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Abstract In this paper, we consider a tumor growth model with the effect of tumor–immune
interactions and chemotherapeutic aswell as immunotherapeutic drugs. In ourmodel there are
four compartments, namely tumor cells, immune cells, chemotherapeutic drug concentration
and immunotherapeutic drug concentration. The dynamical behaviour of our system by ana-
lyzing the existence and stability of our system at various equilibria is discussed elaborately.
We set up an optimal control problem relative to the model so as to minimize the number of
tumor cells and the chemotherapeutic and immunotherapeutic drugs administration. Here we
use a quadratic control to quantify this goal and consider the administration of chemotherapy
and immunotherapeutic drugs as controls to reduce the spread of the tumor growth. The
important mathematical findings for the dynamical behaviour of the tumor–immune model
are also numerically verified using MATLAB. Finally epidemiological implications of our
analytical findings are addressed critically.

Keywords Tumor growth model · Chemotherapeutic drug · Immunotherapeutic drug ·
Stability · Optimal control

Introduction

Cancer is a class of diseases characterized by out-of-control cell growth. Our body is made
up of many types of cells. Normally these cells grow and divide in a controlled way to
produce more cells as they are needed to keep the body healthy. When cells become old
or damaged, they die and are replaced with new cells. However, sometimes this ordinary
process goes wrong. The genetic material (DNA) of a cell can become damaged or changed,
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producing mutations that affect normal cell growth and division. When this happens, cells
do not die when they should and the damaged cells divide uncontrollably to form lumps or
masses of tissue called tumors. Tumors can grow and interfere with the digestive, nervous
and circulatory systems and they can release hormones that alter body functions. Not all
tumors are cancerous. Tumors can be benign or malignant. Benign tumors are not cancerous.
They can often be removed and in most cases they do not come back. Cells in benign tumors
do not spread to other parts of the body. Malignant tumors are cancerous. Cells in these
tumors can invade nearly tissues and successfully spread to other parts of the body and grow,
invading and destroying other healthy tissues. The spread of cancer from one part of the body
to another is called metastasis. Some cancers do not form tumors. For example, Leukemia
is a cancer of the bone marrow and blood. There are over 100 different types of cancer and
each is classified by the type of cell that is initially affected.

Our immune system plays a major role in limiting the development of these cancerous
cells. CD4 helper T cells, which normally assist other cells of the immune system during an
infection and CD8 killer T cells, which directly attack and eliminate infected cells are two of
the body’s most important immune cells for defending against cancerous cells. In the case of
cancer, the immune system alone often fails to effectively fight the tumor for the following
reasons: (i) The normal immune system is ‘blind’ to tumor cells because the tumor cells are
derived from the body’s own cells. The immune system ‘thinks’ of the tumor as ‘self’ and can
not recognize them as ‘foreign’, which creates a phenomenon known as ‘tumor tolerance’.
(ii) The immune system may recognize certain cancer cells, but the response may not be
strong enough by itself to destroy the cancer. (iii) The tumor has the ability to defend itself.
The immune system thus may need a boost to potentially be able to become more effective
in fighting the cancer.

Cancer can be treated by chemotherapy, immunotherapy, radiation therapy, surgery, mon-
oclonal antibody therapy etc. The choice of therapy depends upon the location and grade of
the tumor and the stage of the disease, as well as the medical state and age of the patients.
Complete removal of the cancer without damaging the rest of the body is the goal of treat-
ment. But unfortunately most of the cancer treatments have a negative effect on normal body
cells.

Chemotherapy is the treatment of cancer with one or more cytotoxic antineoplastic drug
(“chemotherapeutic agents”) as part of a standardized regimen. Most forms of chemotherapy
drugs act by killing cells that divide rapidly, one of the main properties of most cancer cells.
This means that chemotherapy also harms cells that divide rapidly under normal circum-
stances: cells in the bone marrow, digestive tract and hair follicles. This results in the most
common side-effects of chemotherapy: myelosuppression (decreased production of blood
cells), hence also immunosuppression, mucositis (inflammation of the lining of the digestive
tract), alopecia (hair loss) etc. These are the harmful side-effects of chemotherapy.

Immunotherapy is one of the most recent approaches to cancer therapy. It is based on
the generally-accepted hypothesis: ‘the immune system is the best tool that humans have for
fighting disease’. Immunotherapy works on white blood cells, the body’s first line of defense
against disease. White blood cells can be stimulated in various ways to boost the body’s
immune response to cancer with little or no effect on healthy tissues. Immunotherapy can
also be used to lessen the side effects of other cancer treatments. Immunotherapies have the
potential to be used to fight cancer by either applying an external stimulates to the immune
system to make it act more forcefully or by providing the immune system with man-made or
naturally-derived tumor specific proteinsmade outside of the body so that the immune system
can recognize the tumor as a foreign entity and destroy it. Immunotherapy is sometimes used
by itself to treat cancer, but it is most often used in combination with traditional treatments
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like chemotherapy, radiation therapy, surgery etc. in order to enhance their effects. One of
the possible benefits of immunotherapy is that it has the potential not to be as toxic as
chemotherapy, radiation therapy and surgery.

Theoretical study of cancer through mathematical modelling is a very useful approach to
shape our understanding of tumor–immune dynamics. The model developed by Kuznetsov
[26], in which the nonlinear dynamics of immunogenic tumors are examined, exhibits oscil-
latory growth patterns in tumors. Kuznetsov and Knott [25] have developed a deterministic
model that describes the interplay of the cancer cells and the cytotoxic killer cells. Though
they have considered only one immune cell population, they have discussed effectively
the mechanisms of tumor growth, suppression and regrowth. Kuznetsov and Taylor [27]
presented a mathematical model of the cytotoxic T lymphocyte response to the growth
of an immunogenic tumor. The mathematical model developed by Kirschner and Panetta
[23] focuses on the tumor–immune interaction. It indicates that the dynamics among tumor
cells, immune cells and the cytokine interleukin-2 can explain both short-term oscillations in
tumor size as well as long-term tumor relapse. Kolev [24] presented a mathematical model
showing competition between tumor cells and immune cells considering the role of anti-
bodies. de Pillis et. al. [9] presented a mathematical model on tumor growth using mixed
immunotherapy and chemotherapy. de Pillis and Radunskaya [10] presented a mathematical
model, showing competition between normal cells and tumor cells considering the role of
chemotherapeutic drugs. There are some other research works on tumor–immune dynamics
[1,3,4,7,12,13,15,31,33,36,38,40]. Also there are some researchworks on the tumor growth
models with optimal control strategies [8,10,11,16–19,30,35]. These are very helpful to pre-
dict the most effective therapy and strategy to control the spread of diseases minimizing the
total drug administered.

In this paper, we consider a tumor growth model exhibiting the effect of tumor–immune
interaction with chemotherapeutic as well as immunotherapeutic drugs. The model construc-
tion and assumptions are described in “Mathematical model” section. In “Behaviour of the
solutions of system” section, we discuss the behaviour of the solutions of our model. The
dynamical behaviour of our system by analyzing the existence and stability at various equi-
libria is discussed in “Equilibria: their existence and stabilities” section. In the next section,
we set up an optimal control problem relative to the model so as to minimize the number of
tumor cells and the chemotherapeutic and immunotherapeutic drugs administration. Here we
use a quadratic control to quantify this goal and consider the administration of chemother-
apeutic and immunotherapeutic drugs as controls to reduce the spread of the disease. The
important mathematical findings for the dynamical behaviour of the tumor–immune model
are also numerically verified using MATLAB in “Numerical simulations” section. Finally,
“Discussions and conclusions” section contains general discussions and conclusions of the
paper and epidemiological implications of our mathematical findings.

Mathematical Model

In this section we construct a mathematical model of tumor growthwith an immune response,
chemotherapy and immunotherapy.

The model can be presented by the following set of ordinary differential equations:

dT

dt
= rT (1 − pT ) − α1T I − q1D1T,

dI

dt
= s + ρT 2 I

h + T 2 + βD2 I

g + D2
− α2T I − μI − q2D1 I,
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dD1

dt
= u(t) − γ1D1, (1)

dD2

dt
= v(t) − γ2D2,

with initial conditions

T (0) ≥ 0, I (0) > 0, D1(0) ≥ 0, D2(0) ≥ 0, (2)

where T (t), I (t) are the tumor cell biomass and immune cell biomass respectively and
D1(t), D2(t) are amount (or concentration) of chemotherapeutic drug in the bloodstream
and amount (or concentration) of immunotherapeutic drug in the bloodstream respectively
at time t. All the model parameters r, p, α1, α2, s, ρ, h, β, μ, g, γ1, γ2, q1, q2 are all non-
negative constants.

The model parameters are described below:

r intrinsic growth rate of tumor cells in the absence of immune cells and chemother-
apeutic drug.

p > 0 reciprocal carrying capacity for tumor cells in the absence of immune cells and
chemotherapeutic drug.

s > 0 constant influx rate of immune cells.
α1, α2 rate of loss of tumor cells due to encounter with immune cells and rate of loss of

immune cells due to encounter with the tumor cells respectively.
ρ maximum immune cell recruitment rate by ligand-transduced tumor cells [9].
h > 0 steepness coefficient of the immune cell recruitment curve by tumor cells.
β maximum immune cell recruitment rate by immunotherapeutic drug.
g > 0 steepness coefficient of the immune cell recruitment curve by immunotherapeutic

drug [9].
μ > 0 per capita decay rate of immune cells in the absence of tumor cells, influx and two

types of drugs.
γ1 > 0 decay rate of the chemotherapeutic drug.
γ2 > 0 decay rate of the immunotherapeutic drug.
u(t) the dose of chemotherapeutic drug given.
v(t) the dose of immunotherapeutic drug given.
q1, q2 response coefficients to the chemotherapeutic drug for tumor cells and immune

cells respectively.

This model involves certain assumptions which consist of the followings:

(i) The tumor cell population is assumed to grow logistically in the absence of immune
cells and chemotherapeutic drug.

(ii) The tumor cells are being destroyed at a rate proportional to the product of tumor cell
biomass and immune cell biomass.

(iii) There is a loss in the immune cells due to encounters of tumor cells which is assumed
to be proportional to the product of the tumor cell biomass and immune cell biomass.

(iv) The presence of tumor cells stimulates the immune response, which is represented by

the positive nonlinear growth term for the immune cells: ρT 2 I
h+T 2 [9].

(v) The presence of immunotherapeutic drug stimulates the immune response, which is
represented by the positive nonlinear growth term for the immune cells: βD2 I

g+D2
[9].

(vi) Chemotherapeutic drug destroys tumor cells as well as immune cells, i.e., chemother-
apeutic drug has a negative effect on both tumor cells and immune cells.
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Behaviour of the Solutions of System (1)

In order to understand the behaviour of the solutions of system (1), we have considered the
dose of chemotherapeutic drug given u(t) as a constant with value u(t) = u and the dose of
immunotherapeutic drug given v(t) as a constant with value v(t) = v.

Theorem 1 Every solution of system (1) with initial conditions (2) exists in the interval
[0,∞) and

T (t) ≥ 0, I (t) > 0, D1(t) ≥ 0, D2(t) ≥ 0, for all t ≥ 0.

Proof Since the right hand side of system (1) is completely continuous and locally Lip-
schitzian onC , the solution (T (t), I (t), D1(t), D2(t)) of (1) with initial conditions (2) exists
and is unique on [0, ξ ],where 0 < ξ < +∞ [21]. It follows from the first equation of system
(1) that

dT

dt
= rT (1 − pT ) − α1T I − q1D1T .

∴ T (t) exp

[
−

∫ t

0
{r(1 − pT (ω)) − α1 I (ω) − q1D1(ω)}dω

]
− T (0) = 0.

⇒ T (t) = T (0) exp

[∫ t

0
{r(1 − pT (ω)) − α1 I (ω) − q1D1(ω)}dω

]
≥ 0.

From the second equation of system (1), we get

I (t) = I (0) exp

[∫ t

0

{
ρT 2(ω)

h + T 2(ω)
+ βD2(ω)

g + D2(ω)
− α2T (ω) − μ − q2D1(ω)

}
dω

]

+s
∫ t

0
exp

[∫ t

θ

{
ρT 2(ω)

h + T 2(ω)
+ βD2(ω)

g + D2(ω)
− α2T (ω) − μ − q2D1(ω)

}
dω

]
dθ

⇒ I (t) > 0

From the third equation of system (1), we get

dD1

dt
= u − γ1D1.

∴ D1(t)e
γ1t − D1(0) = u

∫ t

0
eγ1tdt.

⇒ D1(t) = u

γ1
+

[
D1(0) − u

γ1

]
e−γ1t ≥ 0.

Similarly, from the forth equation of system (1), we get

dD2

dt
= v − γ2D2.

∴ D2(t)e
γ2t − D2(0) = v

∫ t

0
eγ2tdt.

⇒ D2(t) = v

γ2
+

[
D2(0) − v

γ2

]
e−γ2t ≥ 0.

Therefore, we can see that

T (t) ≥ 0, I (t) > 0, D1(t) ≥ 0, D2(t) ≥ 0, for all t ≥ 0.

This completes the proof. ��
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Theorem 2(a) T (t), D1(t), D2(t) of system (1) subject to initial conditions (2) are bounded.

Proof From the first equation of system (1) it follows that

dT

dt
≤ rT (1 − pT ).

From the standard Kamke comparison theory [33], we get

lim
t→∞ sup T (t) ≤ 1

p
.

From the third equation of system (1), we get

D1(t) = u

γ1
+

[
D1(0) − u

γ1

]
e−γ1t .

Therefore,

lim
t→∞ sup D1(t) ≤ u

γ1
.

Similarly, from the forth equation of system (1), we get

D2(t) = v

γ2
+

[
D2(0) − v

γ2

]
e−γ2t .

Therefore,

lim
t→∞ sup D2(t) ≤ v

γ2
.

Hence the theorem. ��

Theorem 2(b) I (t) may be bounded under some conditions among the parameters and the
bounds of T (t), D1(t), D2(t) for t > 0.

Proof From the second equation of system (1) it follows that

I (t) = I (0) exp

[∫ t

0

{
ρT 2(ω)

h + T 2(ω)
+ βD2(ω)

g + D2(ω)
− α2T (ω) − μ − q2D1(ω)

}
dω

]

+ s
∫ t

0
exp

[∫ t

θ

{
ρT 2(ω)

h + T 2(ω)
+ βD2(ω)

g + D2(ω)
− α2T (ω) − μ − q2D1(ω)

}
dω

]
dθ.

Let us assume that, sup T (t) = Ts, inf T (t) = Ti , sup D1(t) = D1s , inf D1(t) = D1i ,

sup D2(t) = D2s , inf D2(t) = D2i as T (t), D1(t) and D2(t) are bounded.
Now,

ρT 2(ω)

h + T 2(ω)
+ βD2(ω)

g + D2(ω)
− α2T (ω) − μ − q2D1(ω)

≤ ρT 2
s

h + T 2
i

+ βD2s

g + D2i
− α2Ti − μ − q2D1i ≤ −A (say), A > 0.
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Therefore,

I (t) ≤ I (0) exp

[∫ t

0
(−A)dω

]
+ s

∫ t

0

[
exp

{∫ t

θ

(−A)dω

}
dθ

]

= I (0)e−At + s
∫ t

0
e−A(t−θ)dθ

= I (0)e−At + se−At
[
eAθ

A

]t
0

= I (0)e−At + se−At 1

A

(
eAt − 1

)

= I (0)e−At + s

A

(
1 − e−At

)
.

So,

lim
t→∞ sup I (t) ≤ s

A
as A > 0.

Therefore, we can conclude that I (t) may be bounded under some conditions among the
parameters and the bounds of T (t), D1(t), D2(t) for t > 0.

Hence the theorem. ��

Equilibria: Their Existence and Stabilities

In this section we will study the existence and stability behaviour of the system (1) at various
equilibrium points. In order to understand the dynamics of system (1), we have considered
the dose of chemotherapeutic drug given u(t) as a constant with value u(t) = u and the dose
of immunotherapeutic drug given v(t) as a constant with value v(t) = v. The equilibria of
the system (1) are:

(i) Tumor free equilibrium: Ē(0, Ī , D̄1, D̄2), where

Ī = sγ1(gγ2 + v)

uvq2 + gq2uγ2 + μgγ1γ2 + vγ1(μ − β)
,

D̄1 = u

γ1
,

D̄2 = v

γ2
,

and
(ii) Coexisting Equilibrium: E∗(T ∗, I ∗, D∗

1 , D
∗
2).

Tumor Free Equilibrium

Ē(0, Ī , D̄1, D̄2) exists only when Ī > 0, i.e., (uvq2 + gq2uγ2 + μgγ1γ2 + vγ1μ) > vγ1β.

Now, the variational matrix of system (1) at Ē(0, Ī , D̄1, D̄2) is given by

V
(
Ē

) =

⎛
⎜⎜⎜⎜⎝

r − α1 Ī − q1 D̄1 0 0 0

−α2 Ī − s
Ī

−q2 Ī
βg Ī

(g+D̄2)2

0 0 −γ1 0
0 0 0 −γ2

⎞
⎟⎟⎟⎟⎠ .
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Therefore, eigenvalues of the characteristic equation of V (Ē) are

λ1 = r − α1 Ī − q1 D̄1, λ2 = − s

Ī
, λ3 = −γ1, λ4 = −γ2.

It is clear that λ2, λ3, λ4 are negative. Now, Ē is stable if λ1 < 0, i.e., r −α1 Ī −q1 D̄1 < 0
which implies that Ī > r

α1
− q1u

α1γ1
. So, we come to the following theorem:

Theorem 3 The tumor free equilibrium Ē(0, Ī , D̄1, D̄2) of system (1) exists and is locally
asymptotically stable if (i) (uvq2+gq2uγ2+μgγ1γ2+vγ1μ) > vγ1β and (ii) Ī > r

α1
− q1u

α1γ1
.

Coexisting Equilibrium

Existence of Coexisting Equilibrium E∗(T ∗, I ∗, D∗
1 , D

∗
2)

At coexisting equilibrium E∗(T ∗, I ∗, D∗
1 , D

∗
2), the tumor is present and the followings hold:

T > 0, I > 0, D1 > 0, D2 > 0,
dT

dt
= dI

dt
= dD1

dt
= dD2

dt
= 0.

Solving the equations of system (1) at the equilibrium state we get

T ∗ = 1

pr

(
r − q1

u

γ1
− α1 I

∗
)

,

D∗
1 = u

γ1
,

D∗
2 = v

γ2
.

Now, putting the values of T ∗, D∗
1 , D

∗
2 into the second equation of (1) and simplifying we

obtain

a1(I
∗)4 + a2(I

∗)3 + a3(I
∗)2 + a4 I

∗ + a5 = 0, (3)

where

a1 = α3
1α2γ1(gγ2 + v),

a2 = α2
1βγ1 prv − α2

1(gγ2 + v)

[
γ1μpr + pq2ru + 3α2γ1

(
r − q1u

γ1

)]
,

a3 = (gγ2 + v)

[
α2
1γ1 prs + α2

1γ1ρpr + α1α2γ1

{
p2r2h +

(
r − q1u

γ1

)2
}

+ 2α1α2γ1

(
r − q1u

γ1

)2
]

+ 2α1 pr(gγ2 + v)

(
r − q1u

γ1

)
{(μ − ρ)γ1 + q2u}

− 2α1βγ1 prv

(
r − q1u

γ1

)
,

a4 =
{
hp2r2 +

(
r − q1u

γ1

)2
}

×
[
βγ1 prv −

{
γ1μpr + pq2ru + α2γ1

(
r − q1u

γ1

)}
(gγ2 + v)

]
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+ γ1 pr(gγ2 + v)

(
r − q1u

γ1

) [
ρ

(
r − q1u

γ1

)
− 2α1s

]
,

a5 = γ1 prs(gγ2 + v)

{
hp2r2 +

(
r − q1u

γ1

)2
}

.

Obviously a1 and a5 are always positive. Now using Descartes’ rule of signs in Eq. (3) we
obtain:

(i) if a2 > 0, a3 > 0, a4 > 0, then there is no change of sign, so there exists no positive
roots of Eq. (3),

(ii) if a2 < 0, a3 > 0, a4 > 0, there exists two or no positive roots of Eq. (3),
(iii) if a2 > 0, a3 < 0, a4 > 0, there exists two or no positive roots of Eq. (3),
(iv) if a2 > 0, a3 > 0, a4 < 0, there exists two or no positive roots of Eq. (3),
(v) if a2 < 0, a3 < 0, a4 > 0, there exists two or no positive roots of Eq. (3),
(vi) if a2 < 0, a3 < 0, a4 < 0, there exists two or no positive roots of Eq. (3),
(vii) if a2 < 0, a3 > 0, a4 < 0, there exists four or two or no positive roots of Eq. (3).

Therefore, I ∗ may have a non-trivial positive value if any one of the above six conditions
[(ii)–(vii)] is satisfied.

Here,

T ∗ > 0 if
1

pr

(
r − q1

u

γ1
− α1 I

∗
)

> 0, i.e., I ∗ <
r

α1
− q1u

α1γ1
.

Summarizing the previous discussions we come to the following theorem:

Theorem 4 The coexisting equilibrium E∗(T ∗, I ∗, D∗
1 , D

∗
2) of system (1) may exist if I ∗ <

r
α1

− q1u
α1γ1

and any one of the above six conditions [(ii)–(vii)] is satisfied, i.e., at lest one of
a2, a3, a4 is negative.

Stability Analysis of Coexisting Equilibrium E∗(T ∗, I ∗, D∗
1 , D

∗
2)

The variational matrix of system (1) at E∗(T ∗, I ∗, D∗
1 , D

∗
2) is given by

V
(
E∗) =

⎛
⎜⎜⎜⎝

−prT ∗ −α1T ∗ −q1T ∗ 0
2ρhT ∗ I ∗

(h+(T ∗)2)2 − α2 I ∗ − s
I ∗ −q2 I ∗ βgI ∗

(g+D∗
2 )2

0 0 −γ1 0
0 0 0 −γ2

⎞
⎟⎟⎟⎠ .

Therefore, eigenvalues of the characteristic equation of V (E∗) are −γ1,−γ2 and the
solution of the following equation:

P(λ) ≡ λ2 + A1λ + A2 = 0, (4)

where

A1 = −a11 − a22,

A2 = a11a22 − a12a21,

and

a11 = −prT ∗, a12 = −α1T
∗, a21 = 2ρhT ∗ I ∗

(h + (T ∗)2)2
− α2 I

∗, a22 = − s

I ∗ .
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Here, it is clear that A1 > 0. Now, P(λ) = 0 has roots with negative real parts if A2 > 0,
i.e.,

2ρhT ∗ I ∗

(h + (T ∗)2)2
− α2 I

∗ > 0.

Theorem 5 The coexisting equilibrium E∗(T ∗, I ∗, D∗
1 , D

∗
2) of system (1) is locally asymp-

totically stable if

2ρhT ∗ I ∗

(h + (T ∗)2)2
− α2 I

∗ > 0.

Tumor Growth Model with Control

In the context of mathematical modelling in cancer growth with chemotherapy and
immunotherapy, it is essential to frame an optimal control problem so that the total amount
of drugs used is minimized. This is done because of the implicit understanding that
both chemotherapy and immunotherapy have damaging side-effects. We have considered
the tumor growth model (1). Now let us assume that the dose of chemotherapeutic and
immunotherapeutic drugs are given as functions of time denoted by u1(t) and u2(t) respec-
tively. We will use u1(t) and u2(t) as controls to decrease the tumor burden minimizing total
drugs administered. Here we consider quadratic control to quantify this goal. Therefore our
tumor growth model with controls (chemotherapeutic and immunotherapeutic drug controls)
become:

dT

dt
= rT (1 − pT ) − α1T I − q1D1T,

dI

dt
= s + ρT 2 I

h + T 2 + βD2 I

g + D2
− α2T I − μI − q2D1 I,

dD1

dt
= u1 − γ1D1, (5)

dD2

dt
= u2 − γ2D2,

Satisfying

T (0) = T0, I (0) = I0, D1(0) = D10 , D2(0) = D20 . (6)

The objective functional [5,22,28,36,37,39,41] is defined as

J (u1(t), u2(t)) =
∫ t f

0

[
T + B1u

2
1 + B2u

2
2

]
dt, (7)

where B1 and B2 are positive constants to keep a balance in the size of the terms. The square
of the control variables reflect the severity of the side effects of the drugs imposed. Here the
functional given in (7) should be minimized to decrease the tumor growth minimizing total
drugs administered. So, we seek an optimal control pair (u∗

1, u
∗
2) such that

J (u∗
1, u

∗
2) = min{J (u1, u2):(u1, u2) ∈ U }, (8)

whereU = {(u1, u2):ui ismeasurable, 0 ≤ ui ≤ 1, t ∈ [0, t f ], for i = 1, 2} is the admissible
control set.
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Existence of an Optimal Control Pair

Theorem 6 There exists an optimal control pair (u∗
1, u

∗
2) such that

J (u∗
1, u

∗
2) = min{J (u1, u2):(u1, u2) ∈ U }

subject to the control system (5) with initial conditions (6).

Proof The existence of an optimal control pair can be proved by using the results from
Fleming and Rishel [20]. It is clear that the system of Eqs. (5) is bounded from above by a
linear system. The boundedness of solutions of system (5) for a finite time interval is used
to prove the existence of an optimal control. To use the theorem in [20], we first check the
following properties:

1. The set of controls and corresponding state variables is non-empty.
2. The control set U is convex and closed.
3. The right hand side of the state system is bounded by a linear system in the state control.
4. The integrand of the objective functional is convex on U.

5. There exist constants c1, c2 > 0 and q > 1 such that the integrand of the objective
functional satisfies

T + B1u
2
1 + B2u

2
2 ≥ c1

(| u1 |2 + | u2 |2) q
2 − c2.

In order to verify the first condition, we use a result by Lukes([29], Theorem 9.2.1) for system
(5) with bounded coefficients. The control set U is convex and closed by definition, which
gives condition 2. It is obvious that the right hand side of state system (5) satisfies condition
3. The integrand in the objective functional, T + B1u21 + B2u22, is clearly convex on (u1, u2),
which gives condition 4. Finally there are c1, c2 > 0 and q > 1 satisfying

T + B1u
2
1 + B2u

2
2 ≥ c1

(| u1 |2 + | u2 |2) q
2 − c2,

because the state variables are bounded in a finite time interval. Using these conditions we
can conclude that there exists an optimal control pair (u∗

1, u
∗
2) such that

J (u∗
1, u

∗
2) = min{J (u1, u2) : (u1, u2) ∈ U }.

��
Characterization of the Optimal Control Pair

In order to derive the necessary conditions for optimal control, Pontryagin’s Maximum Prin-
ciple [34] is invoked.

The Hamiltonian is defined as follows:

H = (
T + B1u

2
1 + B2u

2
2

) + λ1[rT (1 − pT ) − α1T I − q1D1T ]

+ λ2

[
s + ρT 2 I

h + T 2 + βD2 I

g + D2
− α2T I − μI − q2D1 I

]
(9)

+ λ3[u1 − γ1D1] + λ4[u2 − γ2D2],
where λi (t), i = 1, 2, 3, 4, are the adjoint functions to be determined suitably.
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The form of the adjoint equations and transversality conditions are standard results from
Pontryagin’s Maximum Principle [34]. The adjoint system can be obtained as follows:

dλ1
dt

= −
(

∂H

∂T

)
= λ1(2rpT + α1 I + q1D1 − r) + λ2

{
α2 I − 2ρhT I

(h + T 2)2

}
− 1,

dλ2
dt

= −
(

∂H

∂ I

)
= λ1α1T − λ2

{
ρT 2

h + T 2 + βD2

g + D2
− α2T − μ − q2D1

}
,

dλ3
dt

= −
(

∂H

∂D1

)
= λ1q1T + λ2q2 I + λ3γ1, (10)

dλ4
dt

= −
(

∂H

∂D2

)
= λ4γ2 − λ2βgI

(g + D2)2
.

The transversality conditions (or boundary conditions) are:

λi (t f ) = 0 for i = 1, 2, 3, 4. (11)

By the optimality condition, we have

∂H

∂u1
= 2B1u

∗
1 + λ3 = 0 at u1 = u∗

1(t)

⇒ u∗
1(t) = − λ3

2B1
, (12)

and

∂H

∂u2
= 2B2u

∗
2 + λ4 = 0 at u2 = u∗

2(t)

⇒ u∗
2(t) = − λ4

2B2
. (13)

By using the bounds for the control u1(t), we get

u∗
1 =

⎧⎪⎨
⎪⎩

− λ3
2B1

if 0 ≤ − λ3
2B1

≤ 1,

0 if − λ3
2B1

≤ 0,

1 if − λ3
2B1

≥ 1.
(14)

In compact notation:

u∗
1 = min

{
max

{
0,− λ3

2B1

}
, 1

}
. (15)

By using the bounds for the control u2(t), we get

u∗
2 =

⎧⎪⎨
⎪⎩

− λ4
2B2

if 0 ≤ − λ4
2B2

≤ 1,

0 if − λ4
2B2

≤ 0,

1 if − λ4
2B2

≥ 1.
(16)

In compact notation:

u∗
2 = min

{
max

{
0,− λ4

2B2

}
, 1

}
. (17)
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Using (15) and (17) we obtain the following optimal system:

dT

dt
= rT (1 − pT ) − α1T I − q1D1T,

dI

dt
= s + ρT 2 I

h + T 2 + βD2 I

g + D2
− α2T I − μI − q2D1 I,

dD1

dt
= min

{
max

{
0,− λ3

2B1

}
, 1

}
− γ1D1,

dD2

dt
= min

{
max

{
0,− λ4

2B2

}
, 1

}
− γ2D2,

dλ1
dt

= λ1(2rpT + α1 I + q1D1 − r) + λ2

{
α2 I − 2ρhT I

(h + T 2)2

}
− 1, (18)

dλ2
dt

= λ1α1T − λ2

{
ρT 2

h + T 2 + βD2

g + D2
− α2T − μ − q2D1

}
,

dλ3
dt

= λ1q1T + λ2q2 I + λ3γ1,

dλ4
dt

= λ4γ2 − λ2βgI

(g + D2)2
,

subject to the following conditions:

T (0) = T0, I (0) = I0, D1(0) = D10 , D2(0) = D20

and

λi (t f ) = 0 for i = 1, 2, 3, 4.

The previous analysis can be summarized in the following theorem:

Theorem 7 There exists an optimal control pair (u∗
1, u

∗
2) and corresponding solutions

T̄ ∗, Ī ∗, D̄1
∗
, D̄2

∗
that minimize J (u1(t), u2(t)) over U. The explicit optimal controls are

connected to the existence of continuous adjoint functions λi (t), i = 1, 2, 3, 4, by the solu-
tions of the following adjoint system:

dλ1
dt

= λ1(2rpT + α1 I + q1D1 − r) + λ2

{
α2 I − 2ρhT I

(h + T 2)2

}
− 1,

dλ2
dt

= λ1α1T − λ2

{
ρT 2

h + T 2 + βD2

g + D2
− α2T − μ − q2D1

}
,

dλ3
dt

= λ1q1T + λ2q2 I + λ3γ1,

dλ4
dt

= λ4γ2 − λ2βgI

(g + D2)2
,

subject to the transversality conditions:

λi (t f ) = 0 for i = 1, 2, 3, 4.

Furthermore, the following properties hold:
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Fig. 1 Time series plot of the a tumor cell (T), b immune cell (I), c amount (or concentration) of chemothera-
peutic drug (D1), d amount (or concentration) of immunotherapeutic drug (D2) with various initial conditions,
parameter values given in Table 1

u∗
1 = min

{
max

{
0,− λ3

2B1

}
, 1

}
,

u∗
2 = min

{
max

{
0,− λ4

2B2

}
, 1

}
.

Numerical Simulations

Analytical studies can never be completed without numerical verification of the derived
results. In this section we present computer simulations of some important analytic results
of our system which has been discussed in previous sections. Beside the verification of our
analytical findings, these numerical simulations are very important from a practical point of
view.

We first consider the case of a tumor free equilibrium using the parameter values given
in Table 1 [2,6,9,14,26,32]. Using these parameter values, for different initial conditions
the dynamics of the model is presented in Fig. 1a–d. These figures show that the immune
cell population, the amount (or concentration) of chemotherapeutic drug and the amount (or
concentration) of immunotherapeutic drug exist ( Ī = 1.61765, D̄1 = 0.11111, D̄2 = 0.5)
and the tumor cell population declines to zero (T̄ = 0), i.e., the system approaches the tumor
free equilibrium Ē(0, 1.61765, 0.11111, 0.5). Here, Ī > r

α1
− q1u

α1γ1
, which shows that Ē is

locally asymptotically stable (according to Theorem 3) using the parameter values given in
Table 1 and our numerical verification (Fig. 1a–d) supports these results.
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Table 1 Parameter values for
Fig. 1

Parameter Value

r 0.00431/day

p 1.02 × 10−9/cell

α1 6.41 × 10−11/cell/day

α2 3.42 × 10−6/cell/day

q1 0.08/day

q2 2 × 10−11/day

s 0.33 cell/day

ρ 0.0125/day

h 20, 200, 000 cell2

μ 0.204/day

β 0.125/day

g 20,000,000 cell

γ1 0.1/day

γ2 1/day

Next, we consider the case of a coexisting equilibrium using the parameter values
given in Table 2 [2,6,9,14,26,32]. Using these parameter values, for different initial con-
ditions the dynamics of our system is presented in Fig. 2a–d. These figures show that
the tumor cell population, the immune cell population, the amount (or concentration) of
chemotherapeutic drug and the amount (or concentration) of immunotherapeutic drug all
exist [(T ∗, I ∗, D∗

1 , D
∗
2) = (9.7837× 108, 0.0000991821, 0.1111111, 0.5)], i.e., the system

tends to a coexisting equilibrium E∗. This indicates that irrespective of the initial conditions
tumor cells, immune cells and both kinds of drug concentrations all approach a coexisting
equilibrium E∗ with increasing time which shows that E∗ is locally asymptotically stable.
Here, I ∗ < r

α1
− q1u

α1γ1
, which shows that the tumor free equilibrium (0, 1.61765, 0.1, 0.5)

becomes unstable and only the coexisting equilibrium E∗ exists using the parameter values
given in Table 2 (according to Theorems 3, 4). Our numerical verification (Fig. 2a–d) sup-
ports these results. In other words, through this result and the observations from simulations
we see that any tumor size T > 0 will grow to this maximal tumor size. At the point E∗,
the tumor is so large that it has reached its carrying capacity and it can not grow further. If
the tumor is not reduced, then the immune cell population can not sustain itself. Therefore,
biologically this situation means that the immune system begins to fail.

The optimal system is solved numerically and the results are presented graphically. This
optimal system is a two-point boundary value problem with separated boundary conditions
at times t = 0 and t = t f . Here, we have solved this two-point boundary value optimal
problem for t f = 100. The value is chosen to represent the time in days at which treatment
is stopped. An efficient method to solve two-point BVPs numerically is collocation. A con-
venient collocation code is the solver BVP4c implemented under MATLAB, which can be
used to solve non-linear two-point BVPs. To solve our BVP we have used the collocation
method with collocation code solver BVP4c. It is a powerful method to solve the two-point
BVP resulting from the optimality conditions.

The different variables (cell populations and control functions) in the objective functional
given in (7) have different scales. Hence they are balanced by choosing weight constants
B1 = 5, B2 = 30 in the objective functional given in (7). The numerical results for the
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Table 2 Parameter values for
Fig. 2

Parameter Value

r 0.431/day

p 1.02 × 10−9/cell

α1 6.41 × 10−11/cell/day

α2 3.42 × 10−6/cell/day

q1 0.08/day

q2 2 × 10−11/day

s 0.33 cell/day

ρ 0.0125/day

h 20, 200, 000 cell2

μ 0.204/day

β 0.125/day

g 20,000,000 cell

γ1 0.9/day

γ2 1/day
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Fig. 2 Time series plot of the a tumor cell (T), b immune cell (I), c amount (or concentration) of chemothera-
peutic drug (D1), d amount (or concentration) of immunotherapeutic drug (D2) with various initial conditions,
parameter values given in Table 2

optimal problem are obtained by using the parameter values given in Table 3 [2,6,9,14,
26,32]. At first we search for the optimal control pair (u1(t), u2(t)), chemotherapeutic and
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Table 3 Parameter values for
Figs. 3–7

Parameter Value

r 0.00431/day

p 1.02 × 10−9/cell

α1 6.41 × 10−11/cell/day

α2 3.42 × 10−6/cell/day

q1 0.08/day

q2 2 × 10−11/day

s 0.33 cell/day

ρ 0.0125/day

h 20, 200, 000 cell2

μ 0.204/day

β 0.125/day

g 20,000,000 cell

γ1 0.9/day

γ2 1/day
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Fig. 3 Time series plot of the tumor cell (T), immune cell (I), amount (or concentration) of chemotherapeutic
drug (D1) and amount (or concentration) of immunotherapeutic drug (D2) with chemotherapeutic drug control
(u1) and immunotherapeutic drug control (u2), parameter values given in Table 3 with B1 = 5, B2 = 30

immunotherapeutic drug controls respectively. These optimal control functions u1(t) and
u2(t) are designed in such a way that they minimize the objective functional given by (7), i.e.,
minimize the number of tumor cells and the chemotherapeutic and immunotherapeutic drug
administration. In Fig. 3 we present the time series diagrams of tumor cell (T), immune cell
(I), amount (or concentration) of chemotherapeutic drug (D1) and amount (or concentration)
of immunotherapeutic drug (D2) with both controls (u1 �= 0, u2 �= 0). In this figure, we
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Fig. 4 Time series plot of the tumor cell (T) and immune cell (I) without any control, parameter values given
in Table 3 B1 = 5, B2 = 30

notice that the tumor cell population is quickly driven to a much lower level and remains
there. The immune cell population increases over time. The amount (or concentration) of
chemotherapeutic drug is initially high for a short period of time, after which it falls rapidly
and the amount (or concentration) of immunotherapeutic drug falls rapidly over time. In
Fig. 4, we present the time series plot of tumor cell (T) and immune cell (I) with no control
(u1 = u2 = 0). In this figure we can notice that the tumor cell population is continuously
increasing over time, while the immune cell population increases and after that it remains
in a stationary state. Therefore, it is depicted in Figs. 3 and 4, the tumor cell population (T )
level obtained using chemotherapeutic and immunotherapeutic drug controls is lower than
its counter part which results from practicing without control. Comparing Figs. 3 and 4, we
can realize the utility of using controls in our system.

Next, in Fig. 5 we present the time series plot of the tumor cell population (T ) with
no control (u1 = u2 = 0), with immunotherapeutic drug control only (u1 = 0, u2 �=
0), with chemotherapeutic drug control only (u1 �= 0, u2 = 0) and with both controls
(u1 �= 0, u2 �= 0). In the case of no control and with immunotherapeutic drug control
only, we notice that the tumor cell population is continuously increasing over time while
the tumor cell population initially decreases slowly for a short time period, after which it
falls rapidly using chemotherapeutic drug control only. But using both chemotherapeutic and
immunotherapeutic drug controls the tumor cell population is quickly driven to a much lower
level and is forced to remain there for the duration of the run. This study and observations
show that with only immunotherapeutic drug control there is no remarkable change in the
nature of tumor growth while with only chemotherapeutic drug control there is a remarkable
change in the nature of tumor growth and gives us a much better result. But using both
controls together we can get the best result as it lowers the growth level of the tumor cell
population very quickly. From these observations we can conclude that intervention practices
involving both chemotherapeutic and immunotherapeutic drug controls yield an effectively
better result.
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Fig. 5 Time series plot of the tumor cell (T) with no control (u1 = u2 = 0), with immunotherapeutic drug
control only (u1 = 0, u2 �= 0), with chemotherapeutic drug control only (u2 = 0, u1 �= 0) and with both
controls (u1 �= 0, u2 �= 0), parameter values given in Table 3 B1 = 5, B2 = 30
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Fig. 6 The optimal control graph for a chemotherapeutic drug control (u1) and b immunotherapeutic drug
control (u2) using the parameter values given in Table 3 with B1 = 5, B2 = 30

Theoptimal control graphs for chemotherapeutic drug control (u1) and immunotherapeutic
drug control (u2) are presented in Fig. 6a, b. One could conclude from these diagrams that
full effort must be given in both chemotherapeutic and immunotherapeutic drug controls at
the beginning of the disease to control the spread of tumor cells. This means that both the
controls are very important at the beginning of the disease than when the disease prevails.
The optimal control graph for the objective functional (J ) is presented in Fig. 7. From this
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Fig. 7 The optimal control graph for the objective functional (J) using the parameter values given in Table 3
with B1 = 5, B2 = 30

figure, we can observe that the chemotherapeutic drug control (u1) and immunotherapeutic
drug control (u2) minimize the objective functional (J ) given in (7). Overall the numerical
analysis demonstrates that two controlsu1(t) andu2(t)decrease the tumor burdenminimizing
total drug administered. Numerical simulations also support the theoretical characterization
of the optimal control.

Discussions and Conclusions

In this paper, we consider a malignant tumor growth model exhibiting the effect of tumor–
immune interaction with chemotherapeutic as well as immunotherapeutic drugs. Here we
explore the effects and interactions of tumor cells and immune cells through a system of
non-linear differential equations. We also consider the effects of chemotherapeutic and
immunotherapeutic drugs on our system. We have discussed dynamical behaviour of our
system by analyzing the existence and stability of our system at various equilibrium points.

The most important part of this paper is to set up an optimal control problem related to
the model so as to minimize the number of tumor cells. We consider the administration of
chemotherapeutic and immunotherapeutic drugs as two controls to reduce the spread of the
tumor growth. Here we use a quadratic control to quantify this goal. The control functions
u1(t) and u2(t) are designed in such a way that they can minimize the objective functional
as given in (7).

The important mathematical findings for the dynamical behaviour of the tumor–immune
model are also numerically verified using MATLAB. The nature of the equilibria for differ-
ent sets of parameter values and different initial conditions are graphically presented. The
graphical representation of the model with control/controls as well as without control are
presented for tumor cells and immune cells so that we can compare them and can understand
the necessity of using the controls. It is observed that the optimal control is much more effec-
tive for reducing the number of tumor cells to near zero. This study and observations show
that with only immunotherapeutic drug control there is no remarkable change in the nature of
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tumor growth while with only chemotherapeutic drug control there is a remarkable change
in the nature of tumor growth and gives us a much better result. But using both controls
together we can get the best result as it lowers the growth level of tumor cell population very
quickly. From these observations we can conclude that intervention practices involving both
chemotherapeutic and immunotherapeutic drug controls yield an effectively better result.
Overall the numerical analysis demonstrates that a burst of treatment at the beginning is the
best way to fight against the tumor cells. Numerical simulations are in good agreement with
the theoretical characterization of the optimal control.

The mathematical models on tumor growth make us the understanding of the nature of
tumor–immune dynamics. Our model formulation is based on the effects and interactions of
tumor cells and immune cells and also the effects of chemotherapeutic and immunothera-
peutic drugs on the system. We also consider a model with controls where the administration
of chemotherapeutic and immunotherapeutic drugs are treated as controls. Our model can
provide an approximate estimation of timing and dosage of therapies that would be the best
complement of the patient’s own defense mechanism versus the tumor cells. As with many
models, themathematicalmodel presented in this paper should be treatedwith circumspection
due to the assumptions made and the difficulties in the estimation of the model parameters.
Most of the parameters are dependent onmany factors, so they are rarely constant. But for the
simplification of the system that these parameters are taken as constants. There aremany com-
ponents in this model that may be regarded as stochastic rather than deterministic and these
variations may significantly alter the dynamics of the system. Therefore, we can incorporate
stochastic differential equations in our model and study its dynamics as our future work.
The development of various cancer therapies and identification of the most effective therapy
against the spread of tumor cells are the primary goal of health administrators, policy-makers
and researchers. Our model study is a small step towards this goal.

Acknowledgments The authors are very grateful to the anonymous referees and the Editor-in-Chief for
their careful reading, valuable comments and helpful suggestions, which have helped them to improve the
presentation of this work significantly.

References

1. Arciero, J.C., Jackson, T.L., Kirschner, D.E.: Amathematical model of tumor-immune evasion and siRNA
treatment. Discret. Cont. Dyn. Syst. Series B 4(1), 39–58 (2004)

2. Bannock, L.: Nutrition. Available from: http://www.doctorbannock.com/nutrition.html
3. Bellomo, N., Bellouquid, A., Delitala, M.: Mathematical topics on the modelling of multicellular systems

in competition between tumor and immune cells. Math. Mod. Math. Appl. Sci. 14, 1683 (2004)
4. Bellomo, N., Preziosi, L.: Modelling and mathematical problems related to tumor evolution and its

interaction with the immune system. Math. Comput. Model. 32, 413 (2000)
5. Blayneh, K., Cao, Y., Kwon, H.D.: Optimal control of vector-borne disease: treatment and prevention.

Discret. Cont. Dyn. Sys. Series B 11, 1–31 (2009)
6. Calabresi, P., Schein, P.S. (eds.):Medical Oncology: Basic Principles andClinicalManagement of Cancer,

2nd edn. McGraw-Hill, New York (1993)
7. Chan, B.S., Yu, P.: Bifurcation analysis in a model of cytotoxic T-lymphocyte response to viral infections.

Nonlinear Anal.: Real World Appl. 13, 64–77 (2012)
8. de Pillis, L.G., Gu,W., Fister, K.R., Head, T., Maples, K., Murugan, A., Neal, T., Yoshida, K.: Chemother-

apy for tumors: an analysis of the dynamics and a study od quadratic and linear optimal controls. Math.
Biosci. 209, 292–315 (2007)

9. de Pillis, L.G., Gu,W., Radunskaya, A.E.:Mixed immunotherapy and chemotherapy of tumors:modeling,
applications and biological interpretations. J. Theo. Biol. 238, 841–862 (2006)

10. de Pillis, L.G., Radunskaya, A.E.: Amathematical tumormodel with immune resistance and drug therapy:
an optimal control approach. J. Theor. Med. 3, 79 (2001)

123

http://www.doctorbannock.com/nutrition.html


170 Differ Equ Dyn Syst (April 2016) 24(2):149–171

11. de Pillis, L.G., Radunskaya, A.E.: The dynamics of an optimally controlled tumor model: a case study.
Math. Comp. Model. 37, 1221–1244 (2003)

12. de Pillis, L.G., Radunskaya, A.E., Wiseman, C.L.: A validatted mathematical model of cell-mediated
immune response to tumor growth. Cancer Res. 61(17), 7950 (2005)

13. Derbel, L.: Analysis of a new model for tumor-immune system competition including long time scale
effects. Math. Model Methods Appl. Sci. 14, 1657 (2004)

14. Diefenbach, A., Jensen, E.R., Jamieson, A.M., Raulet, D.: Real and H60 ligands of the NKG2D receptor
stimulate tumor immunity. Nature 413, 165 (2001)

15. d’Onofrio, A.: A general framework for modeling tumor-immune system competition and immunother-
apy: mathematical analysis and biomedical references. Physica D 208, 220 (2005)

16. Engelhart, M., Lebiedz, D., Sager, S.: Optimal control for selected cancer chemotherapy ODE models: a
view on the potential of optimal schedules and choice of objective function. Math. Biosci. 229, 123–134
(2011)

17. Fister, K.R., Donnelly, J.: Immunotherapy: an optimal control theory approach. Math. Biosci. Eng. 2(3),
499 (2005)

18. Fister, K.R., Panetta, J.C.: Optimal control applied to cell-cycle specific cancer chemotherapy. SIAM J.
Appl. Math. 60(3), 1059 (2000)

19. Fister, K.R., Panetta, J.C.: Optimal control applied to competing chemotherapeutic cell-kill strategies.
SIAM J. Appl. Math. 63(6), 1954 (2003)

20. Fleming, W.H., Rishel, R.W.: Deterministic and Stochastic Optimal Control. Springer, New York (1975)
21. Hale, J.K.: Theory of Functional Differential Equations. Springer, New York (1977)
22. Joshi, H.R.: Optimal control of an HIV immunology model. Optim. Control Appl. Methods 23, 199–213

(2002)
23. Kirschner, D., panetta, J.: Modelling immunotherapy of the tumor–immune interaction. J. Math. Biol. 37,

235–252 (1998)
24. Kolev, M.: Mathematical modelling of the competition between tumors and immune system considering

the role of the antibodies. Math. Comput. Model. 37, 1143–1152 (2003)
25. Kuznetsov, V., Knott, G.D.:Modeling tumor regrowth and immunotherapy.Math. Comp.Model. 33, 1275

(2001)
26. Kuznetsov, V.,Makalkin, I.: Bifurcation analysis ofmathematical model of interactions between cytotoxic

lymphocytes and tumor cells- effect of immunological amplification of tumor growth and its connection
with other phenomena of oncoimmunology. Biofizika 37(6), 1063–1070 (1992)

27. Kuznetsov, V., Taylor, M.: Nonlinear dynamics of immunogenic tumors: parameter estimation and global
bifurcation analysis. Bull. Math. Biol. 56(2), 295–321 (1994)

28. Lcnhart, S., Workman, J.T.: Optimal Control Applied to Biological Mathods. Chapman and Hall/CRC,
London (2007)

29. Lukes, D.L.: Differentia; Equations: Classical to Controlled, Mathematics in Science and Engineering.
Academic Press, New York (1982)

30. Matveev, A., Savkin, A.: Application of optimal control theory to analysis of cancer chemotherapy
regimens. Syst. Control Lett. 46, 311 (2002)

31. Nani, F., Freedman, H.I.: A mathematical model of cancer treatment by immunotherapy. Math. Biosci.
163, 159 (2000)

32. Perry,M.C. (ed.): TheChemotherapySourceBook, 3rd edn. Li ppinottWilliams andWilkins, Philadelphia
(2001)

33. Pinho, S.T.R., Bacelar, F.S., Andrade, R.F.S., Freedman, H.I.: A mathematical model for the effect of
anti-angiogenic therapy in the treatment of cancer tumors by chemotherapy. Nonlinear Anal.: Real World
Appl. 14, 815–828 (2013)

34. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of
Optimal Process. Gordon and Breach, New York (1962)

35. Sharma, S., Samanta, G.P.: Dynamical behaviour of a tumor-immune system with chemotherapy and
optimal control. J. Nonlinear Dyn. Vol. 2013, Article ID 608598, p. 13 (2013). doi:10.1155/2013/608598

36. Siu, H., Vitetta, E.S., May, R.D., Uhr, I.W.: Tumor dormancy. I. Regression of bcl tumor and induction
of a dormant tumor state in mice chimeric at the major histocompatibility complex. J. Immunol. 137,
1376–1382 (1986)

37. Swan, G.W.: Applications of Optimal Control Theory in Biomedicine. Marcel Dekker, New York (1984)
38. Takayanagi, T., Ohuchi, A.: A mathematical analysis of the interactions between immunogenic tumor

cells and cytotoxic T lymphocytes. Microbiol. Immunol. 45, 709 (2001)
39. Tchuenche, J.M., Khamis, S.A., Agusto, F.B., Mpeshe, S.C.: Optimal control and sensitivity analysis of

an influenza model with treatment and vaccination. Acta Biotheor. 59, 1–28 (2011)

123

http://dx.doi.org/10.1155/2013/608598


Differ Equ Dyn Syst (April 2016) 24(2):149–171 171

40. Yafia, R.: Dynamics analysis and limit cycle in a delayed model for tumor growth with quiescene.
Nonlinear Anal.: Model. Cont. 11, 95–110 (2006)

41. Zaman, G., Kang, Y.H., Jung, H.: Stability analysis and optimal vaccination of an SIR epidemic model.
Biosystem 93, 240–249 (2008)

123


	Analysis of the Dynamics of a Tumor--Immune System with Chemotherapy and Immunotherapy and Quadratic Optimal Control
	Abstract
	Introduction
	Mathematical Model
	Behaviour of the Solutions of System (1)
	Equilibria: Their Existence and Stabilities
	Tumor Free Equilibrium
	Coexisting Equilibrium
	Existence of Coexisting Equilibrium E*(T*,I*,D1*,D2*)
	Stability Analysis of Coexisting Equilibrium E*(T*,I*,D1*,D2*)


	Tumor Growth Model with Control
	Existence of an Optimal Control Pair
	Characterization of the Optimal Control Pair

	Numerical Simulations
	Discussions and Conclusions
	Acknowledgments
	References




