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Abstract In this work, we present a new method for solving elliptic partial differential
equations using Haar wavelet. This work improves the earlier work (Aziz et al. in Appl
Math Model 37:676–694, 2013) in terms of efficiency and contains an extension to nonlinear
elliptic partial differential equations as well. In this paper the earlier algorithm (Aziz et al. in
Appl Math Model 37:676–694, 2013) has been modified by starting the approximation with
a fourth order mixed derivative rather than approximation of the second order derivatives
with respect to x and y separately which results in a more efficient algorithm than the earlier
algorithm. The use of Kronecker tensor products makes the new algorithm robust and easier
to implement in a programming language. A distinguishing feature of the new method is that
it can be applied to a variety of boundary conditions with a little modification of the program.
Themethod is tested on several benchmark linear as well as nonlinear models. The numerical
results show convergence, simple applicability and efficiency of the method.

Keywords Haar wavelet · Poisson equation · Helmholtz equation · Heat transfer ·
Mathematical modelling · Transport processes

Introduction

In this paper, we propose a numerical method based on Haar wavelet to obtain solution of
the following elliptic partial differential equations (EPDEs):

L(u) = Q(x, y),

�(u) = H(x, y),
(1)
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where L is a differential operator (both linear and nonlinear) of the following form:

L = F(∇,∇2), (2)

� is the boundary operator and the functions Q(x, y) and H(x, y) are the source functions.
The function u is the solution of the EPDE (1) defined on two-dimensional rectangular or
square domain.

EPDEs have been used widely in applied mathematics, physics and engineering. The
EPDEs are used to model real physical situations such as, the flow of air pollutants, temper-
ature deflection, electrostatic potential, velocity potential, stream function, fluid flow [1,2],
etc. Analytical solutions of the EPDEs can be found only for simple models. When the model
equations are closely related to experimental and practical situations then analytical solutions
rarely exist and alternative numerical methods are used for numerical simulations of such
model equations. Several numerical methods have been developed by different researchers
for numerical solution of EPDEs [3–5]. Mostly numerical methods convert the model equa-
tions containing partial differential equations into discretized model equations that appear in
the form of a set of algebraic linear or nonlinear equations.

Keeping in view the size of the problemand the advantages of a direct solver,we prefer LU-
factorization as it aims to calculate exact solution in a finite number of operations. However
for very large scale problems, the main limitation of direct solvers is the large memory
requirement needed for mathematical operations. In contrast to this, iterative solvers are
memory efficient but they do not always work well in all situations. Performances of the
iterative solvers are sometime hampered by convergence issues, the nature of the governing
equation being solved and other physical dynamics, like dealing with highly oscillatory
solutions [6].

Due to the excellent properties of the Haar wavelet, a recent surge has been witnessed in
the application of Haar wavelet (see [7,8] and the references therein). Haar wavelet based
approximation methods have attracted attention for various engineering and scientific prob-
lems [7,9–17]. In [7] Haar wavelet collocation method (HWCM) has been used for linear
elliptic PDEs. The major stumbling block in the implementation of the algorithm [7] is the
computational cost of the algorithm which is prohibitively large and practically renders the
method ineffectivewhen implemented either on a denser grid or on a systemof PDEs in higher
dimensions. In the current work, we propose a modification of HWCM. In modified HWCM
the issue of the cost of the algorithm [7] has been addressed by Haar wavelet approximation
of fourth order mixed derivative instead of second order derivatives. Another advantage of the
currentmethod is the use ofKronecker tensor productswhich results in a very easy and simple
implementation of the algorithm in a computer programming language. The new algorithm
is implemented on two-dimensional steady state linear and nonlinear PDEs. A distinguishing
feature of the method is that it can be applied to a variety of boundary conditions (BCs) with
a little modification.

Suppose A is an m × n matrix and B is a p× q matrix, then the Kronecker tensor product
of A and B denoted by A ⊗ B is the matrix of order mp × nq and is defined as follows:

A ⊗ B =

⎡
⎢⎢⎣
a11B a12B · · · a1nB
a21B a22B · · · a2nB
· · · · · · · · · · · ·

am1B am2B · · · amnB

⎤
⎥⎥⎦ .

Note that inMATLAB theKronecker tensor product can be implemented easily and efficiently
using the built-in function kron().
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The rest of the paper is distributed as follows. In Sect. 2 definition of Haar wavelet is
discussed. In Sect. 3, we discuss the numerical method along with different kinds of BCs.
The numerical results are compared with the results obtained from other existed methods in
Sect. 4. Some conclusions are drawn in the Sect. 5.

Haar Wavelet

A wavelet family (ψ j,i (x)) j∈N,i∈Z is an orthonormal subfamily of the Hilbert space L2(R)

with the property that all functions in the wavelet family are generated from a fixed function
ψ called mother wavelet through dilations and translations. The wavelet family satisfies the
following relation:

ψ j,i (x) = 2 j/2ψ(2 j x − i).

The Haar wavelet family defined on the interval [0, 1) consists of the following functions:

h1(x) =
{
1 for x ∈ [0, 1)
0 elsewhere

and

hi (x) =

⎧⎪⎨
⎪⎩

1 for x ∈ [α, β)

−1 for x ∈ [β, γ )

0 elsewhere, i = 2, 3, . . . ,

where

α = k

m
, β = (k + 0.5)

m
, γ = (k + 1)

m
;

m = 2 j , j = 0, 1, . . . , k = 0, 1, . . . ,m − 1.

The integer j indicates the level of the wavelet and k is the translation parameter. The relation
between i,m and k is given by i = m + k + 1. The function h1(x) is called scaling function
whereas h2(x) is the mother wavelet for the Haar wavelet family.

Any square integrable function f (x) defined on [0, 1) can be expressed as a linear com-
bination of members of Haar wavelet family and is given as follows:

f (x) =
∞∑
i=1

ai hi (x),

where ai are constants.
For approximation purpose we consider a maximum value J of the integer j , level of

the Haar wavelet in the above definition. The integer J is then called maximum level of
resolution. We also define the integer M = 2J . With these notations any square integrable
function f (x) defined on [0, 1) can be approximated as linear combination of finite members
of Haar wavelet family and is given as follows:

f (x) ≈
2M∑
i=1

ai hi (x). (3)
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The following notations are introduced:

pi,1(x) =
∫ x

0
hi (x

′) dx ′,

and

pi,n+1(x) =
∫ x

0
pi,n(x

′) dx ′, n = 1, 2, . . .

These integrals can be evaluated using the definition ofHaarwavelet and are given as follows:

pi,n(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 for x ∈ [0, α)
1
n! (x − α)n for x ∈ [α, β)
1
n!

[
(x − α)n − 2(x − β)n

]
for x ∈ [β, γ )

1
n!

[
(x − α)n − 2(x − β)n + (x − γ )n

]
for x ∈ [γ, 1), n = 1, 2, . . .

where i = 2, 3, . . . For i = 1, we have

p1,n(x) = xn

n! , n = 1, 2, . . .

Numerical Method

In this section we will discuss a new collocation method based on Haar wavelet for EPDEs
having Dirichlet, Neumann, mixed and periodic types of BCs. For Haar wavelet approxima-
tion the following collocation points are used:

xk = k − 0.5

n
, k = 1, 2, . . . , N , (4)

yl = l − 0.5

n
, l = 1, 2, . . . , N , (5)

where N = 2M and M is the maximum level of resolution of the Haar wavelet. The
computation domain for the given EPDEs (1) is [0, 1] × [0, 1] but can be extended to
[a, b] × [a, b],∀ a, b ∈ R through linear transformation.

Assume the following Haar wavelet approximation:

∂4u

∂x2∂y2
=

N∑
i=1

N∑
j=1

λi j hi (x)h j (y). (6)

Integrating Eq. (6) with respect to y, we obtain

∂3u

∂x2∂y
= ∂4u

∂x2∂y
(x, 0) +

N∑
i=1

N∑
j=1

λi j hi (x)p j,1(y), (7)

∂2u

∂x2
= ∂4u

∂x2
(x, 0) + y

∂4u

∂x2∂y
(x, 0) +

N∑
i=1

N∑
j=1

λi j hi (x)p j,2(y). (8)
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Using Haar approximations for the single-valued functions ∂4u
∂x2

(x, 0) and ∂4u
∂x2∂y

(x, 0), we
can write

∂2u

∂x2
=

N∑
i=1

αi hi (x) + y
N∑
i=1

βi hi (x) +
N∑
i=1

N∑
j=1

λi j hi (x)p j,2(y). (9)

Substituting the collocation points defined in Eqs. (4) and (5), we have

∂2u

∂x2
(xk, yl) =

N∑
i=1

αi hi (xk) + yl

N∑
i=1

βi hi (xl)

+
N∑
i=1

N∑
j=1

λi j hi (xk)p j,2(yl), k, l = 1, 2, . . . , N . (10)

The matrix H of Haar functions having order N × N is defined as follows:

H = [h ji ] = [hi (x j )]. (11)

In a similar manner, we define

P1 = [pi,1(x j )],
P2 = [pi,2(x j )]. (12)

Thus, in matrix notation Eq. (10) can be written as

uxx = (H ⊗ 1N )α + (H ⊗ y)β + (H ⊗ P2)λ, (13)

where

uxx =
[

∂2u

∂x2
(x1, y1) , . . . ,

∂2u

∂x2
(x1, yN ) , . . . ,

∂2u

∂x2
(xN , y1) , . . . ,

∂2u

∂x2
(xN , yN )

]T

,

1N = [1, 1, . . . , 1]T , α = [α1, α2, . . . , αN ]
T , β = [β1, β2, . . . , βN ]

T ,

y = [y1, y2, . . . , yN ]
T ,

λ = [λ11, λ12, . . . , λ1N , λ21, λ22, . . . , λ2N , . . . , λN1, λN2, . . . , λNN ]
T .

(14)

Similarly, integrating Eq. (6) with respect to x , we obtain

uyy = (1N ⊗ H) γ + (x ⊗ H) δ + (P2 ⊗ H) λ, (15)

where

γ = [γ1, γ2, . . . , γN ]T , δ = [δ1, δ2, . . . , δN ]T , x = [x1, x2, . . . , xN ]T . (16)

The numerical method for different types of BCswill be explained separately in the following
subsections.

Dirichlet BCs

The Dirichlet BCs for EPDEs are defined as follows:

u(0, y) = g(0, y), u(1, y) = g(1, y), y ∈ [0, 1), (17)

u(x, 0) = g(x, 0), u(x, 1) = g(x, 1), x ∈ [0, 1). (18)
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Integrating Eq. (10) and using the BCs, we obtain

ux = 1N ⊗ (g(1, y) − g(0, y)) + ((P1 − 1NpT) ⊗ 1N )α + ((P1 − 1NpT) ⊗ y)β

+((P1 − 1NpT) ⊗ P2)λ, (19)

u = 1N ⊗ g(0, y) + x ⊗ (g(1, y) − g(0, y)) + ((P2 − xpT) ⊗ 1N )α

+((P2 − xpT) ⊗ y)β + ((P2 − xpT) ⊗ P2)λ, (20)

where

p = [p1,2(1), p2,2(1), . . . , pN ,2(1)]T . (21)

Similarly,

uy = (g(x, 1) − g(x, 0)) ⊗ 1N + (1N ⊗ (P1 − 1NpT))γ + (x ⊗ (P1 − 1NpT))δ

+ (P2 ⊗ (P1 − 1NpT))λ, (22)

u = g(x, 0) ⊗ 1N + (g(x, 1) − g(x, 0)) ⊗ y + (1N ⊗ (P2 − ypT))γ

+ (x ⊗ (P2 − ypT))δ + (P2 ⊗ (P2 − ypT))λ. (23)

Discretizing Eq. (2) and substituting the expressions of u and its partial derivatives, a system
of equations having N 2 equations and N 2 + 4N unknowns is obtained. The additional 4N
equations are obtained by comparing the two expressions of u given in Eqs. (20) and (23)
respectively and substituting the values x = 0, x = 1, y = 0 and y = 1 one by one. These
equations are given below.

(P2 − ypT)γ = g(0, y) − g(0, 0)1N − (g(0, 1) − g(0, 0))y,

(P2 − ypT)γ + (P2 − ypT)δ + (pT ⊗ (P2 − ypT))λ

= g(1, y) − g(1, 0)1N − (g(1, 1) − g(1, 0))y,

(P2 − xpT)α = g(x, 0) − g(0, 0)1N − (g(1, 0) − g(0, 0))x,

(P2 − xpT)α + (P2 − xpT)β + ((P2 − xpT) ⊗ pT)λ

= g(x, 1) − g(0, 1)1N − (g(1, 1) − g(0, 1))x.

Combining all these equations results in a (N 2 + 4N ) × (N 2 + 4N ) linear or nonlinear
system. Solution of this system yields the unknowns λ,α,β, γ and δ. The approximate
solution u(x, y) and its derivatives at any point of the domain can be calculated using these
values.

Neumann BCs

The Neumann BCs for EPDEs are given below.

∂u

∂x
(0, y) = gx (0, y),

∂u

∂x
(1, y) = gx (1, y), y ∈ [0, 1), (24)

∂u

∂y
(x, 0) = gy(x, 0),

∂u

∂y
(x, 1) = gy(x, 1), x ∈ [0, 1). (25)

For Neumann BCs, we integrate Eq. (10) and obtain the following expressions.

ux = 1N ⊗ gx (0, y) + (P1 ⊗ 1N )α + (P1 ⊗ y)β + (P1 ⊗ P2)λ, (26)

u = (1N ⊗ IN )u(0, y) + x ⊗ gx (0, y) + (P2 ⊗ 1N )α + (P2 ⊗ y)β + (P2 ⊗ P2)λ,

(27)
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where IN is the identity matrix of order N × N . Similarly,

uy = gy(x, 0) ⊗ 1N + (1N ⊗ P1)γ + (x ⊗ P1)δ + (P2 ⊗ P1)λ, (28)

u = (IN ⊗ 1N )u(x, 0) + gy(x, 0) ⊗ y + (1N ⊗ P2)γ + (x ⊗ P2)δ + (P2 ⊗ P2)λ.

(29)

These expressions when substituted in Eq. (1) give rise to a system of equations having N 2

equations but N 2 +6N unknowns λ,α,β, γ , δ, u(0, y) and u(x, 0). Integrating Eq. (10) and
using the BCs we get the following N equations:

α11N + β1y + (eT1 ⊗ P2)λ = gx (1, y) − gx (0, y), (30)

where e1 = [1 0 · · · 0]T. Similarly,

γ11N + δ1x + (P2 ⊗ eT1 )λ = gy(x, 1) − gy(x, 0). (31)

Another 4N equations are obtained by comparing two expressions of u given in Eqs. (27)
and (29), and substituting x = 0, x = 1, y = 0 and y = 1 one by one. These equations are
given below.

INu(0, y) − P2γ − 1Nu(0, 0) = gy(0, 0)y,

INu(0, y) + (pT ⊗ 1N )α + (pT ⊗ y)β − P2γ − P2δ − 1Nu(1, 0) = gy(1, 0)y − gx (0, y),

INu(x, 0) − P2α − 1Nu(0, 0) = gx (0, 0)x,

INu(x, 0) − P2α − P2β + (1n ⊗ pT)γ + (x ⊗ pT)δ − 1Nu(0, 1) = gx (0, 1)x − gy(x, 0).

(32)

The above 4N equations involve three more unknowns u(0, 0), u(1, 0) and u(0, 1). Substi-
tuting y = 0 and y = 1 in Eq. (30), and x = 0 in Eq. (31), we obtain the following three
equations:

α1 = gx (1, 0) − gx (0, 0)

α1 + β1 + (eT1 ⊗ pT)λ = gx (1, 1) − gx (0, 1) (33)

γ1 = gy(0, 1) − gy(0, 0).

The numerical solution is obtained in a similar way as discussed in the case of Dirichlet BCs
in the previous subsection.

Mixed BCs

In this section, two types of mixed BCs will be considered.

Type I

The first type of mixed BCs for EPDEs are given as follows:

u(0, y) = g(0, y), u(1, y) = g(1, y), y ∈ [0, 1), (34)
∂u

∂y
(x, 0) = gy(x, 0),

∂u

∂y
(x, 1) = gy(x, 1), x ∈ [0, 1). (35)
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Using BCs (34) the following expressions are obtained.

ux = 1N ⊗ (g(1, y) − g(0, y)) + ((P1 − 1NpT) ⊗ 1N )α + ((P1 − 1NpT) ⊗ y)β

+((P1 − 1NpT) ⊗ P2)λ, (36)

u = 1N ⊗ g(0, y) + x ⊗ (g(1, y) − g(0, y)) + ((P2 − xpT) ⊗ 1N )α

+((P2 − xpT) ⊗ y)β + ((P2 − xpT) ⊗ P2)λ. (37)

Similarly, using BCs (35), we obtain

uy = gy(x, 0) ⊗ 1N + (1N ⊗ P1)γ + (x ⊗ P1)δ + (P2 ⊗ P1)λ, (38)

u = (IN ⊗ 1N )u(x, 0) + gy(x, 0) ⊗ y + (1N ⊗ P2)γ + (x ⊗ P2)δ + (P2 ⊗ P2)λ.

(39)

These expressions when substituted in Eq. (1) give rise to a system of equations having N 2

equations but N 2 + 5N unknowns λ,α,β, γ , δ and u(x, 0). Integrating Eq. (15) and using
the BCs we get the following N equations.

γ11N + δ1x + (P2 ⊗ eT1 )λ = gy(x, 1) − gy(x, 0). (40)

Comparing the two expressions of u and substituting values of x = 0, 1 and y = 0, 1 we
obtain the following 4N equations.

g(0, y) = P2γ + 1nu(0, 0) + gy(0, 0)y,

g(1, y) = P2γ + P2δ + 1Nu(1, 0) + gy(1, 0)y + (1npT ⊗ P2)λ,

g(0, 0)1N + (g(1, 0) − g(0, 0))x + (P2 − xpT)α = u(x, 0),
(41)

g(0, 1)1N + (g(1, 1) − g(0, 1))x + (P2 − xpT)α + (P2 − xpT)β

+((P2 − xpT) ⊗ pT)λ

= INu(x, 0) + (1N ⊗ pT)γ + (x ⊗ pT)δ + gy(x, 0) + (P2 ⊗ 1NpT)λ.

The solution procedure is similar to previous cases.

Type II

The second type of mixed BCs considered here are given below.

∂u

∂x
(0, y) = gx (0, y), u(1, y) = g(1, y), y ∈ [0, 1), (42)

∂u

∂y
(x, 0) = gy(x, 0), u(x, 1) = g(x, 1), x ∈ [0, 1). (43)

Different expressions of u and its derivatives are given as follows:

ux = 1N ⊗ gx (0, y) + (P1 ⊗ 1N )α + (P1 ⊗ y)β + (P1 ⊗ P2)λ, (44)

u = 1N ⊗ g(1, y) − (1N − x) ⊗ gx (0, y)

−((1NpT − P2) ⊗ 1N )α − ((1NpT − P2) ⊗ y)β

−((1NpT − P2) ⊗ P2)λ, (45)

uy = gy(x, 0) ⊗ 1N + (1N ⊗ P1)γ + (x ⊗ P1)δ + (P2 ⊗ P1)λ, (46)

u = g(x, 1) ⊗ 1N − gy(x, 0) ⊗ (1N − y) − (1N ⊗ (1NpT − P2))γ

−(x ⊗ (1NpT − P2))δ − (P2 ⊗ (1NpT − P2))λ, (47)
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Comparing the two different expressions of u and substituting x = 0, 1 and y = 0, 1 the
following equations are obtained:

g(1, y) − gx (0, y) − 1NpTα − ypTβ − (pT ⊗ P2)λ

= g(0, 1)1N − gy(0, 0)(1N − y) − (1NpT − P2)γ ,

g(1, y) = g(1, 1)1N − gy(1, 0)(1 − y) − (1NpT − P2)γ − (1NpT
(48)−P2)δ − (pT ⊗ (1NpT − P2))λ,

g(1, 0)1N − gx (0, 0)(1N − x) − (1NpT − P2)α = g(x, 1) − gy(x, 0)

−1NpTγ − xpTδ − (P2 ⊗ pT)λ,

g(1, 1)1N − gx (0, 1)(1N − x) − (1NpT − P2)α − (1NpT − P2)β

−((1NpT − P2) ⊗ pT)λ = g(x, 1).

The solution procedure is similar.

Periodic BCs

The periodic BCs for EPDEs are given as follows:

u(0, y) = u(1, y),
∂u

∂x
(0, y) = ∂u

∂x
(1, y), y ∈ [0, 1),

u(x, 0) = u(x, 1),
∂u

∂y
(x, 0) = ∂u

∂y
(x, 1), x ∈ [0, 1).

(49)

Integrating Eq. (10) and using BCs the following expressions are obtained:

ux = ((P1 − 1NpT) ⊗ 1N )α + ((P1 − 1NpT) ⊗ y)β

+((P1 − 1NpT) ⊗ P2)λ, (50)

u = (1N ⊗ IN )u(0, y) + ((P2 − xpT) ⊗ 1N )α

+((P2 − xpT) ⊗ y)β + ((P2 − xpT) ⊗ P2)λ. (51)

Similarly,

uy = (1N ⊗ (P1 − 1NpT))γ + (x ⊗ (P1 − 1NpT))δ

+(P2 ⊗ (P1 − 1NpT))λ, (52)

u = (IN ⊗ 1N )u(x, 0) + (1N ⊗ (P2 − ypT))γ

+(x ⊗ (P2 − ypT))δ + (P2 ⊗ (P2 − ypT))λ. (53)

Additional equations obtained are given below.

α11N + β1y + (eT1 ⊗ P2)λ = 0,

γ11N + δ1x + (P2 ⊗ eT1 )λ = 0,

(P2 − ypT)γ − INu(0, y) + u(0, 0) = 0,

(pT ⊗ (P2 − ypT))λ + (P2 − ypT)γ + (P2 − ypT)δ − INu(0, y) + u(1, 0) = 0,

(P2 − xpT)α − INu(x, 0) + u(0, 0) = 0, (54)

((P2 − xpT) ⊗ pT)λ + (P2 − xpT)α + (P2 − xpT)β − INu(x, 0) + u(0, 1) = 0,

α1 = 0,

α1 + β1 + (eT1 ⊗ pT)λ = 0,
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γ1 = 0;
The solution procedure is similar to the previous cases.

Numerical Experiments

In this section, numerical and graphical results obtained frommodified HWCM is presented.
The method is applied to four Test Problems with known exact solutions. Test Problem 1 is a
Helmholtz equation which is a linear EPDE. This problem is considered in order to show the
better efficiency of the modified HWCM as compared to HWCM [7]. Test Problems 2 and 3
are linear Poisson equations with constant and variable sources respectively. These steady-
state problems have several applications in fluid dynamics, electrostatics, heat transfer and
mass transfer. Finally Test Problem 4 is a generalized nonlinear Poisson equation. This
problem is considered in order to show the applicability of modified HWCM to nonlinear
problems as well.

The algorithm is implemented in MATLAB on Intel Core i7 processor with 32 GB RAM.
The performance of the method is demonstrated using the L∞ norm which is defined as

L∞ = max
i, j

|uapp(xi , y j ) − uex(xi , y j )|, i, j = 1, 2, . . . , N , (55)

where uapp(xi , y j ) is the numerical and uex(xi , y j ) is the exact solution at the point (xi , y j ).

Helmholtz Equation

Test Problem 1 Consider the Helmholtz equation [7]:

∂2u

∂x2
+ ∂2u

∂y2
+ 900 u(x, y) = f (x, y), 0 ≤ x, y ≤ 1, (56)

subject to Dirichlet BCs. The function f (x, y) is taken such that the exact solution of the
problem is u(x, y) = exy

2
. Comparison of the CPU time of the present method with our

earlier method [7] is given in Table 1. It is clear from the table that in addition to good
accuracy, the new algorithm is almost 7 times faster than the previous algorithm [7].

Table 1 Comparison of CPU
time of present method with
method [7] for Test Problem 1

N L∞ CPU time (in s)

Modified HWCM HWCM [7]

2 × 2 2.4 × 10−4 0.003 0.004

4 × 4 2.3 × 10−4 0.003 0.004

8 × 8 6.6 × 10−5 0.004 0.01

16 × 16 4.1 × 10−5 0.02 0.03

32 × 32 9.3 × 10−6 0.1 0.4

64 × 64 2.4 × 10−6 2 13

128 × 128 5.6 × 10−7 91 608
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Poisson Equation

Test Problem 2 (Constant source) Consider the Poisson equation:

∂2u

∂x2
+ ∂2u

∂y2
= Q, −a ≤ x ≤ a, −b ≤ y ≤ b, (57)

where Q is a constant, subject to the Dirichlet BCs:

u(−a, y) = 0, u(a, y) = 0, −b ≤ y ≤ b,

u(x,−b) = 0, u(x, b) = 0, −a ≤ x ≤ a.
(58)

Equation (57) describes the steady-state two-dimensional diffusion (cross-wind integrated)
of a pollutant in the absence of wind with constant source strength Q in a finite domain
[1]. It also describes the steady-state transport of oxygen in a slab of tissue with a constant
oxygen consumption rate [18]. In addition to this, it also represents the steady-state tem-
perature distribution in a rectangular region with heat loss (production) at a constant rate
Q [2].

The solution of Eq. (57) with BCs (58) is symmetric with respect to both x- and y-axis.
Due to this reason Eq. (57) is solved in the region (0 < x < a, 0 < y < b) subject to the
following BCs [1]:

u(a, y) = 0,
∂u

∂x
(0, y) = 0, 0 ≤ y ≤ b

u(x, b) = 0,
∂u

∂y
(x, 0) = 0, 0 ≤ x ≤ a.

(59)

The exact solution of the problem is given as follows [1]:

u(x, y) = 2Q

a

∞∑
k=0

(−1)k

(λk)
3/2

(
cosh

√
λk y

cosh
√

λkb
− 1

)
cos

(√
λk x

)
, (60)

where
√

λk = (2k+1)π
2a .

Maximum absolute errors for different number of collocation points are shown in Table 2.
Like the other test problems an efficient and accurate solution has been obtained through the
new algorithm.

Table 2 Maximum absolute
errors and CPU time for Test
Problem 2

N L∞ CPU time (in s)

2 × 2 5.9 × 10−3 0.002

4 × 4 1.7 × 10−3 0.002

8 × 8 4.5 × 10−4 0.003

16 × 16 1.1 × 10−4 0.01

32 × 32 2.8 × 10−5 0.1

64 × 64 7.1 × 10−6 2.2

128 × 128 1.8 × 10−6 86
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Test Problem 3 (Variable source) Consider Poisson equation with variable source:

∂2u

∂x2
+ ∂2u

∂y2
= f (x, y), −a ≤ x ≤ a, −b ≤ y ≤ b, (61)

where source is a function of both x and y. The BCs are same as considered in Test Problem 2
which are given in Eq. (58).

Important applications of Eq. (61) occur in fluid dynamics (u is stream function and f
is vorticity), electrostatics (u is electric potential and f is the ratio of charge density to
dielectric constant), heat transfer (u is temperature and f is the loss/generation of heat) and
mass transfer (u is concentration and f is source/sink term) [2].

The solution of Eq. (61) is expected to be symmetric in x and y [2] and therefore we
consider the region (0 < x < a, 0 < y < b) with the BCs (59).

We assume that f (x, y) is the same function as the exact solution of Test Problem 2 which
is given in Eq. (60). With this f , the exact solution of Eq. (61) is given below [1]:

u(x, y) = Q

a

∞∑
k=0

[
(−1)k

(λk)5/2

] [{
2 + √

λk y
sinh

√
λk y

cosh
√

λkb

}

−
{
2 + √

λkb
sinh

√
λkb

cosh
√

λkb

}(
cosh

√
λk y

cosh
√

λkb

)]
cos

(√
λk x

)
, (62)

where
√

λk = (2k+1)π
2a .

Maximum absolute errors for different number of collocation points are shown in Table 3.
It is conformed from the table that a converging solution has been reproduced by the new
algorithm in a fairly less CPU time.

Generalized Nonlinear Poisson Equation

Test Problem 4 Consider a nonlinear Poisson problem [19]:

∂2u

∂x2
+ ∂2u

∂y2
+

(
∂u

∂y

)2

= f (x, y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, (63)

subject to the following Dirichlet BCs:

u(0, y) = 0, u(1, y) = y + a,

u(x, 0) = ax, u(x, 1) = x(x + a),
(64)

where a is any constant. The analytical solution of the problem is u(x, y) = x(xy + a). For
simplicity, the value of the constant a is taken to be zero. The numerical results are shown

Table 3 Maximum absolute
errors and CPU time for Test
Problem 3

N L∞ CPU time (in s)

2 × 2 1.1 × 10−3 0.002

4 × 4 3.3 × 10−4 0.004

8 × 8 8.7 × 10−5 0.01

16 × 16 2.2 × 10−5 0.03

32 × 32 5.5 × 10−6 0.17

64 × 64 1.4 × 10−6 2.5

128 × 128 3.5 × 10−7 88
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Table 4 Maximum absolute
errors and CPU time for Test
Problem

N L∞ No. of iterations CPU time (in s)

2 × 2 8.5 × 10−4 7 0.01

4 × 4 3.4 × 10−4 8 0.02

8 × 8 9.0 × 10−5 10 0.035

16 × 16 2.3 × 10−5 10 0.06

32 × 32 5.7 × 10−6 11 1

64 × 64 1.4 × 10−6 11 17

128 × 128 3.6 × 10−7 11 455

in Table 4. The nonlinear system of equations obtained after substituting the Haar wavelet
approximations which may be solved using either Newton’s method or Broyden’s method.
For numerical experiments we have used Broyden’s method as it is more economical in
terms of CPU time. The initial guess for the Broyden’s method was taken to be zero and the
iterations were terminated when the convergence criterion 10−6 was satisfied. The number of
iterations and the CPU time for different number of grid points are also shown in Table 4. It is
evident from the table that the new method has obtained the desired accuracy in 11 iteration
keeping the CPU time in a reasonable limit.

Conclusion

A modified Haar wavelet collocation method is presented for numerical solution of elliptic
partial differential equations. The method can solve both linear as well as nonlinear EPDEs
numerically. The method can be applied to different types of boundary conditions easily with
a slight modification. The method is tested on several benchmark problems. It is observed
that the proposed method is more efficient.
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