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Abstract In this work, we present a new composition theorem of p-pseudo almost auto-
morphic functions in the sense of Stepanov satisfying some local Lipschitz conditions. Using
this results, we establish an existence result of p-pseudo almost automorphic solutions for
some nonautonomous neutral partial evolution equation with Stepanov p-pseudo almost
automorphic nonlinearity. An example is shown to illustrate our results.
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Introduction

In this work, we give a new composition theorem of y-pseudo almost automorphic functions
in the sense of Stepanov, we suppose that the coefficient function satisfies some local Lipschitz
conditions.

Then, we study the existence and uniqueness of p-pseudo almost automorphic mild solu-
tions to the following nonautonomous neutral partial evolution equation:

d
E[u(t) + [t u@)] = A®[u@) + f, u@)]+ g, u®)) forreR, ey

where A(?) generates an hyperbolic evolution family (U(z,5))s>s, f 1 Rx X — Xisa
-pseudo almost automorphic function and g : R x X — X is Stepanov p-pseudo almost
automorphic.
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Pseudo almost periodic and automorphic functions have many applications in several
problems like functional differential equations, integral equations and partial differential
equations. The concept of almost automorphy was first introduced in the literature by Bochner
[6], as a natural generalization of the almost periodicity. The notion of weighted pseudo
almost automorphy has been introduced for the first time by Blot et al. [3]. More recently,
using the measure theory, Blot, Cieutat and Ezzinbi [4] introduced the concept of -pseudo
almost automorphy, as a natural generalization of the classical concept of weighted pseudo
almost automorphy. On the other hand, since the work [20] by N’Guéréekata and Pankov,
Stepanov-like almost automorphic problems have widely been investigated.

The existence and uniqueness of pseudo almost periodic mild solutions to differential
equations in Banach spaces has attracted many researchers [10, 14]. This led many authors
to develop composition theorems of such functions [5,11,22].

In a recent paper [16], authors gave a result on the existence and uniqueness of pseudo
almost periodic solution for the nonautonomous evolution equation (1), where the input
function g is SP-pseudo almost periodic. For contributions on nonautonomous evolution
equations in Banach spaces, see [1,16,17].

In this paper, motivated by [4,5,15,16], we use the measure theory to define a Stepanov-
ergodic function, we study the composition of p-pseudo almost automorphic functions in the
sense of Stepanov and we give a result of existence of u-pseudo almost automorphic mild
solution of (1).

The organization of this work is as follows. In “Preliminaries” section, we introduce the
basic notations and recall the definition of ;-pseudo almost automorphic functions introduced
in [5], we also give the new concept of S” — p-pseudo almost automorphic functions and
we investigate some properties. We present different composition theorems of Stepanov
pn-pseudo almost automorphic function in “Composition Theorems” section. In “Evolution
Family and Exponential Dichotomy” section, we introduce the basic notations of evolution
family and exponential dichotomy. “Pseudo Almost Automorphic Mild Solutions” section
is devoted to study the existence and uniqueness of p-pseudo almost automorphic mild
solutions of (1). As an illustration, an example of neutral heat equation with S” —p-pseudo
almost automorphic coefficients is studied under Dirichlet conditions.

Preliminaries
Pseudo Almost Automorphic Functions

Let (X, ||.]) and (Y, ||.]|) be two Banach spaces, and BC (R, X) (respectively, BC(R x Y, X))
be the space of bounded continuous functions f : R — X (respectively, f : Rx Y — X).
BC (R, X) equipped with the supremum norm

[ flloo = sup I F (D)l
teR

is a Banach space.

Definition 2.1 [19] A continuous function f : R — X is said to be almost automorphic if
for every sequence of real numbers (s),),en there exists a subsequence (s;)nen C (S, )neN
and a measurable function g, such that

gt) = lim f(t + sn),
n——+00

is well defined for each ¢ € R, and
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f@)y= lim g@ —sp)
n——+oo
foreacht € R.

Let AA(R,X) be the set of all almost automorphic functions from R to X. Then
(AA(R, X), |I-lloo) is @ Banach space.

Definition 2.2 [13] A continuous function f : R x R +— X is said to be bi-almost
automorphic if for every sequence of real numbers (s),),en there exists a subsequence
(Sn)nen C (s))nen and a measurable function g, such that

g(t,s) = lim_ f(z+ 50,5+ sn),
n—-+o0o
is well defined for each (z, 5) € R2, and
S, s)= lim g —sn,5—5n)
n—+00
for each (7, s) € R2. Denote by bAA(X) the set of all such functions.

In what follows, we give the new concept of the ergodic functions developed in [4], which
is a generalization of the ergodicity given in [7,8].

We denote by B the Lebesgue o-field of R and by M the set of all positive measures p
on B satisfying u(R) = 400 and u([a, b]) < coforalla,b € R (a < b).

Definition 2.3 [4] Let © € M. A bounded continuous function f : R — X is said to be
p-ergodic if

1
lim ——— If(s)ldp(s) = 0.
r—>+o0 M([—r, r]) [—=r,r]
We denote the space of all such functions by £(R, X, w).

Definition 2.4 [5] Let u € M. A continuous function f : R — X is said to be p-pseudo
almost automorphic if it is written in the form

f=g+h,
where g € AA(R, X) and 1 € E(R, X, ). The collection of such functions will be denoted
by PAA(R, X, 1).
Theorem 2.5 [4] Let u € M. Then (E(R, X, ), ||.lleo) is a Banach space.

For u € M, we formulate the following hypothesis:

_2r
ul=r.r]

(M2) For all T € R, there exist 8 > 0 and a bounded interval I such that

(M1) lim sup < 0.
r—>0o0
ufa+1t: ae A}) <Bu(A) when A € B satisfies AN T = (.
The hypothesis (M2) is given in [4].

Definition 2.6 [4] Let 1, o € M. g is said to be equivalent to w7, if there exist constants
o, B > 0 and a bounded interval I (eventually I = ) such that

ap1(A) < pua(A) < Bui(A) for Ae Bwith ANT = .
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Remark 1If p is equivalent to the Lebesgue measure, then p satisfies (M1).

Theorem 2.7 [5] Let u € M satisfy (M2). Then the space (PAA(R, X, ), ||.lloo) is @ Banach
space.

Theorem 2.8 [5] Let u € M satisfy (M2). Then PAA(R, X, w) is translation invariant that
is, if f € PAAR, X, ) then f; == f(.+ 1) € PAAR, X, u) forall t € R.

Definition 2.9 [5] A continuous function f : R x Y — X is said to be almost automorphic
if f(.,x) € AA(R,X), for all x € Y. The collection of such functions is denoted by
AAR x Y, X).

Definition 2.10 [5] Let © € M. A continuous function f : R x Y — X is said to be
p-ergodicif f (., x) € E(R, X, n), forall x € Y. The collection of such functions is denoted
by ER x Y, X, ).

Definition 2.11 [5] Let © € M. A continuous function f : R x Y — X is said to be
p-pseudo almost automorphic if it is written in the form

f=g+h,

where g € AA(R x Y,X) and 2 € E(R x Y, X, u). The collection of such functions is
denoted by PAA(R x Y, X, ).

Pseudo Almost Automorphy in the Sense of Stepanov

Definition 2.12 [18] The Bochner transform f b (t,s) fort € Rand s € [0, 1] of a function
f R — Xis defined by

o, s) = f@ +9).

Definition 2.13 [18] Let 1 < p < oo. The space BS? (R, X) of all Stepanov bounded (or
S?-bounded) functions with the exponent p consists of all measurable functions f on R with
value in X such that fb € L* (R, L? ((0, 1), X)). This is a Banach space with the norm

t+1 1/p
I fllpse.x) = Il f2ll Lo, Lr) = Sup (/ ||f(s)||pds) .
teR t

Remark A function f € L? (R, X) is Stepanov bounded if

loc

141 1/p
sup (/ ||f(s)||pds) < 00.
teR t

LP(R,X) Cc BSP(R,X) Cc LY (R, X).

loc

It is obvious that

Definition 2.14 [18] A function f € BS? (R, X), is said to be almost automorphic in the
sense of Stepanov (or S”-almost automorphic) if for every sequence of real numbers (s;,),eN

there exist a subsequence (s,)nen C (5),)nen and a function g € Llpoc (R, X) such that

1

+1 >
[/ lg(s) — £(s +Sn)||pds] o
t
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and

1+1 3
|:/ ||g(S—Sn)—f(s)||Pds] -0
'

asn — +oo pointwise on R. The collection of such functions will be denoted by AA” (R, X).

In other words, a function f € LII;C (R, X) is said to be S”-almost automorphic if its

Bochner transform f' bR — LP ([0, 1], X) is almost automorphic.
We introduce the following notion of ergodicity:

Definition 2.15 Let u € M. A function f € BS? (R, X), is said to be S”-u-ergodic if

1 +1 s
. o ) B
,E{Rm w(l=r r]) /[_r,r] (/t (VO] ds) du(t) =0.

The collection of such functions is denoted by £7 (R, X, ).

Definition 2.16 Let 1 € M. A function f € BS? (R, X), is said to be S”-u-pseudo almost
automorphic if it can be decomposed as f = g + ¢, where g € AAP(R,X) and ¢ €
EP (R, X, u). The collection of such functions is denoted by PAA? (R, X, u).

Theorem 2.17 Let u € M satisfy (M2). If f € ER, X, ), then f € EP(R, X, u) for all
p>1

Proof Let f € ER, X, ), since p is a o- finite measure, then by Holder inequality and
Fubini’s theorem

r+1 h
/ ( / IIf(S)II”dS) )
[—r,r] t
I b
_ / (/ ||f(s+t)||”ds) du(t)
[=r,r] 0
1 1 7
< (ul=r.r)t [ /[ | ( /0 If s + r>||1’ds) du(t)]
1
1 1 »
< 1A% (ul=r. D)4 [/l | (/0 1fGs +r)||ds) dﬂ(t)]
1 1 7
U1 (e L=r DT [/O (/[ s +t)||du(t)) ds]
1 1 1 1 1
=||f||go(u[—r,r]>q(u[—r,r]w[/ —(/ llf(S+t)||dM(t))ds}
0 [,L[—}’, r] [—r,r]

1

1 1 1 »

= [[flld (w[=r,7]) [/ (7 I f(s+ f)lldﬂ(t)) dS} ’
0 M [_r, r] [—r,r]

Hence
1 t+1 %
L ( / ||f<s>||"ds) ()
ul=r,r] [—rr] t

1

1 1 1 7

< fll% |:/ (7/ IfGs+ f)||dM(f)) ds]p
0 M[_ri r] [—r,r]

1
P
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Since £(R, X, ) is invariant by translation, then
1
7/ If(Gs+1)|ldu(t) — 0 whenr — oo
1% [_r» r] [—r,r]

for all s € [0, 1]. The Lebesgue Dominated Convergence Theorem implies that
1 t+1 1
lim — (/ ||f(s)||Pds)de(t) —0.
r— U [—r,r] [—r,r] t
]

Corollary 2.18 Let n € M satisfy (M2). If f € PAAR, X, u), then f € PAAP(R, X, )
forall p > 1.

Theorem 2.19 Let n € M satisfy (M2). Then PAAP (R, X, ) is invariant by translation,
that is, f € PAAP (R, X, ) implies fr € PAAP(R, X, ), forall T € R.

Proof Tt suffices to show that £7 (R, X, w) is invariant by translation. Let f € EP (R, X, w)

1
and F (1) = (/" ok ds)?, then F € € (R, R, ), but since € (R, R, 1) is invariant
by translation [4], then

1 t+1 1%
- Pd d
——— /Hr] (/ If G +a)l s) )

1

= — F (t+a)du(t) —> 0 when r —> o0.
1% ([—r, r]) [—r,r]

We deduce that f (. +a) € EP (R, X, ). O

Definition 2.20 Let AA”(R x Y, X) denote the space of functions f : R x Y — X such
that f(.,y) € AAP(R,X), foreach y € Y, £/ (R x Y, X, u) denote the space of functions
f:RxY — Xsuchthat f(.,y) € EP (R, X, u), for each y € Y. Let us set

PAAPR x Y, X, u) = AAPR x Y, X) +EPR x Y, X, ).
Now we introduce the space of p-Stepanov bounded functions:

Definition 2.21 Let 1 < p < oo. The space BS? (R, X, ) of all u-Stepanov bounded (or
u — SP-bounded) functions with the exponent p consists of all measurable functions f on
R with value in X such that

fPe L™ (R, LP((0,1),X,dp).

Remark A function f € LY (R, X, u) is u — S? bounded if

loc

t+1 1/p
I lsr e i=sup ([ 7o) " < oc.
teR t

It is obvious that

LP(R,X, ) C SP(R, X, ) € LY (R, X, ).

loc
Let u € M, we introduce the following hypothesis:

M3) supp[t,t+ 1] < oo.
teR

@ Springer



Differ Equ Dyn Syst (July 2017) 25(3):397-416 403

Example 1f 1 is absolutely continuous with respect to Lebesgue measure with a bounded
Radon-Nikodym derivative, then (M3) naturally holds.

Proposition 2.22 Let © € M satisfy (M3), then constant functions belong to BS? (R, X, ).

Proof Let f (s) = M be a constant function. Then

t+1 1/p
sup (/ IIf(S)IIPdu) < Msup (plt, 1t +1D"7 < o0.
teR t teR

Composition Theorems

Definition 3.1 Let UC (R x X, X) denote the set of all uniformly continuous functions
f i Rx X — X, i.e for each compact set K in X and for each ¢ > 0, there exists
& > 0 such that

Ilf@u—fEvl<e 2)

forallt e Rand u, v € K with ||u — v| <.

Definition 3.2 Let UC? (R x X, X) denote the set of all BS”-uniformly continuous func-
tions f : R x X — X i.e there is a non-negative function L € BS! (R, R, w) such that for
each compact set K in X and for each ¢ > 0, there exists § > 0 such that

1

t+1 »
([ 1rew-rovra) <o )
forallt € Rand u, v € K with ||u — v| <.
Lemma 3.3 [13] Assume that
feAAP R xX,X)NUC R x X, X).
Ifu e AAP (R, X) and K = {u (1) : t € R} is compact, Then
FGu() e AA? (R, X).
Lemma 3.4 Assume that a(.) € AA? (R,X), K = {a (t) : t € R} is a compact subset of
XhefP RxX, X, w)NUCP (R x X, X) and let i € M satisfy (M1). Then h (., (.)) €

EP (R, X, ).

Proof For any fixed ¢ > 0, let 6 > 0 such that (3) holds. Then there exist a1 ... € K
such that

k
KCUB(ai,(S).

i=1
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Foreacht e R, there exists «;(;), 1 < i (t) < k such that Ha () — i) || < §. Then we get

+1 7 1+1 5
(/ ||h(s,oz(s))||pds) 5(/ ||h(s,oc(s))—h(s,ai(t))”pds)

1

+1 ¥
([ e as)
t
k 1+1 3
sL(z)e+Z(/ ||h<s,a,~>||"ds),
i=1 !
which gives

1 r 1+1 1]7
wlerrl (/ lh (S,a(s))llpds) du (1)
- —r t

1
ﬁs[rL(l)dﬂ(t)+ r]Z[r (/ |h(S,(xi)||”ds)pdu(z)
[r]1+1 117
S /L[ r,r] / L(t)du(t)—’_ ol Z/_r (/ A (S,Ol,‘)”pds) du (1)
k+1
Z / Lty du (o)

< —
nl— rr] il

1 r 1+1 %
- NT
+M[—r, r] ;/r (/t 172 Cs, e) ds) du (1)
1

k L
2 +2 1 r t+1 7
<elLlpmnn oS [ ([ as) ano
=1V

[_rvr]

IA

Q2r1+2) 2r
<elLlpsirRr, 0 2 pl=rrl

1 koprogopitl , 1
+M[—W]Z‘/—r(/t A (s, o)l dS) du(t).

Noting that (., ;) € EP (R, X, ), i = 1...k, and using hypothesis (M1) one has

1 r t+1 %
1imSuP7/ (/ IIh(S,a(S))II"dS) dpu (1)
r—oo wl=r,rl )\

< M e ”L”BSI(R,R,M) forall e > 0.

Therefore,
1

1 r t+1 7
lim —/ (/ ||h(s,a(s>>||"ds) du (1) =0,
r—>00 M[_r5 r] —-r t

e, h(,a()) €&l (R X, 1. o
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Remark If p is absolutely continuous with respect to the Lebesgue measure with a Radon
Nikodym derivative p, then (M1) which was used in Lemma 3.4 is equivalent to the condition:

limsup ———— < 0 “4)
r—>oop f:r P (S) ds
A similar result was given in [22, Lemma3.1] if p satisfies
Lo, 1
re (J_ p?(s)ds)?
lim sup U p ) 5)

r—>00 f:rp(s) ds

However, if for example p(¢) = €', one cannot apply [22, Lemma3.1] since the condition
(5) is not verified, in fact:
1 1 1 1
) re (7 eds)s re (e —emd")1 1
limsup —————— =limsup ———— =limsupr? = oo.
r—>00 f—r esds r—>00 e —e "’ F—>00

While the condition (4) holds since

. r . r
lim sup ——— = limsup — =0 < co.
r—oo |, esds r—so00 € —e "

Another example where one cannot apply [22, Lemma 3.1] is when p has a Radon-
Nikodym derivative p defined as follows:

_ |k, k=<t<k+}forallk e N¥,
p(t) = [0, v otherwise. ©)
One has .
[r]—lf/ p(s)ds <[r] forr > 0. (7)
—r
In fact
r [r] [r]—1 k+%
/ p(s)dsz/ p(s)ds:Z/ p(s)yds=1[r]—1,
—r 0 k=1 k
and
r [r] k+%
/ p(s)ds < Z/ ps)ds =1r].
—r k=1 k
Therefore

r

lim p(s)ds = o0
r—oo [_,

and then u € M. In addition u satisfies (M3), in fact for r > 0 we have

[r]+1

1+1 [1]42 k+1
| ewass [ owas=3 [T ewas=2
‘ ] k

k=[r]
it follows that

t+1
sup ult, t + 1] = sup/ p(s)ds < 0.
teR teR Jt
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On one hand by (7), the condition (4) holds since

2r

lim sup m sup

— <lim < 0.
r—>00 f p(s)ds = r—oo [r]—1

On other hand the condition (5) does not hold, in fact

r r [r]
/ pz(s)ds:/ p%s)dsz/ P* (s) ds
_ 0 0

Z/k+kp (S)ds_zk_w,

Then

Lo 9 1 5 (drl= 1)[’]
A, R a7 (1)’
[Lopyds  ~ [r]

1
«r2, when r goes to co.

Therefore

1
([ PP () ds)?
lim sup - =00
r—>00 f—r 1Y (V) ds

Lemma 3.5 Letpu € Mand f € BSP (R, X), then f € EP (R, X, ) if and only if for any

e>0
1
u([ze[—r,r]: (S 17 @i ds)” = ])
lim =0.

r—o wl=r,r]

1
Proof Since t — (ftH'l LI ds) " € £(R, X, u), then Lemma 3.5 is a direct result
of [4, Theorem?2.13]. ]

Theorem 3.6 Let p € Mand f = g+h € PAA? R x X, X, u) with g € AAP(R x X,
X)NUC R x X, X)andh € EP (R x X, X, n) . We suppose that there exists a non-negative
function L (.) € BS1 R, R, w) with p > 1 such that for all u, v € le R,X) and t € R,

t+1 % t+1 %
(/ ILf (s, u(s)) = f(s,v (S))IlpdS) =L@ (/ llu (s) — v (DII” dS) - (8
t t

Assume that | satisfies (M1)—(M3).
Ifx =a+ B € PAAP R, X, n), witha € AAP (R, X), B € EP R, X, ) and K =
{a (t) : t € R} is compact, then f (., x () € PAA? (R, X, u).

Proof We have the following decomposition

fax@®) =g a@)+ fEx@)—fa@)+hd @)
=GO +FO+H®),

where G (1) = g (t,a (1)), F (t) = f(t,x (1)) — f(t,a (t)) and H (t) = h (¢, « (1)). Since
g€ UCRxX,X)and K = {a(t) : t € R} is compact, it follows from Lemma 3.3 that
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g(t,a (1)) € AA?P (R, X). First we prove that F' (.) € £ (R, X, n). By Lemma 3.5 we have
foralle > 0

r—>00 I’L[_r!r]

)

where

1

t+1 »
M, (B) =t €[-rr]: (/ 1B ()P ds) > ¢
t

Let ¢ > 0, we have

1 r 1+1 3
wl=rr (/ | F)I? ds) du (1)
A —r t

1 t+1 %
< —/ (/ ||F<s>||f’ds) du (1)
wl=r.rl Jm,.8) \J:

1 t+1 %
TR (/ ||F(s>||f’ds) dp (1)
pwl=rrl Ji—rrnm, .8 \Ji
M(Mr,s (.3))
< Fllpsrax) Tuler
1 ;
b (/ ||f<s,x<s))—f(m(s))n"ds) dp (1)
wl=r,rl Ji—r.rm\m.s8) \J1
1 (M (B)
< IFllpsr®x =
1 t+1 %
ot L) ( / IIﬂ(S)II”dS) dpe (1)
wl=rrl Ji—rrn\m, 58) 1
M, . 1 r
S”F”BSP(]R,X)M( <) e [ L@ydu

I”L[_r7r] ,U,[—r,r] —r
n(Mre (B) | 21r]1+2)

< IFllgsr@rx) 1L gst & ) &
( iz

/"L[_rvr] /"L[_rvr]
Therefore
1 r t+1 %
lim sup —— (/ ||F(s)||pds) du (1) §M||L||351(RRM)8 forall ¢ > 0.
r—so0 m[=r,r] J_ \J; o

Thus F () € EP (R, X, u).

Next we prove that H (.) € EP (R, X, ). From (8), we can see that f € UCP? (R x X, X).
Using Proposition 2.22, it is easy to see that g € UCP (R x X,X) andthenh = f — g €
UC? (R x X, X). It follows from Lemma 3.4 that /2 (., @ (.)) € £ (R, X, ). ]

Theorem 3.7 Let p € Mand f = g+ h € PAAP RxX, X, n), p > 1 with g €
AAP R x X, X)NUC R x X, X), h € P (R x X, X, n) . We suppose that there exists a
non negative function L (\) € BS™ (R, R)N BS' (R, R, w) with r > max {p, %} such that
forallu,v e Xandt € R,
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lft, u)— f&, )l <L) lu—vl.

Assume that | satisfies (M1)—(M3).

If x = a+ B € PAAP R, X, n), with o € AAP (R, X), B € EP (R, X, n) and
K = {a(t):t € R} is compact, then there exists q € [1, p) such that f (.,x(.)) €
PAAY (R, X, ).

Proof Since r > ﬁ, there exists g € [1, p) such thatr = %. Let

Thenp’,q’>land#+%=1,

We have the following decomposition

Fax@®) =g a@®)+ f @ x@)—fEa@)+h@ o)
=G@)+F@)+ H (),

where G (1) = g (t,ax (¢)), F(t) = (t,x(t)) — f (t,a (t)) and H (t) = h (¢, « (t)). Since
g e UCRXxX,X)and K = {« () : t € R} is compact, it follows from Lemma 3.3 that
g(t,a (1)) € AAP (R, X). First we prove that F (.) € £€1 (R, X, ).

t+1 i 1+1 :
(/ ||F<s>||qu) < (/ If (tx (1) — f(r,a(r»n‘fds)
t t
r+1 i
< ( / L9 (s) IIﬂ(s)Ilqu)
t

t+1 q t+1 1%
5(/ L’(s)ds) (/ Ilﬁ(S)II"ds)
t t
1+1 B
< ILlgs @ (/ IIﬂ(S)IlpdS) .
t

1 r t+1 %
wl=rrl (/ 1 F )1 ds) du (1)
’ —r \Jt

||L|| " r t+1 %
< Iles@r (/ IIﬂ(S)Il"dS) du ().
wl=r,rl J_r \U;

Therefore

Thus F (.) € €9 (R, X, w).
Next we prove that H (.) € £9 (R, X, ). We have

1+1 B 1+1 5
(/ Ilf(s,x)—f(S»y)II”ds) < (/ L(s) |x —yu"ds)
t t
1+1 3
_ ( / L(s)!’ds) e — i
t

< ILlpsr@r) lIx — ¥l
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and g € UC (R x X, X). Then using Proposition 2.22, it is easy to see that f, g €
UCP(RxX,X)and then h = f — g € UCP (R x X, X). It follows from Lemma 3.4
thath (., () € EP (R, X, n) C &9 (R, X, p). O

Evolution Family and Exponential Dichotomy

Definition 4.1 [12,21] A family of bounded linear operators (U (¢, s));>s, on a Banach space
X is called a strongly continuous evolution family if

1. U, )U(r,s) =U(t,s)and U(s,s) = I, forallt >r >sandt,r,s € R,
2. The map (¢, s) — U(¢, s)x is continuous forall x € X, > s and t, s € R.

Definition 4.2 [12,21] An evolution family (U (z, s));>s on a Banach space X is called
hyperbolic (or has exponential dichotomy) if there exist projections P(¢), t € R, uniformly
bounded and strongly continuous in ¢, and constants M > 0, § > 0 such that

1. U(t,s)P(s) = P(t)U(t,s),fort > sandt,s € R,

2. Therestriction Ug(t, s) : Q(s)X — Q(1)Xof U(¢, s) is invertible fort > sandt,s € R
(and we set Ug (¢, s) = U (s, 1~ h.

3. U@, $)P(s)| < M) ©

and
[Uo(s, Q)| < Me 20, (10)

fort >sandf,s € R.
Here and below we set Q := [ — P.
Definition 4.3 Given a hyperbolic evolution family, we define its so-called Green’s function
by

Ul(t,s)P(s) fort > s, t,s € R,

[, s) = ‘ —Up(t,5)0(s) fort <s, t,s e R.

Pseudo Almost Automorphic Mild Solutions

In this section, we investigate the existence and uniqueness of x-pseudo almost automorphic
mild solutions of Eq. (1).

Before starting our main result in this section, we recall the definition of the mild solution
to Eq. (1) and we make the following assumptions:

(HO) There existconstants A\g > 0,0 € (Z,7),L,K >0,anda, B € (0, 1]witha+8 > 1
such that

2o U{0} C p(AW) = do),  [IR(, A1) = 20l = 7 Y

and
(A1) — 20) R (A, A(t) — 20) [R(ho, A(t)) — R(ro, A(®)]Il < Lt — s|“|A| 77,

fort,s e Rand A € ¥y := {A € C\ {0}, |arg 1| < O}.
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(H1) The evolution family (U (t, s));>s generated by A(¢) has an exponential dichotomy
with constants M > 0, § > 0, dichotomy projections P(¢), t € R and Green’s
function I'(z, s).

(H2) t — R(ro, A(2)) € AAR, B(X)).

We point out that assumption (HO) is usually called “Acquistapace-Terreni” condition, which
was firstly introduced in [1] and widely used to investigate nonautonomous evolution equa-
tions.

H3) f=fi+fre PAARxX, X, u),with fj e AAR x X, X)NUC (R x X, X) and
fr e ER x X, X, ). Assume that f is bounded on R x B for each bounded subset
B of X and there exists a constant L s such that for all u, v € X and for all # € R:

If(z,u) = f, ) < Lgllu—vl.

(H4) g = g1+ g € PAAPR x X, X, ), with gy € AAP R xX,X)NUC (R x X, X)
and g2 € €7 (R x X, X, ). Assume that there exists a non-negative function L €

BS" (R,R) N BS' (R, R, ) with r > max [p, ﬁ} such that for all #, v € X and
forall r € R:

gt u) — g, v)ll =L @) llu—vl.

Definition 5.1 A mild solution to Eq. (1) is a continuous function u : R — X satisfying
t
u)+ft,u@®) =0, s)uls)+ f(s, u(s))]—i—/ U(t,o)g(o,u(o))do fort >s. (11)
s

Theorem 5.2 [13] Let assumptions (H0)—(H1) hold and u be a bounded mild solution of
(1) on R, then forallt € R

u(t) = —f(t,u(t))—l—/ I (t,s)g(s,u(s))ds. (12)
R

Lemma 5.3 [2] Assume that (H0)—(H2) hold. Then T" € bAA (X).

Theorem 5.4 Let u € M satisfy (M2). Assume that (H0)—(H2) hold, ifh € PAAP (R, X, 1),
for p > 1, then

f—> / [(t,s)h(s)ds
R
belongsto PAAR, X, ).
Proof Since h € PAAP (R, X, u), we can write h = hy + hyp, where h; € AAP (R, X) and
hy € EP(R, X, u). By [13] and using Lemma 5.3, we have fR C(t,s)h(s)ds € AAR, X).

To complete the proof, we will prove that fR I'(t,s)hy (s)ds € ER, X, n). Let us consider
foreacht e Randn € N:

t—n+1
D, (1) :=/ U(t,o)P(o)hy(o)do.
t

—n
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We have

t—n-+1
1Bu()] < M / e (o) |do
t—n

1

t—n+1 I pientl <

sM[ / e—q‘“’—”)da] [ / IIhz(G)IlpdG]
t—n t—n

t—n+1 ,,l t—n+1 %

M[/ e_q‘s('_")doj| [/ ||h2(a)||‘”d0i|
t—n t—n

1

g8 _ 1 t—n+1 ?

M e (@) 1P do
q8 t—n

IA

IA

Multiply both sides of the inequality by m and integrating, we obtain
[ 1w
— g
w=r.rD) Jin "
1
qé _ 1 1 t+1 7
<M< e [/ ha(o — n)ll”da] dp(r).
q8 w=r,rD) Ji—r.n LJe

Since hy € EP(R, X, ) and pu satisfies (M2), then by Theorem 2.19, £P (R, X, ) is invariant
by translation and the left side of the inequality goes to 0 when r goes to infinity. Therefore

D, (1) € ER, X, ).

From

g8 — 1
quTZ€7”3<OO,
q

we deduce that 3", _, @, converges uniformly to

'
D (1) :/ U(t,o)P(o)hr(0)do,

—0oQ0

it follows that
D e ER, X, p).
Using the same argument, we show that
+00
v = [ Uott.0)0@hao)o € £ ).
t
We conclude that fR ', s)ha(s)ds € ER, X, ). O

Lemma 5.5 Let u € M satisfy (M1)—-(M3). Assume that (H0)—(H4) hold. The operator A
defined by

(Au) (I)Z/F(Ls)g(s,u(s))ds,
R

maps PAAR, X, n) to PAAR, X, ).
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Proof We can easily obtain this result from Theorems 3.7 and 5.4. o

Theorem 5.6 Let u € M satisfy (M1)-(M3). Assume that (H0)—(H4) hold. Then Eq. (1)
admits a unique j-pseudo almost automorphic mild solution if

oM [1—e"Y
Ly +IILIps &R ) 5 <1,

1 1
where — + — = 1.
ror

Proof Define the nonlinear operator A on BC (R, X) by :

t

(Au) (1) = —f (1, u(r)) +/ U, s)P(s)g(s, u(s))ds

—00

+00
—/ Ug(t,s)0(s)g(s, u(s))ds fort e R.
¢

Letu € PAAR, X, ), using Lemma 5.5 and [5, Theorem5.7], we deduce that A is well
defined and maps PAA(R, X, u) into itself. Let u, v € PAA(R, X, w). It follows that for
eachr € R:

I (Au) (1) — (Av) (@) ||
t
= 1@ u@) — f@, v@)l +/ Me™) Ylg(s, u(s)) — g(s, v(s)) | ds

+oo
+ / Me™C7 Jlg(s, u(s)) — g(s, v(s))ll ds
t
t
<Lgllu—vlo+ llu— v||oo/ Me™ UL (s)ds
— 00

+00
+llu — u||oo/ Me 36D (s)ds
t

<(Ly+Li+La)lu—vls.

where
t
L= / Me =L (s)ds
—0Q
and

400
L2=/ Me DL (s) ds.
t
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Since L € BS" (R, R), we get
o0 t—k

+1
Ly=MY e 3= (s5)ds
k=1 t—k

1
p

S t—k+1 , ; t—k+1 %
<M z (/ e o (’ﬂ)ds) (/ L (s)" ds)
k=1 t—k t—k

0 t—k+1 5 ,L/
< M||Lllgs ® R Z (/ e (H)ds)
= Vi«

1

1 1—e" Y\
< M| Lllgs @R e 5 .

Similarly we have

1 1—e"Y
Ly < M||L| gsrr,R) o 57 -

Thus

1
2 1—e Y\
I (Au) — (Av) lloo < | Ly + M Ll gsrr,w) = o 5 lu — vl -

By the well known contraction principle, we can show that A has a unique fixed point
ue PAAR, X, )

which satisfies

u(t)y = —f(,u(®)) +/ [ (t,s)g(s, u(s))ds.
R

Application

Let u be a measure with a Radon—Nikodym derivative p defined by

0 = e'ifr <0,
PU=11ifr > 0.
Since

p(t+c) .opt+o .
—— =1 and lim ————~ =¢°,
t—+oo  p (1) t——00  p (1)
then by [4], w satisfies (M2). In addition, p satisfies (M1) since
. 2r . 2r . 2r
lim sup ——— =limsup — = limsup —— < oo.
r—o0 M[=r,r] r—>00 ffr p(s)ds r—so00 L —e " +r

The fact that the derivative p is bounded implies that p satisfies (M3).
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To illustrate the above results we examine the existence of p-pseudo almost automorphic
solutions to the following model:

%[u([! g) - f(tv M([,g))] = %[M(LE) - f([! M(t, ‘g))]

+oa(®)[u(, &) — ft, u@, &)+ g, u,§)), teR, §el0,n] (13
u(,0) =u(,m)=0, teR
u(t,0)— f(t,u,0) =ut,m)— f(t,u,m)) =0, teR,
with
f,x)y=a@®yx)+b@) e )
and

gt x)=cO Yy (x)+d@®)ex),

where «, a, ¢ : R — R are almost automorphic functions such that a (1) < —M < 0, for
allt e R, b e ER,R, u) and d € &2 (R, R, ). The functions v, ¢ : R — R are bounded
Lipschitz continuous. It is clear that f belongs to PAA(R x R, R, ) and satisfies:

[f@,x)— ft, )| < Lglx—yl forall t,x,y €R, (14)

where Ly = Ly |als + Ly |blo. We can see also that g belongs to PAA%R x R, R, 1)
and satisfies:
lg(t,x) — g, I <L) |x—y|l forallz,x,yeR, (15)

where L (t) = Ly |c (t)| + Ly |d (¢)]. The boundedness of p implies that L e BS? (R,R)N
BS' (R, R, p).

To represent the system (13) in the abstract form (1), we choose the space X =
L2 ([0, 7], R), endowed with its natural topology. We also consider the operator A : D(A) C
X — X, given by

Ap = ¢" for¢ e D(A),
where
DA ={peX: ¢" X, ¢(0)=6¢(m)=0}.
Letussetfort € Rand & € [0, 7]:
UM @) :=u@s),

Ft,v)&):= f@t,vE)) forveX,
G(t,v)(E):=g@,v(E) forveX

Using (14) and (15), it is clear that F' and G satisfies (H3) and (H4) with p = r = 2.
Moreover, it is well known ([9]) that A is the generator of an analytic Co-semigroup {7 (t)};>0
on X with | T(#)|| < e ', fort > 0.

Define a family of linear operators A(t) by:

D(A@) =D (),
A()p = Ap +a(t)p forp € D (A).

Equation (13) takes the following abstract form

d
ZFWO-FGUO=AOWUO-F@U@OI+G60UE).
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The operators A(t) generate an evolution family (U (¢, s));>s given by

Ut,s)p = el ® @41t —5)¢ forallp € Xand 1 > s,
with
(U, s)|| < e MDE=9) fors > g,

It follows that (U (t, s));>s has an exponential dichotomy. Let (s),>0 be a real sequence,
then there is a subsequence (s,)n>0 C (s),)n>0 and a real measurable function t — &() such
that for all t € R

lo(t +5,) —a@(@®)] - 0 asn — +oo,
la(t —s,) —a(@®)] > 0 asn — +oo.

Consider A(t) := A + &(t), then we have
ROLAG+5)) = R(LA®D) = RO AC+s) [a+s)—a 0] R (1 AD).
It follows that
HR (LA +5))— R (A, i (t)) H
S IR G A+ sl @ +s) =& |R (1 A0) |
< Nla(t+s,) —a() — 0, asn goesto oco.

Similarly, we show that || R(k, A (t— s,,)) — R(A, A(t) ) H — 0. Therefore, the family
A (1) satisfies (H2). Consequently all assumptions (H0)—(H4) are satisfied, by Theorem 5.6
we deduce that (13) has a unique p-pseudo almost automorphic mild solution on R, under
the condition

5 | — g2+ 2
L+ LI gs2mr | — o—M+D) ( 2(M + 1) ) =1
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