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Abstract The asymptotic behavior of some semilinear parabolic PDEs is analyzed bymeans
of a “mean value” property. This property allows us to determine, by means of appropriate a
priori estimates, some exponential decay results for suitable global solutions. We also apply
the method to investigate a well-known finite time blow-up result. An application is given
to a one-dimensional semilinear parabolic PDE with boundary degeneracy. Our results shed
further light onto the problem of determining initial data for which the corresponding solution
is guaranteed to exponentially decay to zero or blow-up in finite time.
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Introduction

Let � be a bounded domain (open and connected) subset of RN , for some positive integer
N . Assume the boundary � := ∂� is sufficiently smooth. For x ∈ � and t > 0, we study the
asymptotic behavior of solutions u = u(x, t) to semilinear parabolic equations for the form,

∂u

∂t
− ν�u + f (u)u = 0, (1)

ν > 0, with the Dirichlet boundary conditions,

u|�(x, ·) = 0, (2)

and given the initial state,
u(·, 0) = u0(·). (3)
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(Of course the results could be suitably adjusted to incorporate other boundary conditions
such as Neumann, mixed Neumann/Dirichlet, periodic, or Robin.) We only assume f is
a C0 function on R. Note that Hadamard well-posedness for problem (1)–(3) is not known
because suchwith suchminimal assumptions on f , uniqueness of solutions is not guaranteed.
Typically for equations such as (1), it is assumed that f ∈ C1(R) satisfy f ′(s) ≥ �, for
some � > 0 (cf. e.g. [9, p. 213]). Additionally, we cannot assume that the solutions are
instantaneously regularizing.

The goal of this article is the provide a better description to the criteria that surrounds,
not the well-posedness of problem (1)–(3), but rather the long-term behavior of the solutions
to problem (1)–(3). The asymptotic behavior of solutions to PDE is a rich subject whose
development we will only briefly mention. The study of dissipative dynamical systems is
motivated by defining a solution operator for a given PDE, possibly posed abstractly as
an ODE in a suitable Banach space, where the first task often is to demonstrate, besides
global well-posedness, the existence of an absorbing set in the phase space. After that, one
may demonstrate the solutions hold certain properties, like asymptotically smoothing. In
many efforts, the culmination of the study peaks with the existence of a global attractor,
the maximal invariant subset of the phase space that attracts all trajectories. This attractor is
typically defined as the omega-limit set of a bounded absorbing set, and consists of smooth
solutions. Some PDE also admit finite dimensional attractors whose rate of attraction is
exponential.

The study of dissipative dynamical systems and the development of attractors has flour-
ished since the seminal work of [1,7,12]. Furthermore, largely due to the permanent
importance of the Navier–Stokes equations, attractors for PDE without unique solutions
were also developed in [2,8]. Indeed, generalized semiflows were employed in [3,11] (just to
name two applications). So-called trajectory dynamical systems were developed in [4]. Also,
in the context of supercritical wave equations, the notion of trajectory dynamical systems
appears in [14].

We will analyze the behavior of solutions for the above class of PDE in rather differ-
ent terms: for guaranteed exponential convergence to zero. We will find conditions on the
nonlinear term f that guarantees the corresponding solutions exponentially decay to zero;
hence, rendering some global solutions. Each of our decay results holds for all initial data
u0 ∈ H1

0 (�) and all ν > 0. The criteria we use for each result depends on f through a
property we call the “mean value” of f through u; named after the Mean Value Theorem
for Integrals. It is important to note that we assume a solution u (in the sense defined below)
already exists, at least locally in time. Hence, the estimates that follow are a priori, but insure
a strict qualitative behavior for all nontrivial solutions. The method is used to investigate a
well-known blow-up result for semilinear parabolic PDE. For certain initial data, we find a
positive time, using the mean value of the very solution, at which existence of the solution
is no longer guaranteed. In addition, an application of our method is given. This concerns
a semilinear parabolic PDE with boundary degeneracy recently studied by [13] (surely an
extension of problem (1)–(3) described above).

Notation ut = ∂u
∂t and � denotes the Laplace differential operator on � with domain

H2(�) ∩ H1
0 (�). The symbols |u|p and ‖u‖ denote the norm of u in, respectively, L p(�)

and L2(�), and 〈u, u〉 = ‖u‖2. The measure of � is denoted by |�| := ∫
�
dx . Throughout,

λ1 > 0 will denote the Poincaré constant; ‖u‖2 ≤ 1
λ1

‖∇u‖2. We write H−1(�) to denote

the dual of the space H1(�). Finally, we will commonly identify u(x, t) ≡ u(t)(x); e.g.,
u(t) ∈ H1

0 (�), t > 0, and in many instances we will abbreviate u(x, t) by simply u.
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The A Priori Results

The following is the usual notion of a (weak) solution to problem (1)–(3).

Definition 2.1 Let 0 < T ≤ +∞. The function u satisfying

u ∈ L∞(0, T ; L2(�)) ∩ L2(0, T ; H1
0 (�)), (4)

∂t u ∈ L2(0, T ; H−1(�)), (5)

is said to be a weak solution to problem (1)–(3) if, for all ϕ ∈ H1
0 (�), and for almost all

t ∈ [0, T ], there holds,
〈ut , ϕ〉 + ν〈∇u,∇ϕ〉 + 〈 f (u)u, ϕ〉 = 0.

In addition,
u(0) = u0.

The function [0, T ] 
 t �→ u(t) ∈ H1
0 (�) is called a global weak solution if it is a

weak solution for every T > 0.

Here it is well known that (cf. e.g. [12, Lemma II.3.2]),

u ∈ C([0, T ]; L2(�)),

and for almost all t ∈ [0, T ],
d

dt
‖u‖2 = 2〈ut , u〉. (6)

Proposition 2.2 Let T > 0. Suppose u ∈ C([0, T ]; L2(�)) and f ∈ C(R). Then there is
ξ ∈ C([0, T ];�) in which

∫

�

f (u(x, t))u2(x, t)dx = f (u(ξ(t), t))
∫

�

u2(x, t)dx . (7)

Proof The existence of the function ξ ∈ C([0, T ];�) in (7) follows from the Mean Value
Theorem for Integrals after some straightforward generalizations. See Theorem 4.1. ��

The following theorem provides the general result. It concerns the behavior of f on
solutions that are restricted to the path (ξ(t), t) ∈ � × [0, T ], where the function ξ ∈
C([0, T ];�) is due to Proposition 2.2. Recall that, when u is a solution to problem (1)–(3),
then u(ξ(t), t) ∈ R for each t ∈ [0, T ].
Theorem 2.3 Let ν > 0, f ∈ C(R) and u0 ∈ H1

0 (�). Suppose u = u(x, t) is a weak solution
to problem (1)–(3) for t ∈ [0, T ], for some T > 0. Then u satisfies, for all t ∈ [0, T ],

‖u(t)‖ ≤ exp

[

−
∫ t

0
f (u(ξ(τ ), τ ))dτ

]

‖u0‖. (8)

Proof Let u be a solution to problem (1)–(3) according to Definition 2.1. Since we are
only interested in estimates at the a priori level, we are allowed to formally multiply (1) by
u = u(x, t) in L2(�) to obtain the identity, which holds for almost all t ∈ (0, T ),

〈ut , u〉 − ν〈�u, u〉 + 〈 f (u), u2〉 = 0. (9)

First we recall (6), then Green’s first identity to see that there holds,

ν〈−�u, u〉 = ν‖∇u‖2.
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Next, by Proposition 2.2, we now know that there is ξ ∈ C([0, T ],�) in which,

〈 f (u)u, u〉 = f (u(ξ(t), t))‖u‖2. (10)

Together, (9) becomes, for almost all t ∈ (0, T ),

1

2

d

dt
‖u‖2 + ν‖∇u‖2 + f (u(ξ(t), t))‖u‖2 = 0. (11)

Omitting the term ν‖∇u‖2 produces the differential inequality,
1

2

d

dt
‖u‖2 + f (u(ξ(t), t))‖u‖2 ≤ 0,

and from this we find (8). ��
Remark 2.4 After multiplying identity (11) by exp[∫ t

0 2 f (u(ξ(τ ), τ ))dτ ] and integrating
with respect to t on [0, T ], we arrive at the new identity,

‖u‖2 + 2ν
∫ t

0
exp

[

−
∫ t

s
2 f (u(ξ(τ ), τ ))dτ

]

‖∇u(x, s)‖2ds

= exp

[

−
∫ t

0
2 f (u(ξ(τ ), τ ))dτ

]

‖u0‖2.

Notice that for any f ∈ C(R), we recover the bounds

u ∈ L∞(0, T ; L2(�)) ∩ L2(0, T ; H1
0 (�)),

with dependence on T > 0.

With Theorem 2.3, we may now move onto the consideration of the case when solutions
are guaranteed to exponentially decay to zero. Obviously, one immediately reads from (8)
that exponential decay for solutions u in L2(�) occurs on the time intervals where

F(t) :=
∫ t

0
f (u(ξ(τ ), τ ))dτ < 0.

However, given an arbitrary continuous function f , we seek conditions, with pragmatic
assumptions on f , which guarantee solutions u decay to zero exponentially, in L2(�), as
t → +∞. We encounter the first assumption we can make that insures solutions to problem
(1)–(3) decay exponentially to zero; when f is positive.

Corollary 2.5 Let f ∈ C(R) be a positive function on R. Then for any u0 ∈ H1
0 (�) and

ν > 0, the corresponding solutions u to problem (1)–(3) are global ones (i.e., T = +∞)
and ‖u(t)‖ exponentially decays to zero as t → +∞.

Recall that, for all ϕ ∈ H1
0 (�),

‖ϕ‖ ≤ 1√
λ1

‖∇ϕ‖, (12)

where λ1 is the fist eigenvalue of the Laplacian with respect to homogeneous Dirichlet
boundary conditions. Of course, (12) is known as the Poincaré inequality.

Under certain conditions, solutions will exponentially decay to zero when f is not neces-
sarily positive on all of R. Because of the Poincaré inequality, f may be allowed to assume
some negative values, and we may still guarantee that solutions exponentially decay to zero.
The following extensions are for when f ∈ C(R) is (eventually) bounded below by −νλ1.
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Theorem 2.6 Let ν > 0 and f ∈ C(R). Suppose f satisfies the lower-bound,

inf
s∈R f (s) > −νλ1. (13)

For any u0 ∈ H1
0 (�), the corresponding solutions u to problem (1)–(3) are global ones (i.e.,

T = +∞) and ‖u(t)‖ exponentially decays to zero as t → +∞.

Proof Let u0 ∈ H1
0 (�) and assume u is a solution to problem (1)–(3) according to Definition

2.1.After applying the Poincaré inequality (12) to the identity (11),we arrive at the differential
inequality, which holds, for almost all t ∈ (0, T ),

d

dt
‖u‖2 + 2 (νλ1 + f (u(ξ(t), t))) ‖u‖2 ≤ 0. (14)

Integrating (14) with respect to t on [0, T ] yields,

‖u(t)‖ ≤ exp

[

−
∫ t

0
(νλ1 + f (u(ξ(τ ), τ ))) dτ

]

‖u0‖. (15)

At this point we recall assumption (13) which together implies,

f (u(ξ(t), t)) > −νλ1, ∀t ∈ [0, T ]. (16)

Thus, together (15) and (16) show that u is globally defined and exponentially decays to zero
as t → +∞. This completes the proof. ��

Of course when f is strictly bounded below by −νλ1, we are allowed the take any initial
data. For the results that follow, solutions u are assumed to be positive. Similar results for
negative solutions can be show with minor modifications. We will now show that for any
initial data, positive solutions u converge to zero exponentially (in L2(�)) when f (s), s ≥ 0,
is bounded below in an appropriate manor.

Theorem 2.7 Let ν > 0 and f ∈ C([0,+∞)). Suppose that the average value of f (σ ) on
(0, s) satisfies the lower-bound, for all s > 0,

favg(s) = 1

s

∫ s

0
f (σ )dσ > −νλ1. (17)

Then for any u0 ∈ H1
0 (�), the corresponding solutions u to problem (1)–(3) are global ones

(i.e., T = +∞) and ‖u(t)‖ exponentially decays to zero as t → +∞.

Proof Let u0 ∈ H1
0 (�) and assume u is a positive solution to problem (1)–(3) according to

Definition 2.1. The claim follows directly by applying the assumption (17) to (15). Indeed,
it suffices to show that,

∫ t

0
(νλ1 + f (u(ξ(τ ), τ ))) dτ > 0, ∀t ≥ 0,

or

−νλ1t <

∫ t

0
f (u(ξ(τ ), τ ))dτ.

Thanks to assumption (17), the proof is complete. ��
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Examples

1. First,wenote that thewell-knownproblem, theChafee–Infante reaction diffusion equation,

ut − ν�u + u3 − (νλ1)u = 0,

satisfies condition (13) because f1(s) = s2 − νλ1. (We will consider the finite time blow-up
problem motivated by the nonlinear term − f1(s)s below.)

2. We also give an example of a function satisfying the condition (17). Let us take ν = 1
and � = (0, 1) so that λ1 = 1 (cf. e.g. [6] or [9]). Define

f2(s) =
{
1 − s for 0 ≤ s < 3
1−s
s−2 for 3 ≤ s.

Clearly, f2 ∈ C0([0,+∞)), and

f2avg(s) := 1

s

∫ s

0
f2(σ )dσ =

{
1 − s

2 for 0 ≤ s < 3
−1 − 1

s ln |s − 2| + 1
s ln 2 for 3 ≤ s.

See Fig. 1 below for the graphs of f2(s) and f2avg(s).
Some important properties of this function are:

(i) Here each satisfies,

lim inf
s→+∞ f (s) = −νλ1,

and notably f2(s) converges to −νλ = −1 from below; also
(ii) the minimum average value of f2(s), on (0,+∞), is−1 and it is reached asymptotically,

when s → +∞.

Finally, we give an example of a nonlinear term f satisfying the assumptions of Theorem
2.7 where the nonlinear term f is unbounded below. Consider the singular potential f3(s) =
−(1 − s)−p on s ∈ [0, 1) for any 0 < p < 1 − 1

νλ1
. Then f3(s) is strictly decreasing on

[0, 1), and

f3avg(s) =
∫ 1

0
−(1 − s)−pds = 1

p − 1
> −νλ1.

Remark 2.8 Notice that each assumption (13) and (17) implies that the same necessary
condition on f and the data u0 holds:

f (u(ξ(0), 0)) = 〈 f (u0), u2
0〉

‖u0‖2 > −νλ1.

The final result in this section is motivated by the blow-up result in [15, p. 176]. Indeed, we
give a description of a blow-up condition in terms of the “mean value” technique developed
thus far.

Theorem 2.9 Let ν > 0 and f ∈ C((0,+∞)). Suppose f satisfies the upper- and lower-
bounds, for all s ∈ (0,+∞),

c1 − c2(r + 2)

4
sr ≤ f (s) ≤ c1 − c2sr , (18)

for some c1 ≥ 0, c2 > 0 and some r > 2. If u0 ∈ H1
0 (�) (u0 > 0) satisfies the condition,

ν‖∇u0‖2 + c1‖u0‖2 <
c2
2

|u0|r+2
r+2, (19)
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Fig. 1 The plot of f2(s) (blue) and f2avg(s) (magenta) for s ∈ (0, 15]

then the corresponding positive solutions u to problem (1)–(3)possess the interval of existence
(0, t ′), where,

t ′ = 2|�|(r−2)/2

c2(r − 2)u2(ξ(t∗), t∗)‖u0‖r−2 , (20)

for some t∗ = t∗(t) > 0.

Proof Let u0 ∈ H1
0 (�) satisfy (19) and assume u is a solution to problem (1)–(3) according

to Definition 2.1. This time we apply (18) to (10) to find that there holds,

〈 f (u)u, u〉 =
∫

�

f (u)u2dx

≤
∫

�

(c1 − c2ur )u2dx

≤
∫

�

c1u2dx − 1

2

∫

�

c2u2urdx − 1

2

∫

�

c2u2urdx

= c1‖u‖2 − c2
2

|u|r+2
r+2 − c2

2
u2(ξ(t), t)|u|rr .

With this, instead of (11), we find that there holds, for almost all t ∈ (0, T ),

1

2

d

dt
‖u‖2 + ν‖∇u‖2 + c1‖u‖2 − c2

2
|u|r+2

r+2 ≥ c2
2

u2(ξ(t), t)|u|rr . (21)
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Define the functional E : H1
0 (�) → R, for all ϕ ∈ H1

0 (�) ∩ Lr+2(�), by

E(ϕ) := ν‖∇ϕ‖2 + c1‖ϕ‖2 − c2
2

|ϕ|r+2
r+2.

Let E(t) denote the functional E along trajectories ϕ = u(t). We observe that

1

2

dE(t)

dt
=

〈
−ν�u +

(
c1 − c2

4
(r + 2)ur

)
u, ut

〉

≤ −‖ut‖2.
Thus, for all t ∈ (0, T ),

E(0) ≥ E(t),

and since (19) holds, E(0) < 0. With this, (21) becomes

d

dt
‖u‖2 ≥ c2u2(ξ(t), t)|u|rr ,

whereby with Hölder’s inequality,

|u|rr ≥ |�|(2−r)/2‖u‖r ,

so we now have, for almost all t ∈ (0, T ),

d

dt
‖u‖2 ≥ c2|�|(2−r)/2u2(ξ(t), t)‖u‖r . (22)

Integrating (22) with respect to t over [0, T ] yields,

‖u(t)‖2 ≥
(

‖u0‖2−r + c2(2 − r)

2
|�|(2−r)/2

∫ t

0
u2(ξ(τ ), τ )dτ

)2/(2−r)

. (23)

Recall that r > 2; whence, finite time blow-up occurs when
∫ t

0
u2(ξ(τ ), τ )dτ = 2|�|(r−2)/2

c2(r − 2)‖u0‖r−2 .

We now appeal to the Mean Value Theorem for Integrals once again; there is t∗ ∈ (0, t) in
which

∫ t

0
u2(ξ(τ ), τ )dτ = u2(ξ(t∗), t∗)t.

Thus, the right-hand side of (23) is singular whenever (note, t is positive),

t = 2|�|(r−2)/2

c2(r − 2)u2(ξ(t∗), t∗)‖u0‖r−2 .

This shows (20) as claimed. ��
Remark 2.10 The preceding result guarantees the local existence of a solution to problem
(1)–(3). In the proof, t∗ depends on t , so we cannot claim that we know for which t a finite
time blow-up occurs. Nevertheless, this shows that the “MVT method” can be used to show
that certain problems cannot possess global solutions. Below, we will see how the method
can be used to show finite time blow-up.
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Application

In this section we encounter a type of perturbation for the problem considered in [5]. The
study of the equation,

ut − �u − uα+1 = 0, α > 0,

has led to the development of the study of blow-up solutions of PDE. We will consider,
for x ∈ (0, 1) and t > 0, the asymptotic behavior of positive solutions u = u(x, t) of the
semilinear parabolic equation with boundary degeneracy,

ut = (xdux )x + u p, (24)

d > 0, p > 1, with the (mixed weighted Neumann and Dirichlet) boundary conditions,

xdux (0, ·) = 0, u(1, ·) = 0, (25)

and
u(·, 0) = u0(·). (26)

Of particular interest is the recent work by [13], which we now report. First a definition
(cf. [13, Definition 2.1]).

Definition 3.1 Assume that 0 < T ≤ +∞. A nonnegative function u is called a solution
to problem (24)–(26) if

(i) For any 0 < T̃ < T , u ∈ L∞((0, 1) × (0, T̃ )) with ut ∈ L2((0, 1) × (0, T̃ )) and
xd/2ux ∈ L2((0, 1) × (0, T̃ )).

(ii) For any 0 < T̃ < T and any nonnegative ϕ ∈ C1([0, 1] × [0, T̃ ]) vanishing at x = 1,

∫ T̃

0

∫ 1

0
(ut (x, t)ϕ(x, t) + xdux (x, t)ϕ(x, t))dxdt

=
∫ T̃

0

∫ 1

0
u p(x, t)ϕ(x, t)dxdt.

(iii) u(1, ·) = 0 on (0, T ) and u(·, 0) = u0(·) on (0, 1) (in the sense of trace).

The results we investigate are (cf. [13, Theorems 2.1, 2.2]).

Theorem 3.2 Assume 0 < d < 2. Then there exists both nontrivial global and blowing-up
solutions to problem (24)–(26).

Theorem 3.3 Assume d ≥ 2. The solution to problem (24)–(26) must blow up in a finite
time for any nontrivial 0 ≤ u0 ∈ L∞(0, 1) with xd/2∂x u0 ∈ L2(0, 1).

The purpose of this application is to provide a better description to the states u0 for
which the corresponding solution converges exponentially to zero, or leads to finite time
blow-up. This is done in terms of the structural parameters d and p. Our idea employs a
similar argument that produces the results in the previous section; i.e., we find an a priori
estimate which exploits a generalization of the Mean Value Theorem for Integrals to derive
a condition that guarantees solutions u (to a comparable problem) exponentially converge to
zero. Because of the nature of the equation examined here, we are able to explicitly determine
a finite time blow-up result as well.
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It was crucial to the development of the results in Sect. 2 that we explicitly know the value
of the first eigenvalue of the Laplacian with respect the the imposed boundary conditions, we
now introduce the comparable problem which we will use to illustrate Theorem 3.2. Observe
that any solution to (24) satisfying the homogeneous mixed Neumann–Dirichlet boundary
condition

ux (0, ·) = 0, and u(1, ·) = 0, (27)

also satisfies (25) when d > 0. Then recall that the Laplacian on (0, 1) subject to the
Neumann–Dirichlet boundary conditions (27) admits the following system of eigenvalues
and eigenvectors,1

λk = (2k − 1)2π2

4
, φk(x) = √

2 cos

(
(2k − 1)πx

2

)

, k = 1, 2, 3, . . .

Whence, on (0, 1), the Poincaré constant (first eigenvalue of the Laplacian subject to (27))

is λ1 = π2

4 .
Our first result in response to Theorem 3.2 is the following

Theorem 3.4 Let T > 0, 0 < d < 2 and p > 1. Suppose u = u(x, t) is a positive solution
to problem (24), (26), and (27). There are ξ, χ ∈ C([0, T ]; (0, 1)) in which

∫ 1

0
xdu2

x (x, t)dx = ξd(t)
∫ 1

0
u2

x (x, t)dx, (28)

and ∫ 1

0
u p+1(x, t)dx = u p−1(χ(t), t)

∫ 1

0
u2(x, t)dx . (29)

Furthermore, for any u0 ∈ H1(�), 0 < d < 2 and p > 1 satisfying the condition,

|u0|p+1
p+1

‖u0‖2 <
π2

4

〈xd , (∂x u0)
2〉

‖∂x u0‖2 , (30)

then the solution of problem (24), (26), and (27) exponentially decays to zero for all t ∈ (0, T ).

Proof Suppose u is a solution to problem (24), (26), and (27) in the sense of Definition 3.1.
The existence of the functions ξ, χ ∈ C([0, T ]; (0, 1)) in (28) and (29) again follows from
the Mean Value Theorem for Integrals (see Theorem 4.1). It remains to show the condition
which guarantees the solution’s exponential decay to zero. As usual, we begin bymultiplying
(24) by u = u(x, t) in L2(0, 1) to obtain the identity,

1

2

d

dt
‖u‖2 = 〈∂x (xdux ), u〉 + 〈u p+1, 1〉. (31)

Applying the Mean Value Theorem for Integrals, we obtain,

〈∂x (xdux ), u〉 =
∫ 1

0
∂x (xdux (x, t))udx = −

∫ 1

0
xdu2

x (x, t)dx

= −ξd(t)
∫ 1

0
u2

x (x, t)dx = −ξd(t)‖ux‖2,

1 https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors_of_the_second_derivative#Mixed_Neumann-
Dirichlet_boundary_conditions.
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for some ξ(t) ∈ C([0, T ], (0, 1)). For some χ(t) ∈ C([0, T ], (0, 1)), we also find

〈u p+1, 1〉 =
∫ 1

0
u p+1(x, t)dx =

∫ 1

0
u p−1(x, t)u2(x, t)dx

= u p−1(χ(t), t)
∫ 1

0
u2(x, t)dx = u p−1(χ(t), t)‖u‖2.

So (31) becomes
d

dt
‖u‖2 + 2ξd(t)‖ux‖2 = 2u p−1(χ(t), t)‖u‖2. (32)

Recall λ1 = π2

4 . Hence, from (11) we arrive at the differential inequality

d

dt
‖u‖2 + 2

(
π2

4
ξd(t) − u p−1(χ(t), t)

)

‖u‖2 ≤ 0. (33)

Thus, integrating (33) with respect to t on [0, T ] yields,

‖u(t)‖ ≤ exp

[

−
∫ t

0

(
π2

4
ξd(τ ) − u p−1(χ(τ), τ )

)

dτ

]

‖u0‖, (34)

Hence, exponential decay to zero is guaranteed when,

u p−1(χ(t), t) <
π2

4
ξd(t), ∀t ∈ (0, T ),

and by monotonicity (in this case the decreasing function is f (s) = −s p−1 for s > 0 and
p > 1),

u p−1
0 (χ(0)) <

π2

4
ξd(0). (35)

Thus, in terms of the initial data u0, thanks to (28) and (29), the condition (35) becomes (30)
as claimed. This finishes the proof. ��

Remark 3.5 The conditions that guarantee finite time blow-up when 0 < d < 2 are not as
clear. However, there is the partial result. After applying the Cauchy–Schwarz and Poincaré
inequalities to the condition (30) we see that, when

|∂x u0|24
|u0|p+1

p+1

≤ π2

4
,

then blow-up in finite time is possible for any 0 < d < 2 and p > 1.

We are now in position to provide a better description for the solutions that converge
exponentially to zero. Using (30), we are motivated to define the set on which solutions to
problem (24), (26), and (27) are guaranteed to exponentially decay to zero,

E =
{

u0 ∈ H1
0 (�) : u0 �≡ 0,

‖u0‖2|∂x u0|24
|u0|p+1

p+1‖∂x u0‖2
>

4

π2

√
1 + 2d

}

.

It is possible to further illustrate this application with an inverse problem. Given u0(x),
one computes |∂x u0|24, ‖u0‖2, |u0|p+1

p+1, and ‖∂x u0‖2. Since 0 < d < 2, the set of p > 1
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Fig. 2 Given u0(x) = x sin(πx). Plot of the parameter space: d ∈ [0, 2], p ∈ [1, 3]. Parameters (d, p) above
the critical contour (the 4/π2 level curve shown in red) guarantee the solution exponentially decays to zero

which guarantee the corresponding solution u decays exponentially to zero can be implicitly
determined from the inequality

√
1 + 2d|u0|p+1

p+1‖∂x u0‖2
‖u0‖2|∂x u0|24

<
4

π2 ≈ 0.405285.

Now the left hand side also defines a function of the two variables (d, p). Hence, when
we are given u0(x), the region containing the value of (d, p) which guarantees the solution
converges exponentially to zero can be found on the contour map of the surface described
by that function. We illustrate this with two different initial conditions, u0(x) = x sin(πx)

and u0(x) = e1−x2 − 1 (see Figs. 2 and 3 below).
Finally, our last result is in response to Theorem 3.3. In this case we consider the original

problem (24)–(26) described in the application (no knowledge of the best Poincaré constant
is needed here).

Theorem 3.6 Let T > 0, d > 0 and p > 1. Suppose u = u(x, t) is a positive solution to
problem (24)–(26). There is ξ ∈ C([0, T ]; (0, 1)) in which

∫ 1

0
xdu2

x (x, t)dx = ξd(t)
∫ 1

0
u2

x (x, t)dx, (36)

Furthermore, for any u0 ∈ H1(�), d > 0 and p > 1 satisfying the condition,

〈xd , (∂x u0)
2〉 <

1

p + 1
|u0|p+1

p+1, (37)
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Fig. 3 Given u0(x) = e1−x2 − 1. Plot of the parameter space: d ∈ [0, 2], p ∈ [1, 3]. All parameters (d, p)

in this space guarantee the solution exponentially decays to zero

then the corresponding positive solutions u to problem (24)–(26) blow-up at the finite time

t ′ = p + 1

2p

1

‖u0‖ p−1
2

, (38)

that is, limt→t ′− ‖u(t)‖ = +∞.

Proof The assertion in (36) was already shown in the proof of the previous theorem.
We proceed as in the proof of Theorem 2.9.Multiplying (24) by u in L2(0, 1) and applying

(28) we obtain,
1

2

d

dt
‖u‖2 + 〈−∂x (xdux ), u〉 − |u|p+1

p+1 = 0. (39)

A further multiplication of (24) by ut produces,

d

dt

{

〈−∂x (xdux ), u〉 − 1

p + 1
|u|p+1

p+1

}

+ ‖ut‖2 = 0.

We define the functional

E(t) := 〈−∂x (xdux (t)), u(t)〉 − 1

p + 1
|u(t)|p+1

p+1, (40)

and thanks to (40), we immediately know that

E(t) ≤ E(0).
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From (39) we also have,

1

2

d

dt
‖u‖2 + E − p

p + 1
|u|p+1

p+1 = 0,

and if E(0) < 0, then

1

2

d

dt
‖u‖2 ≥ p

p + 1
|u|p+1

p+1 ≥ p

p + 1
‖u‖2· p+1

2 .

We now observe that, due to the complicated degenerate boundary conditions imposed on
the solution in (25), we find following integration by parts and recalling (36), the condition
(37). Indeed, consider

E(0) = 〈−∂x (xd∂x u0), u0〉 − 1

p + 1
|u0|p+1

p+1

= 〈xd∂x u0, ∂x u0〉 − 1

p + 1
|u0|p+1

p+1

= ξd(0)‖∂x u0‖2 − 1

p + 1
|u0|p+1

p+1

= 〈xd , (∂x u0)
2〉 − 1

p + 1
|u0|p+1

p+1.

Now following some of the calculations as in the proof of Theorem 2.9, we readily find the
blow-up time (38) as claimed. This finishes the proof. ��
Acknowledgements The author would like to thank the referees for their generous comments when reading
the manuscript.

Appendix

Here we report the Mean Value Theorem for Integrals that is used throughout this paper. The
interested reader can also see [10, Chapter 7].

Theorem 4.1 Let T > 0 and � be a bounded domain (open and connected) inR
N . Let f, ϕ ∈

C([0, T ]; L1(�)). Suppose ϕ(t) is nonnegative a.e. on �. Then there is ξ(t) ∈ C([0, T ];�)

in which, for all t ∈ [0, T ],
∫

�

f (x, t)ϕ(x, t)dx = f (ξ(t), t)
∫

�

ϕ(x, t)dx,

that is,

〈 f (t), ϕ(t)〉L2(�) = f (ξ(t), t)|ϕ(t)|L1(�).

Proof Denote by Cc(�) the continuous functions on � that are compactly supported in
� (recall that such functions are dense in L p(�), 1 ≤ p < ∞). Fix t ′ ∈ [0, T ] and let
f̃ (t ′), ϕ̃(t ′) ∈ Cc(�), where ϕ̃(t ′) is nonnegative on �. By the Extreme Value Theorem for
continuous functions, there exist xm and xM in � so that

m(t ′) := min
x∈�

{ f̃ (x, t ′)} = f̃ (xm, t ′)
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and

M(t ′) := max
x∈�

{ f̃ (x, t ′)} = f̃ (xM , t ′).

Hence, there holds,

m(t ′)
∫

�

ϕ̃(x, t ′)dx ≤
∫

�

f̃ (x, t ′)ϕ̃(x, t ′)dx ≤ M(t ′)
∫

�

ϕ̃(x, t ′)dx .

Since ϕ̃(t ′) is nonnegative, |ϕ̃(t ′)|L1(�) = ∫
�

ϕ̃(x, t ′)dx . In the case when ϕ̃(t ′) = 0, we
obtain equality and identity. So in the case when ϕ̃(t ′) is nonzero, we obtain

m(t ′) ≤ 1

|ϕ̃(t ′)|L1(�)

∫

�

f̃ (x, t ′)ϕ̃(x, t ′)dx ≤ M(t ′).

Since f̃ (x, t ′) is continuous and f̃ (x, t ′) ∈ [m(t ′), M(t ′)], then the Intermediate Value
Theorem provides an ξ(t ′) ∈ � in which

f̃ (ξ(t ′), t ′) = 1

|ϕ̃(t ′)|L1(�)

∫

�

f̃ (x, t ′)ϕ̃(x, t ′)dx .

Thus,
∫

�

f̃ (x, t ′)ϕ̃(x, t ′)dx = f̃ (ξ(t ′), t ′)
∫

�

ϕ̃(x, t ′)dx .

By the density of Cc(�) ⊂ L1(�), we also have for f (t ′), ϕ(t ′) ∈ L1(�),
∫

�

f (x, t ′)ϕ(x, t ′)dx = f (ξ(t ′), t ′)
∫

�

ϕ(x, t ′)dx,

or
〈 f (t ′), ϕ(t ′)〉L2(�) = f (ξ(t ′), t ′)|ϕ(t ′)|L1(�). (41)

So far we have shown that, for each fixed t ′ ∈ [0, T ], there exists ξ(t ′) ∈ � in which (41)
holds. It remains to show that the map [0, T ] 
 t �→ ξ(t) ∈ � is continuous. Let t∗ ∈ [0, T ]
and (tn)n∈N>0 be such that tn → t∗ as n → ∞. Then with the continuity of f and ϕ on
[0, T ],

lim
n→∞ f (ξ(tn), tn) = lim

n→∞

(
1

|ϕ(tn)|L1(�)

〈 f (tn), ϕ(tn)〉L2(�)

)

= 1

|ϕ(t∗)|L1(�)

〈 f (t∗), ϕ(t∗)〉L2(�) = f (ξ(t∗), t∗).

Therefore, ξ ∈ C([0, T ];�). This finishes the proof. ��
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