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Abstract In this paper, we discuss by means of a fixed point theorem, the existence of
positive solutions of a system of nonlinear Caputo fractional differential equations with
integral boundary conditions. An example is given to illustrate the main results.
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Introduction

Fractional calculus still gaining increasing attention even it is an old mathematical topic,
this is due to their multidisciplinary applications such in viscoelasticity, electrochemistry,
electromagnetism, rheology…[1]. It is shown that the mean advantages of fractional order
derivatives and integrals is their ability to describe memory and hereditary properties of
different materials, for more details see [1–3]. Let us note that there exists abundant literature
concerning the relation between fractional derivatives and fractional powers of operators
[4,5], fractional partial differential equations [6] and boundary value problems involving
fractional calculus [7–13].
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The studyof systemsof fractional differential equations has also knownan increasing inter-
est since the behavior of many physical systems can be properly described by fractional-order
systems, for example, dielectric polarization, electromagnetic waves, viscoelastic systems,
diffusion waves [14]. For some recent results on systems of fractional differential equations
and their applications, we refer to [14,15].

In this work, we consider the following system of fractional differential equations with
integral boundary conditions:

(S) :
{

cDq
0+u(t) = g(t) f (u(t)) , 0 < t < 1,

u′(0) = 0, Eu (0) − Bu (1) = ∫ 1
0 h (u(s)) ds,

where f, h : R
n → R

n and g : [0, 1] → R are given functions, u : [0, 1] → R
n is the

unknown function, cDq
0+ denotes the Caputo’s fractional derivative, 1 < q < 2. Denote

u = (u1, u2, . . . , un)T ,

f (u) = ( f1 (u1, u2, . . . , un) , . . . , fn (u1, u2, . . . , un))
T ,

h (u) = (h1 (u1, u2, . . . , un) , . . . , hn (u1, u2, . . . , un))
T .

Denote by E the identity matrix in Mn (R) (The vector space of real matrices with n rows
and n columns) and B = diag (λ1, . . . λn) ∈ Mn (R) , 0 < λi < 1, ∀i ∈ {1, . . . , n}.

Similar boundary value problem for systems of nonlinear fractional differential equations
has been widely studied by many authors, but most of them obtained only some existence
results without any information about the positivity of solutions, see [1,5,8,16–20].

Boundary value problem with integral boundary conditions is a mathematical model for
of various phenomena of physics, ecology, biology, chemistry, etc. Integral conditions come
up when values of the function on the boundary is connected to values inside the domain or
when direct measurements on the boundary are not possible, see [13,21–25]

Many methods are used to investigate the existence of solutions for boundary value prob-
lems, one can cite fixed point theory, the upper and lower solution method, the variational
method…We refer the reader to [7–12,22–31] for recent developments in this area. On the
other hand, fixed point theory is a very powerful mathematical tool in the study of bound-
ary value problems where the existence, uniqueness, positivity and stability knowledge are
needed.

This paper is organized as follows: We state in Sect. 2 some background materials and
preliminaries. Main results and their proofs are exposed in Sect. 3, which we achieved by an
example illustrating the obtained results.

Background Materials and Preliminaries

We recall some basic definitions of the fractional integrals and derivatives. For more details
on fractional calculus, see Kilbas et al. [2].

Definition 1 The Riemann-Liouville fractional integral of order α of a function g is defined
by

Iα
a+g(t) = 1

� (α)

∫ t

a

g(s)

(t − s)1−α
ds,

where � (α) = ∫ +∞
0 e−t tα−1dt is the Gamma function, α > 0.
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Definition 2 Let q ≥ 0, n = [q] + 1. If g ∈ Cn[a, b], then the Caputo fractional derivative
of order q of g defined by

cDq
a+g(t) = 1

� (n − q)

∫ t

a

g(n)(s)

(t − s)q−n+1 ds,

exists almost everywhere on [a, b] ([q] is the entire part of q).

Lemma 3 For q > 0, g ∈ C(0, 1), the homogenous fractional differential equation
cDq

a+g(t) = 0 has a solution

g(t) = c1 + c2t + c3t
2 + · · · + cnt

n−1,

where ci ∈ R, i = 0, . . . , n, and n = [q] + 1.

Lemma 4 Let p, q ≥ 0, f ∈ L1[a, b]. Then I p0+ I
q
0+ f (t) = I p+q

0+ f (t) = I q0+ I
p
0+ f (t) and

cDq
a+ I

q
0+ f (t) = f (t), for all t ∈ [a, b].

Let X be the Banach space of all functions u ∈ Cn[0, 1] = C[0, 1] × · · · × C[0, 1] with
the norm ||.|| defined by ||u|| = ∑i=n

i=1 maxt∈[0,1] |ui (t)|.
The system (S) can be turned to the following system of n equations with nonlocal

conditions:

(Si ) :
{

cDq
0+ui (t) = g(t) fi (u(t)) , 0 < t < 1,

u′
i (0) = 0, ui (0) − λi u (1) = ∫ 1

0 hi (u(s)) ds, i ∈ {1, . . . , n} .

Lemma 5 If 0 < λi < 1, ∀i ∈ {1, . . . , n}, then the linear nonhomogeneous problem

(Si ) :
{

cDq
0+ui (t) = y(t), 0 < t < 1,

u′
i (0) = 0, ui (0) − λi ui (1) = ∫ 1

0 z(s)ds,

has the following solution

ui (t) = 1

� (q)

∫ 1

0
Gi (t, s) y(s)ds + 1

1 − λi

∫ 1

0
z (s) ds,

where

Gi (t, s) =
{

(t − s)q−1 + λi
1−λi

(1 − s)q−1 , s ≤ t,

λi
1−λi

(1 − s)q−1 , t ≤ s.

Define the integral operator T : X → X by Tu = (T1u, T2u, . . . , Tnu) where

Tiu(t) = 1

� (q)

∫ 1

0
g(s)Gi (t, s) fi (u (s)) ds + 1

1 − λi

∫ 1

0
hi (u (s)) ds,

then the system (S) is equivalent to a system of integral equations:

T u(t) = 1

� (q)

∫ 1

0
g(s)G (t, s) f (u (s)) ds +

∫ 1

0
Hλ (u (s)) ds,

where the matrix G (t, s) = diag (G1 (t, s) , . . . ,Gn (t, s)) and∫ 1

0
Hλ (u (s)) ds =

(
1

1 − λ1

∫ 1

0
h1 (u (s)) ds, . . . ,

1

1 − λn

∫ 1

0
hn (u (s)) ds

)T

.
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Lemma 6 The function u ∈ X is solution of the system (S) if and only if Ti u(t) = u(t), for
all t ∈ [0, 1] ,∀i ∈ {1, . . . , n}.

Consequently, existence of solutions for the system (S) can be turned into a fixed point
problem in X for the operator T .

Define a positive solution as:

Definition 7 A function u is called positive solution of the system (S) if ui (t) ≥ 0,∀t ∈
[0, 1] , ∀i ∈ {1, . . . , n} and it satisfies the boundary conditions in (Si ).

Main Results

Let us state the properties of the Green functions:

Lemma 8 For all t, s ∈ [0, 1] and ∀i ∈ {1, . . . , n}, we have the following:
(i) Gi (t, s) ∈ C ([0, 1] × [0, 1]) , Gi (t, s) ≥ 0.

(ii) λiγi (s) ≤ Gi (t, s) ≤ γi (s), where γi (s) = (1−s)q−1

1−λi
.

Nowwe state the assumptions that will be used to prove the existence of positive solutions:

(K1) : 0 < λi < 1, fi ∈ C
(
R
n+, R+

)
, ∀i ∈ {1, . . . , n} ,

g ∈ L1 ([0, 1] , R+) ,

∫ 1

0
(1 − s)q−1g(s)ds > 0.

(K2) : hi ∈ C
(
R
n+, R+

)
, hi (v1, . . . , vn) ≤ l (v1 + · · · + vn) ,

∀i ∈ {1, . . . , n} , l <

(
n∑

i=1

1

1 − λi

)−1

.

Lemma 9 Assume that (K1) and (K2) hold. Then the solution u of the system (S) satisfies

min
t∈[0,1]

n∑
i=1

ui (t) ≥
(
min
1≤i≤n

λi

)
‖u‖ .

Proof For all i ∈ {1, . . . , n} we have

ui (t) = 1

� (q)

∫ 1

0
Gi (t, s) g(s) fi (u (s)) ds + 1

1 − λi

∫ 1

0
hi (u (s)) ds.

By Lemma 8 we obtain

ui (t) ≤ 1

� (q)

∫ 1

0
γi (s) g(s) fi (u (s)) ds + 1

1 − λi

∫ 1

0
hi (u (s)) ds. (3.1)

Taking the supremum over [0, 1], then summing the obtained inequalities according to i from
1 to n, we get

‖u‖ ≤ 1

� (q)

n∑
i=1

(∫ 1

0
γi (s) g(s) fi (u (s)) ds + 1

1 − λi

∫ 1

0
hi (u (s)) ds

)
. (3.2)
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On the other hand, taking into account the left hand side of inequalities in (ii) of Lemma 8
and the fact that 0 < λi < 1, it yields

ui (t) ≥ λi

� (q)

∫ 1

0
γi (s) g(s) fi (u (s)) ds + 1

1 − λi

∫ 1

0
hi (u (s)) ds

≥ λi

� (q)

(∫ 1

0
γi (s) g(s) fi (u (s)) ds + 1

(1 − λi )

∫ 1

0
hi (u (s)) ds

)

≥
(
min
1≤i≤n

λi

)
1

� (q)

(∫ 1

0
γi (s) g(s) fi (u (s)) ds + 1

(1 − λi )

∫ 1

0
hi (u (s)) ds

)
.

Summing the n obtained inequalities, taking the minimum over t on [0, 1], then applying
(3.2) we get the desired result. The proof is complete. 
�

Let us introduce the following notations

f i0 = lim
‖u‖→0+

fi (u)

‖u‖ , f i∞ = lim‖u‖→+∞
fi (u)

‖u‖ , f0 =
n∑

i=0

f i0 , f∞ =
n∑

i=0

f i∞.

The case f0 = 0 and f∞ = +∞ is called superlinear case and the case f0 = +∞ and
f∞ = 0 is called sublinear case. Let K be the cone:

K =
{
u = (u1, . . . , u2) ∈ X, ui (t) ≥ 0, ∀t ∈ [0, 1] , ∀i ∈ {1, . . . , n} ,

min
t∈[0,1]

n∑
i=1

ui (t) ≥
(

min
1≤i≤n

λi

)
‖u‖

}
.

Lemma 10 The map T : X → X is completely continuous and TK ⊂ K.

Proof By Ascoli-Arzela theorem we prove that Ti is completely continuous mapping for all
i = 1, . . . , n, then T is completely continuous mapping. To prove that TK ⊂ K, let us take
u ∈ K , then

Tiu(t) = 1

� (q)

∫ 1

0
Gi (t, s) g(s) fi (u (s)) ds + 1

1 − λi

∫ 1

0
hi (u (s)) ds,

arguing as in the proof of Lemma 9, we obtain

min
t∈[0,1]

n∑
i=1

Tu(t) ≥
(
min
1≤i≤n

λi

)
‖Tu‖ ,

thus TK ⊂ K. 
�
Now we are ready to state the main result.

Theorem 11 Assume that (K1)–(K2) hold. Then the fractional boundary value problem (S)
has at least one positive solution in superlinear as well as sublinear case.

We recall the well-known Guo-Krasnosel’skii fixed point theorem on cone.

Theorem 12 [32,33] Let E be a Banach space, and let K ⊂ E, be a cone. Assume �1 and
�2 are open subsets of E with 0 ∈ �1, �1 ⊂ �2 and let

A : K ∩ (
�2\�1

) → K ,

be a completely continuous operator such that
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(i) ||Au|| ≤ ||u|| , u ∈ K ∩ ∂�1, and ||Au|| ≥ ||u|| , u ∈ K ∩ ∂�2; or
(ii) ||Au|| ≥ ||u|| , u ∈ K ∩ ∂�1, and ||Au|| ≤ ||u|| , u ∈ K ∩ ∂�2.

Then A has a fixed point in K ∩ (
�2\�1

)
.

Proof of Theorem 11 Let us consider the superlinear case. From the definition of the limit
f0 = 0, we deduce that f i0 = 0, ∀i = 1, . . . , n, then for any ε > 0, there exists
Ri > 0, such that if 0 < ‖u‖ ≤ Ri , then fi (u) ≤ ε ‖u‖ , ∀i = 1, . . . , n. Let
R1 = min

{
Ri , i = 1, . . . , n,

}
�1 = {u ∈ E, ‖u‖ < R1}, so, for any u ∈ K ∩ ∂�1, we

get by using (K1) − (K2) and Lemma 8

Tiu(t) = 1

� (q)

∫ 1

0
Gi (t, s) g(s) fi (u(s))ds + 1

1 − λi

∫ 1

0
hi (u(s))ds

≤ ε ‖u‖
� (q)

∫ 1

0
γi (s)g(s)ds + l ‖u‖

1 − λi
,

then by taking the maximum over t ∈ [0, 1] it follows

max
0≤t≤1

Tiu(t) ≤
(

ε

� (q)

∫ 1

0
γi (s)g(s)ds + l

1 − λi

)
‖u‖ . (3.3)

Summing the n obtained inequalities in (3.3) it yields

‖Tu‖ ≤ ‖u‖
(

ε

� (q)

n∑
i=1

∫ 1

0
γi (s)g(s)ds +

n∑
i=1

l

1 − λi

)
.

In view of assumptions (K1), one can choose ε such that

ε ≤
� (q)

(
1 − l

∑n
i=1

1
1−λi

)
∑n

i=1

∫ 1
0 γi (s)g(s)ds

=
� (q)

(
1 − l

∑n
i=1

1
1−λi

)
(∑n

i=1
1

1−λi

) (∫ 1
0 (1 − s)q−1g(s)ds

) ,

thus ||Tu|| ≤ ||u||, for u ∈ K ∩ ∂�1.
Next, since f∞ = ∞, then f i∞ = ∞, ∀i = 1, . . . , n. For any M > 0, there exists

ξ i > 0, such that fi (u) ≥ M ‖u‖ for ‖u‖ ≥ ζ i . Let R = max
{
ζ i , i = 1, . . . , n,

}
, choose

R2 > max
{
R1,

R
(min1≤i≤n λi)

}
and denote by �2 = {u ∈ E : ||u|| < R2}. Let u ∈ K ∩ ∂�2

then for all t ∈ [0, 1] we have

‖u‖ =
n∑

i=1

max
0≤t≤1

|ui (t)| ≥
n∑

i=1

min
[0,1]

ui (t) ≥
(
min
1≤i≤n

λi

)
‖u‖ =

(
min
1≤i≤n

λi

)
R2 > R.

Using estimates in Lemma 8 and the fact that u ∈ K , we obtain for all t ∈ [0, 1]

Tiu(t) ≥ ‖u‖ λi M

� (q)

∫ 1

0
γi (s)g(s)ds + 1

1 − λi

∫ 1

0
hi (u(s))ds

≥ ‖u‖ λi M

� (q)

∫ 1

0
γi (s)g(s)ds,

thus

‖Tu‖ ≥ ‖u‖ M

� (q)

n∑
i=1

(
λi

∫ 1

0
γi (s)g(s)ds

)
. (3.4)
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Thanks to assumptions (K1) one can choose M such that

M ≥ � (q)∑n
i=1 λi

∫ 1
0 γi (s)g(s)ds

= � (q)(∑n
i=1

λi
1−λi

) (∫ 1
0 (1 − s)q−1g(s)ds

) ,

then (3.4) implies

||Tu|| ≥ ||u|| , ∀u ∈ K ∩ ∂�2.

Now we can apply the first statement of Guo-Krasnosel’skii fixed point theorem on cone to
conclude that T has a fixed point in K ∩ (

�2��1
)
such that R ≤ ||u|| ≤ R2. Applying

similar techniques as above, we prove the sublinear case. The proof is complete. 
�
We conclude with an explicit numerical example:

Example 13 Consider the following two-dimensional fractional order system

(Si ) :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

cD0+
3
2 u1(t) = (1 − t)e−u1−u2 ,

cD0+
3
2 u2(t) = (1 − t)e−u2 0 < t < 1,

u′
1(0) = 0, u1 (0) − 1

2u1 (1) = ∫ 1
0

(
u1(s)+u2(s)

20

)
ds

u′
2(0) = 0, u2 (0) − 1

4u2 (1) = ∫ 1
0

e−2(u1(s)+u2(s))
1+u21(s)+u22(s)

ds.

We have q = 3
2 , λ1 = 1

2 , λ2 = 1
4 , g(t) = (1 − t) ∈ L1 ([0, 1] , R+) ,

∫ 1
0 (1 − s)q−1

g(s)ds = 2
5 > 0, f1 (u) = e−u1−u2 , f2 (u) = e−u2 , fi ∈ C

(
R
2+, R+

)
, h1 (u) =

1
20 (u1 + u2) , h2 (u) = e−2(u1+u2)

1+u21+u22
≤ e−2 (u1 + u2) , hi ∈ C

(
R
2+, R+

)
, one can choose

l = e−2 = 0.135 34, then l <
(∑2

i=1
1

1−λi

)−1 = 0, 3. Since (K1) and (K2) are satisfied and

f i0 = ∞, f i∞ = 0, then Theorem 11 implies that there exists at least one positive solution
in the cone K .
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