . . , pi−1, pi+1, . . . , pk+1).

Then we have

Theorem 3.4

P

(

XTk+1
n+1 (p) ∈ V (i0,...,ik )

k

)

= gk+1(p
i0 , . . . , pik ).

Proof Method 1: By proving that

P

(

XTk+1
n+1 (p) ∈ V (i0,...,ik )

k |XTk
n+1(p)

∈ V (i1,...,ik )
k

)

= pi0

1 − pi1 − · · · − pik

and elementary combinatorial arguments, we immediately obtain the result (see [19]).
Method 2: By proving that it is the unique solution of the classical Dirichlet problem

⎧
⎪⎪⎨

⎪⎪⎩

(L(i0,...,ik )
k )∗v(p) = 0 in Vk

lim
p→q

v(p) = 1, q ∈ V (i0,...,ik )
k ,

lim
p→q

v(p) = 0, q ∈ ∂Vk\V (i0,...,ik )
k \Vk−1.


�
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The Probability of Having Exactly k + 1 Alleles

The probability of having only the particular allele Ai is (see [12]):

P(Xt ∈ V (i)
0 |X0 = p) =

∫

V (i)
0

u(i)
0 (x, t)dμ

(i)
0 (x)

= u(i)
0 (ei , t)

= pi −
n∑

k=1

∑

m(k)≥0

∑

l(k)≥0

∑

|α(k)|=l(k)

c(k)
m(k),l(k),α(k)

(
xi , X (k)

l(k),α(k)

)

k
e
−λ

(k)

m(k) t .

The probability of having exactly the (k+1) alleles {A0, . . . , Ak} (the coexistence probability
of alleles {A0, . . . , Ak}) is (see [16,20]):

P(Xt ∈ V (i0,...,ik )
k |X0 = p) =

∫

V
(i0,...,ik )

k

u(i0,...,ik )
k (x, t)dμ

(i0,...,ik )
k (x)

=
∑

m≥0

∑

l≥0

∑

|α|=l

c(k)
m,l,α

⎛

⎜
⎜
⎝

∫

V
(i0,...,ik )

k

X (k)
m,α(x)dμ

(i0,...,ik )
k (x)

⎞

⎟
⎟
⎠ e−λ

(k)
m t .

The αth Moments

The αth-moments are (see [15–17]):

mα(t) = [u, xα]n
=
∫

Vn

xαu(x, t)dμ(x)

=
n∑

k=0

∑

(i0,...,ik )∈Ik

∫

V
(i0,...,ik )

k

xαu(i0,...,ik )
k (x, t)dμ

(i0,...,ik )
k (x).

The Probability of Heterogeneity

The probability of heterogeneity is (see [16]):

Ht = (n + 1)! [u, wn]n
= (n + 1)! (un, wn)n (because wnvanishes on the boundary)

= (n + 1)!
(∑

m≥0

∑

|α|=m

c(n)
m,αX

(n)
m,αe

−λ
(n)
m,α t , wn X

(n)
0,0

)

n

= (n + 1)!
(
c(n)
0,0X

(n)
0,0, wn X

(n)
0,0

)

n
e−λ

(n)
0,0t

(because of the orthogonality of the eigenvectors X (n)
m,α)

= H0 e
− (n+1)(n+2)

2 t .
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The Rate of Loss of One Allele in a Population Having k + 1 Alleles

We have the solution of the form

u =
n∑

k=0

uk(x, t)χVk (x)

The rate of loss of one allele in a population with k + 1 alleles equals the rate of decrease of

uk(x, t) =
∑

m≥0

∑

l≥0

∑

|α|=l

c(k)
m,l,αX

(k)
l,α(x)χVk (x)e

−λ
(k)
m t .

which is λ
(k)
0 = k(k+1)

2 . This means that the rate of loss of alleles in the population decreases
as k gets smaller in the course of the process (see [10,13,16]).

Population Genetics

TheWright–Fisher model as the basic theoretical model in population genetics then can also
be applied to population genetics data, although in most cases, the basic model needs to be
suitably extended. For instance, single nucleotide polymorphisms (SNPs) can be modeled in
thisway.As the name indicates, in aSNP, there is a genetic variant in the population that differs
from the rest of the population at a single nucleotide position in the genetic sequence. Thus,
we may consider the background sequence and its variant as two different alleles, A1, A2,
and ask for the chances of the variant allele A2 to sweep the population, for the expected
when this happens or when the variant will go extinct, etc., and apply the formulae given in
Sect. 3. A detailed bioinformatical analysis of SNPs in the human genome was carried out in
[21]. In that paper, the effects of recombination and of varying population size were analyzed,
again on the basis of the multinomial distribution as in Sect. 2.2. In particular, a population
bottleneck in the human history around 40,000 years ago could be identified on the basis of
the current SNPdistributions in the human population. For ourmethods to apply, we thus need
to extend the basic Wright–Fisher model to include recombination—which we shall present
in another paper—as well as varying population size. Similarly, data about mitochondrial
DNA [24] indicate a population bottleneck in human history. Since mitochondrial DNA is
solely inherited from the mother, we can treat this as a haploid Wright–Fisher model without
recombination. Again, however, to be applicable, our model needs to be extended to handle
variable population sizes.

Conclusion

We have developed a new global solution concept for the Fokker–Planck equation associated
with the Wright–Fisher model, and we have proved the existence and uniqueness of this
solution (Theorem 2.9). From this solution, we can easily read off the properties of the
considered process, like the absorption time of having k+1 alleles, the probability of having
exactly k + 1 alleles, the αth moments, the probability of heterogeneity, and the rate of loss
of one allele in a population having k + 1 alleles.
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