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Abstract We propose and analyze a deterministic eco-epidemiological system where the
susceptible pest exhibits a weak Allee effect due to mating limitation. We make the follow-
ing assumptions: (i) Allee effect is built in the reproduction process of susceptible pest where
infected pest has no contribution; and (ii) growth rate of natural predator is negative for con-
suming infected pest. We also assume that the functional response of predator for susceptible
pest is linear, hyperbolic, or sigmoidal, whereas for infected pest is linear, as infected pest are
weakened and easy to catch. We study the dynamics of the system around each of the eco-
logical feasible equilibrium and observe some interesting features of the system dynamics.
The reduction of disease eradication, and predator–pest coexistence are observed around the
predator free and disease free equilibrium respectively. It is also observed that the interior
equilibrium is always unstable and the result is true for any choice of functional responses.
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Our results suggest that introduction of predator or natural enemies with sigmoidal functional
response is a good candidate to represent disease eradication.

Keywords Weak Allee · Stability analysis · Disease eradication · Pest control ·
Natural predator

Introduction

Pests and diseases are integral components of natural environment. For a sustainable system
there should be a balance between predators and pests. The pests are harmful to agriculture
as they affect the crop yields by means of feeding on crop or parasitizing livestock. One must
need to take care of controlling any harm that will come along the way such as the infestation
of pests. It is very difficult to control the damage of crop if the pest or disease starts attacking
the crop at large scale. Sometimes it is also observed that, pests (prey) are affected by some
disease [5,17]. In such cases, disease induced pests are more exposed to predator and such
viral infection is used in pest control management to reduce the level of pests. But, this may
be harmful to the natural predator and may destroy the biological balance of natural system.

There are several methods that are applied to control the pest populations, viz. use of ster-
ile adults, plant resistance, use of pheromones, and other chemicals. For example, integrated
pest management (IPM) is a popular pest control method among farmers, researchers and
policy makers [42]. In IPM, several methods are integrated for pest control. In general, IPM
minimizes the reliance on pesticides by putting emphasize on the contribution of other control
methods, that include biological control, host-plant resistance breeding, cultural techniques,
etc. Among them the use of viruses, fungi and bacteria are the most effective biological meth-
ods for controlling pests [5]. In biological control, living organisms are used to control pest.
These living organisms are called natural enemies. Apart from birds, mammals and reptiles,
themost important group of natural enemies are insects that feed on other insects. Of all meth-
ods, chemical pesticides are used widely, because they can quickly eradicate a considerable
fraction of a pest population. However, chemical pesticides are recognized as major health
problems to human beings and several beneficial insects. In addition, overuse of chemical
pesticides not only develop resistance of the pest population but also increase the agricultural
cost tremendously [26]. It is important to recognize that the sole purpose of biological con-
trol is not to eradicate the pest population completely, but to maintain them at levels where
they cause no substantial harm. In fact, a successful biological control can be guaranteed,
if a small population of pests are always available for the sustainability of natural enemies.
The main objective of our study is to examine the basic dynamical behavior of the system
consisting of a susceptible pest exhibiting Allee effect, infected pest and their predators.

The Allee effect, named after ecologist W. C. Allee is an important biological concept,
corresponds to density mediated drop in population fitness when they are small in numbers
[1,39,40]. A species exhibits an Allee effect when certain component of individual fitness
(e.g. litter size, juvenile survival, adult mortality etc.) is reduced with decrease in population
size (mainly due to difficulty in finding mates), known as component Allee effect [39]. When
two or more component Allee act together and result in lowering the overall mean individual
fitness, is known as demographic Allee effect [12,39]. Sometime demographic Allee effect
may become so severe that below a threshold population size growth rate is negative that
eventually lead to extinction of species. This is known as strong Allee effect and the threshold
population size is known as Allee threshold. In the other hand a demographic Allee effect
without this Allee threshold is known as weak Allee effect. Empirical evidence of the Allee
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effect has been reported in many natural populations including plants [15,18], insects [28],
marine invertebrates [41], birds and mammals [13]. Without going into meticulous details of
the Allee effects we suggest the reader to see the review [12] and other references therein.

The evidence of Allee effect was first demonstrated in the confused flour beetle (Tribolium
confusum, a type of darkling beetle). Practical applications of the mate-finding Allee effect
in pest control programs include pheromone-baited traps and the sterile insect technique
(e.g. [20,27,32]). Additional impose of component Allee effect might be efficient to control
the pest species that also suffers from mating failure. Boukal and Berec [6] discussed the
impact of two commonly considered strategies in biological control, viz. culling based on
constant effort and inundative release of pheromones. They also discussed the usefulness of
component Allee effect in combination with mate limitation, giving rise to multiple Allee
effect viz., release of generalist enemies that attack pest with type II functional response
[16] and mass release of sterile individuals [43]. Then combination of two strategies were
analyzed to demonstrate the effect of triple Allee effect. Using single population model of
pest they predicted that, if males, females or both sexes are driven below a threshold density,
a complete eradication of pest can be achieved.

In this investigation we propose and analyze an eco-epidemiological model with weak
Allee effect on susceptible pest. We use Rosenzweig and Mac-Arthur modeling formulation
which integrates logistic self-limitation, and nonlinearity in the density or consumption rela-
tionship. The use of functional response is a debatable issue. We use three types of Holling
functional responses with an aim to find a suitable functional which can adequately repre-
sent disease eradication. We shall discuss the following biological control strategies in the
light of mathematical modeling: (1) Control of pest by releasing natural predator with an
appropriate functional response; (2) Control of pest population by using viral infection; (3)
Conservation of natural predators while adopting an optimal pest control strategies; (4) How
the Allee effects in pest population change the system dynamics in pest control. The rest
of the paper is organized as follows: Development of mathematical model is elaborated in
“Development of the Model” section. In “Linear mass-action functional response”, “Hyper-
bolic Functional Response”, Sigmoidal Functional Response” sections stability analysis of
the model systems are presented considering linear mass-action law, hyperbolic and sig-
moidal respectively as predator functional response. Numerical simulations with discussion
is presented in the “Numerical Simulation” section. The paper ends with a conclusion.

Development of the Model

In this section we will discuss the development of eco-epidemiological model with Allee
effect in pest. We start with the assumptions that in the natural predator–pest interaction, the
pest population is facing a viral disease that can be captured with an SI (Susceptible-Infected)
framework.

SI Epidemic Model

A typical SI model with an open system of variable size can be written as follows:

dS

dt
=SΦ(S) − Ψ (S, I ),

dI

dt
= Ψ (S, I ) − μI,

(1)
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where S and I are the densities of susceptible pest and infected pest population respectively,
Φ(S) is the per capita growth function of the susceptible pest population, Ψ (S, I ) is the
incidence function of the disease i.e. the rate at which infections occur and μ is the sum of
death rate due to disease and the natural death. It is assumed that all susceptible and infected
pest populations are equally susceptible and infectious respectively. It is also assumed that
the disease transmission follows the simple law of mass action, i.e. Ψ (S, I ) = λSI , where
λ is the rate of infection per susceptible and per infective.

Predator–Pest Model with Mate-Finding Allee Effect on Pest

A natural predator–pest model with mate-finding Allee effect on pest in its classical form is
represented by

dN

dt
=N f (N )A(N ) − Ph(N ),

dP

dt
= θ Ph(N ) − δP,

(2)

where N and P are, respectively, the densities of pest and predator population. f (N ) is the
per capita growth rate of pest in the absence of predation which we assume logistic with
intrinsic growth rate r and carrying capacity K so that f (N ) = r

(
1 − N

K

)
. Here h(N ) is the

functional response and the term θh(N ) is the numerical response of the predator, θ being
the conversion efficiency and δ is the predator mortality, which is assumed to be constant.
A(N ) is the positive density dependent factor i.e. the Allee function. A(N ) is considered as
the probability that a female finds and mates with at least one male during the reproductive
period [8] and satisfy the following conditions:

– No mating occurs at zero population size, A(0) = 0.
– A′(N ) > 0 i.e. the population size increases the probability that, a female will find a

mate increases.
– Mating is guaranteed when the population is large, that is A(N ) → 1 and N → +∞.

Now we are in a position to formulate the basic eco-epidemiological model combining
the SI epidemic model (1) and the Predator–pest model (2) with mate-finding Allee effect
on pest.

Eco-epidemiological Model with the Allee Effect on Pest

The following assumptions are made in formulating the basic eco-epidemiological model:

– In the absence of infection and predation, the pest population grows logistically. In the
presence of infection, the pest population are divided into two disjoint classes, namely,
susceptible S and infected I. Therefore at any time t, the total number of pest population
is N (t) = S(t) + I (t).

– It is assumed that only susceptible pest population, S, are capable of reproducing with
logistic law and the infective pest population dies out before having the capability of
reproducing individuals. However, the infective population, still contributes with S to
population growth towards the carrying capacity.

– The disease transmission is captured by the law of mass-action [9,10]. The disease is
spread among the pest population only and the disease is not genetically inherited. The
infected population do not recover or become immune.

– It is assumed that predator cannot distinguish the infected and healthy pest, they consume
both the susceptible and infected pest at the rates h(S) and g(I ), respectively. Consump-
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Table 1 Variables and parameters used in the models of susceptible pest-infected pest-predator population
interaction

Variable/
parameters

Units Definition Default value

S Number per unit designated area Density of susceptible pest –
I Number per unit designated area Density of infected pest –
P Number per unit designated area Density of predator –
r Per day Growth rate of susceptible pest 3
K Number per unit designated area Carrying capacity 45
w Number per unit designated area Individuals searching efficiency 10
a Number per unit designated area Half-saturation constant 15
λ Per day Rate of infection –
α Per day Attack rate on susceptible pest –
β Per day Attack rate on infected pest 0.05
μ Per day Death rate of infected pest 0.24
θ Per day Conversion efficiency 0.4
δ Per day Natural death rate of predator 0.09

tion of infected pest will contribute negative growth in the predator population [4,11],
whereas feeding on susceptible pest enhances the growth rate of predator population.

– The predation term for infected pest follows a linear mass-action functional response
[19] because infected pest are weakened and easier to catch [22,23,33,34], for simplicity
we assume g(I ) = β I , β is the attack rate on infected pest. In particular, we assume the
predator response function, h(S), for susceptible pest as linear, hyperbolic and sigmoid.
Although S and I are indistinguishable, the choice of functional response differs from
the fact that, infected prey are easier to catch.

– We incorporate the Allee effect A(S) = S
w+S on susceptible pest population only due to

limitations in findingmates (which is known asweakAllee effect function). This function
A(S), be the probability of finding a mate wherew is the individuals searching efficiency
[14,31,36]. The biggerw is the stronger Allee effect and as a result the per capita growth
rate of the susceptible pest is reduced from

r S

(
1 − S

K

)
to r S

(
1 − S

K

)
S

w + S
,

especially when S is small.
– I -class does not contribute to the reproduction of newborns but they are compete for

resource with susceptible pest. Then in the presence of infected pest and absence of
predator susceptible pest dynamics can be described by the following equation

dS

dt
= r S

(
1 − S + I

K

)
S

w + S
.

Based on the above assumptions we have the following equations as our eco-
epidemiological model with weak Allee effect on susceptible pest:

dS

dt
= r S

(
1 − S + I

K

)
S

w + S
− λSI − h(S)P,

dI

dt
= λSI − β I P − μI, (3)

dP

dt
= θ (h(S) − β I ) P − δP.
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System (3) has to be analyzed with the initial conditions S(0) > 0, I (0) > 0, P(0) > 0,
and with three different functional forms of h(S) viz. linear, hyperbolic and sigmoid. The
biological significance of the parameters used in this model is provided in Table 1.

Note:

1. The carrying capacity is shared by both infective and susceptible individuals. Infective
competes for resources but does not contribute to reproduction.

2. Infected pest population dies out before having the capability of reproducing new off-
springs. So they are not susceptible to the Allee effect due to mate finding limitation.

The right-hand side of Eq. (3) are smooth functions of the variables S, I , P and parameters,
as long as these quantities are nonnegative, so local existence, uniqueness and continuation
properties hold in the positive octant for some time interval (0, t f ). In the next theorem we
show that the linear combination of susceptible pest, infected pest and predator population
is less than a finite quantity, the solution of system (3) is bounded.

Theorem 1 The solution y(t) of (3), where y = (S, I, P), is uniformly bounded for y0 ∈
R
3
0,+.

Stability Analysis of Model (3) with Different Functional Responses

In this section we will discuss the stability of model (3) with different functional responses.
In the next subsection we first consider the commonly used linear mass-action functional
response.

Linear Mass-Action Functional Response

We first consider the equilibria of system (3), and discuss their local stability properties
in terms of linearization of system (3) near each equilibrium. Next, we consider global
asymptotic properties for the solutions of system. For mass-action response function, system
(3) takes the following form:

dS

dt
= r S

(
1 − S + I

K

)
S

w + S
− λSI − αSP,

dI

dt
= λSI − β I P − μI, (4)

dP

dt
= θ (αS − β I ) P − δP.

Applying the transformations s = S
K , i = I

K , p = P
K , τ = λKt we have the following

dimensionless form of the model equation (4). Now, we will replace τ by t for notational
convenience.

ds

dt
= bs(1 − (s + i))

s

v + s
− si − m1sp,

di

dt
= si − dip − ei, (5)

dp

dt
= θ (m1s − di) p − gp.

where b = r
λK , m1 = α

λ
, d = β

λ
, e = μ

λK , g = δ
λK and v = w

K .
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Equilibria and Local Stability

The model equations of system (5) has the following equilibria: (a) trivial equilibria E I
0 =

(0, 0, 0), (b) infection and predator free axial equilibrium E I
1 = (1, 0, 0), (c) predator-free

planner equilibrium

E I
2 =

(
e,

be(1 − e)

v + e + be
, 0

)
,

(d) infection-free planner equilibrium

E I
3 =

(
g

θm1
, 0,

bg(θm1 − g)

θm2
1(vθm1 + g)

)

and (e) interior equilibrium E I∗ = (s∗, i∗, p∗), where, s∗ is the unique positive root of the
quadratic equation As∗2 + Bs∗ + C = 0 and

i∗ = θm1s∗ − g

θd
, p∗ = s∗ − e

d
and s∗ + i∗ ≤ 1. (6)

with

A = θ(bd + bm1 + 2m1)(> 0), B = θ (2v − e) (m1 − T ) , C = −v(m1θe + g)(< 0),

and

T = bdθ + g(1 − b)

θ(2v − e)
.

The unique interior equilibrium exists if s∗ > max
{
e, g

θm1

}
, which is always unstable (see

Table 2 and Theorem (6).

Note: The last condition of (6) is due to the fact that at any time point t , sum of susceptible
and infected pest population can not exceed the environmental carrying capacity. It has been
emphasized in the model formulation that both the populations compete for same resource
determined by the carrying capacity. It is interesting to note that due to Allee effect in
susceptible pest population, there is a reduction in the equilibrium population sizes in both
the infectives and the predators as compared to the case when there is no Allee effect in
susceptible pest (see Fig. 1).

The equilibria E I
0 and E I

1 exist for all parameter values. E I
2 exists if e < 1. E I

3 exists if
m1 >

g
θ
. The interior equilibrium E I∗ exists if

e < 1, m1 >
g

θ
and max

(
e,

g

m1θ

)
< s∗ <

g + dθ

θ(m1 + d)
.

Observe that E I
2 arises from E I

1 for e = 1 and persists for all e < 1, whereas E I
3 arises

from E I
1 for m1 = g

θ
and persists for all m1 >

g
θ
. If e = 1 and m1 = g

θ
, then E I

2 and E I
3

will approach E I
1 . This means eventual eradication of infected pest population and predator

population. The variational matrix for the system (5) about any arbitrary equilibrium point
(s∗, i∗, p∗) is given by
⎡

⎢
⎢
⎣

vbs∗(2 − 3s∗ − 2i∗) + bs∗2(1 − 2s∗ − i∗)
(v + s∗)2

− i∗ − m1 p
∗ − bs∗2

v + s∗ − s∗ −m1s∗

i∗ s∗ − dp∗ − e −di∗
m1θp

∗ −dθp∗ −dθ i∗ − g + m1θs∗

⎤

⎥
⎥
⎦ .
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Fig. 1 a Describes the density of susceptible pest with respect to Allee effect, for α = 0.002 and λ = 0.005.
b Describes the density of infected pest with respect to Allee effect, for α = 0.004 and λ = 0.01. c Describe
the density of predator with respect to Allee effect, for α = 0.008 and λ = 0.005. All the other parameter
values are defined in Table (1)

We now state and prove the following theorems:

Theorem 2 Trivial equilibrium point E I
0 is a saddle-node equilibriumwith two stable eigen-

values, of the system (5) for all parametric values.

Proof From the variational matrix of the system (5), it is easy to verify that the system has
three eigenvalues ξ I

1,0 = 0, ξ I
2,0 = −e and ξ I

3,0 = −g for the trivial equilibrium point E I
0 .

Eigenvectors corresponding to these three eigenvalues are (1,0,0), (0,1,0) and (0,0,1) respec-
tively. So there is a one-dimensional central manifold tangent to the eigenvector (1,0,0) and
the ip-plane is the stable manifold of the system for E0. Theoretically the stable set Ws(E0)

is the half-space {S ≤ 0}, within which the majority of the orbits tend to the equilibrium
tangent to the s-axis, but S can not be negative. So the stable set is {(0, I, P) : I, P ≥ 0} and
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Fig. 2 a–d depict the time series solution of the model equation (4), with initial values [30,10,15], [15,20,10]
and [10,5,5] for the parameters as in table (1). a Disease and predation free boundary equilibrium E I

1 is

locally asymptotically stable for α = 0.004 and λ = 0.003. b Predation free planner equilibrium E I
2 is locally

asymptotically stable for α = 0.005 and λ = 0.015. c Infection free planner equilibrium E I
3 (at low infection

rate) is locally asymptotically stable for α = 0.007 and λ = 0.003. d Infection free planner equilibrium E I
3

(at high infection rate) is locally asymptotically stable for α = 0.009 and λ = 0.008

the unstable setWu(E0) is the half-space {S > 0}. Therefore E0 is a saddle-node equilibrium
point (see [29]) with two stable eigenvalues. 	


Theorem 3 System (5) is locally asymptotically stable around E I
1 if e > 1 and m1 <

g
θ
.

Proof The characteristic roots corresponding to E I
1 are given by ξ I

1,1 = − b
v+1 , ξ

I
2,1 = 1− e

and ξ I
3,1 = m1θ − g. Thus E I

1 is stable if e > 1 and m1 <
g
θ
. Here stability conditions of E I

1

eliminate the existence of E I
2 , E

I
3 , E

I∗ . In this case, all solutions initiating on the i p-plane
approach E I

0 and all other solutions with initial values R3
0,+-i p-plane will approach E I

1 as

we have di
dt < 0 and dp

dt < 0, whenever conditions of Theorem (3) hold. 	


Observation 1 (a) System without infected pest: The relation e > 1 implies λK < μ i.e.
the maximum renewal rate of infected pest is less than their natural mortality rate, then the
infection can not spread and eventually infected pest will die out.

(b) System without predator: The relation m1 <
g
θ
implies (θα) K < δ i.e. the maximum

renewal rate of predator by consuming the susceptible pest is less than their natural mortality
rate, hence the predator populationwill die out. Thus in this case neither infection nor predator
persist, only susceptible pest settles down at their own carrying capacity (see Fig. 2a).
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Table 2 Interior equilibrium and local stability for system (5)

Model (5) m1 > T m1 < T m1 = T

Unique interior
equilibrium

s∗ = −B+
√

B2−4AC
2A s∗ = −B+

√
B2−4AC
2A s∗ =

√
−C

A

Stability Always unstable Always unstable Always unstable

Theorem 4 System (5) is locally asymptotically stable around E I
2 if

m1 <
1

θe

[
g + bdθe(1 − e)

v + e + be

]
,

e < 1 and e3(1 + b) > v(v + e − 2ve − 3e2 − be2).

Proof Observe that when ξ I
2,1 > 0 (i.e. e < 1) and ξ I

3,1 < 0 (i.e. m1 <
g
θ
), then system (5)

admits E I
0 , E

I
1 and E I

2 as its equilibrium points. Clearly, E I
0 is always unstable and E I

1 is
unstable with sp-plane and i-axis as its stable and unstable manifolds respectively.

From the variational matrix corresponding to E I
2 one can observe that the eigenvalue in

the p-direction is given by

ξ I
3,2 = m1θe − g − bdθe(1 − e)

v + e + be
,

which is negative if

m1 <
1

θe

[
g + bdθe(1 − e)

v + e + be

]
.

Other two eigenvalues are the roots of the quadratic equation

ξ2 +
[
be4(1 + b) − vbe

(
v + e − 2ve − 3e2 − be2

)

(v + e + be) (v + e)2

]

ξ + be2 (1 − e)

v + e
= 0.

Obviously, both the roots of this quadratic equation are real negative or complex conjugate
with negative real parts if e3(1 + b) > v(v + e − 2ve − 3e2 − be2). Hence E I

2 is locally
asymptotically stable if

m1 <
1

θe

[
g + bdθe(1 − e)

v + e + be

]
, e < 1

and e3(1 + b) > v(v + e − 2ve − 3e2 − be2) hold.
Note that when E I

1 becomes unstable with i-axis as its unstable manifold and sp-plane as
its stable manifold, then still ξ I

3,2 < 0, E I
2 becomes locally asymptotically stable if conditions

of Theorem (4) are satisfied. Since ξ I
3,1 < 0 (i.e. m1 <

g
θ
) implies dp

dt < 0, from the third
equation of (5), hence all solutions initiating in the interior of the positive octantwill approach
si-plane. 	

Observation 2 (a) Requirement for better yield: The relation e < 1 implies λK > μ i.e. the
maximum renewal rate of infected pest is greater than their natural mortality, hence infection
persists in the pest population. In this case predation rate to susceptible pest is not so high that
directs the predator population to die out. Hence, the system goes to the stable state where
susceptible pest and infected pest coexist as a stable equilibrium (see Fig. 2b). To obtain
better yield it is required to reduce the equilibrium size of the pest. For low values of Allee
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parameter, equilibrium value of the infected pest increases and at the same time equilibrium
value of the susceptible pest decreases (by virtue of the relation s∗ + i∗ ≤ 1) assuring better
yield (Fig. 3). But this sort of control mechanism has a problem. In such case, as the predator
consumes infected pest, it enhance risk of extinction of natural predator. This is elaborately
discussed in next theorem with a mechanism to overcome this problem.

(b) It is interesting to note that, if we increase the value of Allee parameter, then the
equilibrium value of the infected pests decreases at high infection rate (see Fig. 3). Thus in a
predator free environment, the application of Allee effect (for example, use of sterile insects)
and use of viral infection together is not helpful to control the pest populations.

If ξ I
2,1 < 0 (i.e. e > 1) and ξ I

3,1 > 0 (i.e. m1 >
g
θ
) then system (5) admits three equilibria

viz. E I
0 , E

I
1 and E I

3 . In this case E I
1 is saddle with si-plane as its stable manifold and p-axis

as unstable manifold, whereas E I
0 is always unstable saddle.

Theorem 5 The sufficient conditions for asymptotic stability of equilibria E I
3 are 2vgθm1+

g2 > vθ2m2
1 and m1 >

g
eθ or m1 >

g
θ
according as e < 1 or e > 1.

Proof The characteristic equation corresponding to E I
3 is given by

(s − dp − e − ξ)

(
ξ2 + bs(2vs + s2 − v)

(v + s)2
ξ + m2

1θsp

)
= 0.

The eigenvalue in the i-direction is

ξ I
2,3 = s − dp − e = g

θm1
− e − bdg(θm1 − g)

θm2
1(vθm1 + g)

.

The sufficient condition for ξ I
2,3 to be negative is m1 >

g
eθ . The other eigenvalues ξ I

1,3 and

ξ I
3,3 are the roots of the quadratic equation

ξ2 + bs
(
2vs + s2 − v

)

(v + s)2
ξ + m2

1θsp = 0.

The roots of this equation are either real negative or complex conjugate with negative real
parts if (2vs + s2 − v) > 0 i.e. 2vgθm1 + g2 > vθ2m2

1. Also, the existence condition of E
I
3

is m1 >
g
θ
. Hence the sufficient condition for the stability of E I

3 are m1 > max
{ g
eθ ,

g
θ

}
and

(2vs+s2−v) > 0 i.e. 2vgθm1+g2 > vθ2m2
1. Note that max

{ g
eθ ,

g
θ

}
= g

eθ or g
θ
according as

e < 1 or e > 1. Since ξ I
2,1 < 0 (i.e. e > 1), we have di

dt < 0. Hence all solutions initiating in
the interior of the positive octant will be drawn towards the sp-plane and eventually approach
E I
3 . Hence the theorem. 	


Observation 3: Necessity for additional predator depending on predational threshold
(a) If the rate of infection is high (λK > μ), the disease will persist. It is already stated

that, consumption of infected pest is harmful to the natural predator and eventually may go to
extinction. Such a situation is not at all desirable. To overcome such situation, the predation
rate of natural predator should be above a threshold determined by the relation α > λδ

θμ
,

the disease will die out and the predator will persist (green region in Fig. 4). Naturally to
conserve the natural predator, introduction of natural predator is necessary in such occasion.

(b)When the infection rate is low i.e. λK < μ, then the maximum renewal rate of infected
pest is less than their mortality rate, infection will die out. Simultaneously for m1 >

g
θ
i.e.

(θα)K > δ i.e. the maximum renewal rate of predator by consuming the susceptible pest
is higher than the mortality rate, the predator population coexists with susceptible pest (see
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(a)

(b)

Fig. 3 Change in equilibrium density of infected pest in α − λ parameter space, a for the Allee parameter
w = 10 and b for the Allee parameter w = 30, for the linear mass-action functional response (model (4)). It
is interesting to note that, i∗ assumes high values with change in λ, if w is small. Since, s∗ + i∗ ≤ 1, when
i∗ increases s∗ decreases. Hence when the effect of Allee is small, control of pests via viral infection will be
effective in a predator free environment. Here, blue region is for the density of infected pest at the equilibrium
E I
1 , yellow region is for the density at E I

2 and green region is for the density at E I
3 . Here, α ∈ [0, 0.01],

λ ∈ [0.005, 0.02] and other parameters are same as in Table (1). (Color figure online)
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0.005
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0.015
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α

λ

Fig. 4 Stability regions of the boundary equilibria E I
1 , E

I
2 and E I

3 in α-λ parameter space. Here, α ∈ [0, 0.01]
and λ ∈ [0.005, 0.02]. We fix the other parameter values as in Table (1). Here (i) yellow region is for the basin
of attraction of the equilibrium E I

2 ; (ii) green region is for the basin of attraction of the equilibrium E I
3 ; (iii)

blue region is for the basin of attraction of the equilibrium E I
1 . (Color figure online)

Fig. 5 Equilibrium density of the susceptible pest population at different levels of α and λ, for the linear
mass-action functional response (model (4)). Here, α ∈ [0, 0.01] and λ ∈ [0.005, 0.02] and other parameters
are same as in Table 1. Here, blue region is for the density of susceptible pest at the equilibrium E I

1 , yellow

region is for the density at E I
2 and green region is for the density at E I

3 . (Color figure online)

Fig. 2c). From Fig. 5 we observe that for small λ, as α increases the equilibrium density of
pest decreases (green dots). Thus when the pest is at an advanced harmful stage, mass release
of natural enemies will be helpful with a threshold predation rate determined by the relation
α > δ

θK . This will ultimately reduce the equilibrium size of the pest and as a result natural
predator will sustain.

It is to be noted that in case of higher infection, the predational threshold will be higher
( λδ
θμ

) than the predational threshold for lower infection ( δ
θK ). Hence more additional predator

is required in case of high infection.
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Theorem 6 System (5) is always unstable around E I∗ for all parametric values.

Proof Observe that from first two equations of system (5), we always have

d(s + i)

dt
= bs2

a + s
(1 − (s + i)) − m1sp − dip − ei

< bs(1 − (s + i)) − m1sp − dip − ei

< b(s + i)(1 − (s + i)).

Hence from [30], we have limt→∞ {s(t) + i(t)} < 1. Thus we have s∗ + i∗ < 1 and the
last condition of (6) is always satisfied. It is also true for hyperbolic and sigmoidal response
functions also. The variational matrix corresponding to E I∗ is

V (E I∗ ) =
⎡

⎢
⎣

mI
11 mI

12 mI
13

mI
21 0 mI

23

mI
31 mI

32 0

⎤

⎥
⎦ ,

where

mI
11 = vbs∗(2dθ − 3dθs∗ − 2θm1s∗ + 2g) + b(s∗)2(dθ − 2dθs∗ − θm1s∗ + g) − (v + s∗)2(2θm1s∗ − g − m1θe)

dθ(v + s∗)2
,

mI
12 = −s∗

(
bs∗

v + s∗ + 1

)
(< 0), mI

13 = −m1s
∗(< 0), mI

21 = i∗(> 0),

mI
23 = −di∗(< 0), mI

31 = m1θp
∗(> 0), mI

32 = −dθp∗(< 0)

The characteristic equation corresponding to this variational matrix can be put in the form

λ3 + A1λ
2 + A2λ + A3 = 0,

where

A1 = −tr[V (E I∗ )] = −mI
11, A2 = −(mI

23m
I
32 + mI

31m
I
13 + mI

12m
I
21)

and

A3 = −det[V (E I∗ )] = mI
11m

I
23m

I
32 − mI

12m
I
31m

I
23 − mI

13m
I
21m

I
32.

From Routh−Hurwi t z criterion, E I∗ is locally asymptotically stable if and only if

A1 > 0, A3 > 0, A1A2 − A3 > 0.

Now A1 > 0 ⇔ mI
11 must be negative.

Again from the signs of those defined, mI
i j , i, j = 1, 2, 3, it is easy to verify that A3 < 0

for all parametric values. Thus system (5) is always unstable around E I∗ . This completes the
theorem. 	

Note: Here, coexistence of the three populations viz. susceptible pest, infected pest and
natural predator is not possible because of the assumption that growth rate of natural predator
is negative by consuming the infected pest [24,35]. If growth rate of the predator is positive by
consuming the infected pest then mI

32 = dθp∗ > 0 and other mI
i, j , i, j = 1, 2, 3 are same as

defined earlier. Thus, A1 > 0 ifmI
11 < 0, A3 > 0 ifmI

11m
I
23m

I
32 > mI

12m
I
31m

I
23+mI

13m
I
21m

I
32

and A1A2 − A3 is always greater than zero. Thus in this case, coexistence of all the three
populations is possible if mI

11 < 0 and mI
11m

I
23m

I
32 > mI

12m
I
31m

I
23 + mI

13m
I
21m

I
32.
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In this case (i.e. A1 > 0, A3 < 0 and A2 become positive or negative, then sum of
eigenvalues become negative and one eigenvalue must be positive, which imply that other
two eigenvalues become real negative or complex conjugate with negative real parts), one
can observe that at interior equilibrium E I∗ , the system (5) has one positive eigenvalue and
other two eigenvalues become real negative or complex conjugate with negative real parts.
Eventually the unstable equilibrium E I∗ becomes saddle or outward spiral respectively. The
magnitude of a positive eigenvalue characterizes the level of repulsion along the corre-
sponding eigenvector. Similarly, magnitude of negative eigenvalues characterizes the level
of attraction along the corresponding eigenvectors. The number of interior equilibria and
their stability are listed in Table 2.

For numerical example, we consider the values of parameters as r = 3 day−1, K = 45 unit
(designated area)−1, w = 10 unit (designated area)−1, β = 0.05 day−1, μ = 0.24 day−1,
θ = 0.7 day−1, δ = 0.09 day−1, α = 0.006 day−1, λ = 0.03 day−1, the interior equilibrium
E I∗ become (S∗, I ∗, P∗) = (2.5826, 0.2528, 1.4429). The eigenvalues corresponding to this
interior equilibrium are ξ1,2 = −8.8861 ± 1.0415i and ξ3 = 1.8556 and eventually the
interior equilibrium in this case becomes outward spiral.

Observation 4 Non-existence of predator–pest coexistence: Ecologically, instability of the
interior equilibrium is attributed to the harmful effect of the infected pest on the predator. The
predator populationwill not coexist with the infected population. As the derivative of the right
hand side of the second equation of system (3) with respect to P is always negative for all
three functional responses, ensures the interior equilibrium to be unstable for all parametric
values.

When ξ I
2,1 > 0 (i.e. e < 1) and ξ I

3,1 > 0 (i.e. m1 >
g
θ
), then system (5) admits all the five

equilibria E I
0 , E

I
1 , E

I
2 , E

I
3 and E I∗ . Here E I

0 , E
I
1 and E I∗ are all unstable. Hence all solutions

initiating in the interior of the positive octant will approach either towards the si-plane and
eventually approach E I

2 or towards the sp-plane and eventually approach E I
3 depending on

whether the initial value of the system is contained in the invariant set which contain the
equilibrium point E I

2 or E I
3 , respectively.

Hyperbolic Functional Response

Theobjective of this subsection is to introduce the eco-epidemiologicalmodelwith hyperbolic
functional response to observe the dynamics of the system. For hyperbolic response function,
system (3) takes the following form:

dS

dt
= r S

(
1 − S + I

K

)
S

w + S
− λSI − αSP

a + S
,

dI

dt
= λSI − β I P − μI, (7)

dP

dt
= θ

(
αS

a + S
− β I

)
P − δP.

α denotes the effective search rate, a denotes the handling time of predators, and θ denotes the
conversion efficiency of ingested pest into new predators. The product, αSP

a+S , represents the
predators hyperbolic functional response. All the parameters are positive constants. Applying
the same transformations as before we have the following dimensionless form of the model
equation (7).

ds

dt
= bs(1 − (s + i))

s

v + s
− si − m2sp

1 + ls
,
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di

dt
= si − di p − ei, (8)

dp

dt
= θ

(
m2s

1 + ls
− di

)
p − gp,

wherem2 = α
λa and l = K

a . Note that l, the ratio of the carrying capacity to the half-saturation
constant, will be assumed to be greater than unity in the future study.

Equilibria and Local Stability

System (8) has the following equilibria: (a) trivial equilibria E I I
0 = (0, 0, 0), (b) infection

and predator free axial equilibrium E I I
1 = (1, 0, 0), (c) predator-free planner equilibrium

E I I
2 =

(
e,

be (1 − e)

be + v + e
, 0

)
,

(d) infection-free planner equilibrium

E I I
3 =

(
g

θm2 − gl
, 0,

bgθ (θm2 − gl − g)

(vθm2 − vgl + g) (θm2 − gl)2

)

and (e) interior equilibrium E I I∗ = (s∗, i∗, p∗), where

i∗ = 1

dθ

(
θm2s∗

1 + ls∗ − g

)
, p∗ = s∗ − e

d
and s∗ + i∗ ≤ 1.

Note that p∗ > 0 as s∗ > e, otherwise i → 0 from the second equation of (8) and i∗ > 0
as θm2s∗

1+ls∗ > g, otherwise p → 0 from the third equation of (8). s∗ is the positive root of the
cubic equation

As∗3 + Bs∗2 + Cs∗ + D = 0

where A = bdθl(> 0), B = θ (b + 2) (m2 − T1), C = 2vθ (m2 − T2), D= − v(g +
m2lθ)(< 0),

T1 = gl(b + 1) + bdθ(l − 1)

θ(b + 2)
and T2 = g(b + 1) + bdθ + vgl

2θv
.

Here, s∗ and i∗ must satisfy the inequality s∗ + i∗ ≤ 1. The interior equilibrium (s∗, i∗, p∗)
exists if

m2 >
g(l + 1)

θ
, s∗ > max

{
e,

g

m2θ − gl

}
and e < 1.

Now the sufficient conditions on the existence of the number of interior equilibria and their
stability for system (8), are listed in Table 3, where, � = 18ABCD − 4B3D + B2C2 −
4AC3 − 27A2D2.

The equilibria E I I
0 and E I I

1 exist for all parameter values. E I I
2 exists if e < 1 and E I I

3

exists if m2 >
g(l+1)

θ
. Observe that E I I

2 arises from E I I
1 for e = 1 and persists for all e < 1,

whereas E I I
3 arises from E I I

1 form2 = g(l+1)
θ

and persists for allm2 >
g(l+1)

θ
. Also observe

that the existence of E I I∗ implies the existence of the equilibria E I I
2 and E I I

3 . Variational
matrix studies around each equilibrium point, as in the previous section, lead to the following
theorem.

123



Differ Equ Dyn Syst (January 2016) 24(1):21–50 37

Table 3 Sufficient conditions for the existence and local stability of interior equilibrium for system (8)

Model (8) One interior Three interior

Existence m2 > max {T1, T2} T2 < m2 < T1 and � > 0
or T1 < m2 < T2
or m2 < min {T1, T2}
or T2 < m2 < T1 and � < 0

Stability Always unstable Always unstable

Theorem 7 System (8) around

– E I I
0 is a saddle-node equilibrium for all parametric values,

– is locally asymptotically stable around E I I
1 if e > 1 and m2 <

g(l+1)
θ

,

– is locally asymptotically stable around E I I
2 if m2 < 1+le

θe

[
g + bdθe(1−e)

v+e(b+1)

]
, e < 1 and

e3(1 + b) > v(v + e − 2ve − 3e2 − be2),
– is asymptotically stable around E I I

3 if

m2 >
g(1 + l)

θ
, T (vT + g) (g − eT ) < bdgθ (T − g)

and
θm2

(
2vT 2 − gT (3v − 1) − 2g2

)
< T (vT + g) (T − g), where T = θm2 − gl,

– is unstable around E I I∗ for all parametric values.

The interior equilibrium is always unstable. For interior equilibrium, one eigenvalue
becomes positive and other two eigenvalues become real negative or complex conjugate
with negative real parts (same as linear mass-action functional response case). Eventually
the interior equilibrium becomes saddle or outward spiral respectively. For numerical exam-
ple, we have considered the parameter values r = 3 day−1, K = 45 unit (designated
area)−1, w = 10 unit (designated area)−1, a = 12 unit (designated area)−1, β = 0.05
day−1, μ = 0.15 day−1, θ = 0.8 day−1, δ = 0.07 day−1, α = 0.15 day−1 and λ = 0.004
day−1. For this set of parameter values there is a unique interior equilibrium point given by
E I I∗ become (S∗, I ∗, P∗) = (0.9848, 0.0136, 0.0121). The eigenvalues corresponding to
this interior equilibrium are ξ1 = −0.0614, ξ2 = −0.1467 and ξ3 = 0.4963 that implies that
the interior equilibrium is a saddle point. For difficulty we skip the case when there exists
three interior equilibrium points.

Sigmoidal Functional Response

The objective of this subsection is to introduce the eco-epidemiologicalmodel with sigmoidal
functional response and summarize its dynamical behaviors. For sigmoidal response function,
system (3) takes the following form:

dS

dt
= r S(1 − S + I

K
)

S

w + S
− λSI − αS2P

a2 + S2
,

dI

dt
= λSI − β I P − μI, (9)

dP

dt
= θ

(
αS2

a2 + S2
− β I

)
P − δP.
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Applying the same transformations as before we have the following dimensionless form of
the model equation (7).

ds

dt
= bs(1 − (s + i))

s

v + s
− si − m3s2 p

1 + l2s2
,

di

dt
= si − di p − ei, (10)

dp

dt
= θ

(
m3s2

1 + l2s2
− di

)
p − gp,

where m3 = αK
λa2

.

Equilibria and Local Stability

System (10) has the following equilibria: (a) trivial equilibria E I I I
0 = (0, 0, 0), (b) infection

and predator free axial equilibrium E I I I
1 = (1, 0, 0), (c) predator-free planner equilibrium

E I I I
2 =

(
e,

be (1 − e)

be + v + e
, 0

)
,

(d) infection-free planner equilibrium

E I I I
3 =

(
A, 0,

bθ A2 (1 − A)

g (v + A)

)
,

where

A =
√

g
(
θm3 − gl2

)

and (d) interior equilibrium E I I I∗ = (s∗, i∗, p∗), where

i∗ = 1

dθ

[
m3θs∗2

1 + l2s∗2 − g

]
, p∗ = s∗ − e

d
and s∗ + i∗ ≤ 1.

Note that p∗ > 0 as s∗ > e, otherwise i → 0 from the second equation of (10) and i∗ > 0
as

m3θs∗2

1 + l2s∗2 > g,

otherwise p → 0 from the third equation of (10). s∗ is determined from the biquadratic
equation

Ps∗4 + Qs∗3 + Rs∗2 + Ss∗ + T = 0,

where P = bdθl(> 0), Q = θ (b + 2) (m3 − T1), R = θ (2v − e) (m3 − T2), S =
− [θ (bd + m3ve) + g (b + 1)] (< 0), T = −gv(< 0),

T1 = [bdθ + g (b + 1)] l2

θ (b + 2)
and T2 = gvl2 − bdθ

θ (2v − e)
.

Here, s∗ and i∗ must satisfy the inequality s∗ + i∗ ≤ 1. The interior equilibrium (s∗, i∗, p∗)
exists if

m3 >
g(1 + l2)

θ
, s∗ > max

{
e,

√
g

θm3 − gl2

}
and e < 1.
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Table 4 Sufficient conditions for the existence and local stability of interior equilibrium for system (10)

Model (8) One interior Three interior

Existence m3 > max {T1, T2} T2 < m3 < T1 and � > 0
or T1 < m3 < T2
or m3 < min {T1, T2}
or T2 < m3 < T1 and � < 0

Stability Always unstable Always unstable

Reduced the above biquadratic equation to its standard form we get

x4 +Ux2 + V x + W = 0,

where

U = 8PR − 3Q2

8P2 , V = Q3 − 4PQR + 8P2S

8P3

and

W = 256P3T − 64P2QS + 16PQ2R − 3Q4

256P4 .

Now sufficient conditions on the existence of the number of interior equilibrium and their
stability for system (10), are listed in Table 4, where,� = 256W 3−128U 2W 2+16U (U 3+
9V 2)W − V 2(4U + 27V 2).

The equilibria E I I I
0 and E I I I

1 exist for all parameter values. E I I I
2 exists if e < 1 and E I I I

3

exists if m3 >
g(1+l2)

θ
. We state the following theorem to summarize the above discussion:

Theorem 8 System (10) around

– E I I I
0 is a saddle-node equilibrium for all parametric values,

– is locally asymptotically stable around E I I I
1 if e > 1 and g > θm3

1+l2
,

– is locally asymptotically stable around E I I I
2 if

m3 <
1 + l2e2

e2θ

[
g + bdθe(1 − e)

be + v + e

]
, e < 1,

and be4(1 + b) > vbe(v + e − 2ve − 3e2 − be2),
– is asymptotically stable around E I I I

3 if g(v+A)(A−e) < bdθ A2(1−A), θm3 > g(1+l2)
and 2θm3A2(1 − A)(v + A) > g(1 + l2A2)2(2v + A(1 − 3v) − 2A2)

– is unstable around E I I I∗ for all parametric values.

The interior equilibrium is always unstable. For interior equilibrium, one eigenvalue is
positive and other two eigenvalues are real negative or complex conjugate with negative
real parts (same as linear mass-action functional response case). Eventually the interior
equilibrium becomes saddle or outward spiral respectively. For numerical example, we have
considered the parameter values r = 3 day−1, K = 45 unit (designated area)−1, w = 10
unit (designated area)−1, a = 12 unit (designated area)−1, β = 0.053 day−1, μ = 0.243
day−1, θ = 0.43 day−1, δ = 0.013 day−1, α = 0.13 day−1 and λ = 0.13 day−1. For
this set of parameter values there is a unique interior equilibrium point given by E I I I∗ ,
(S∗, I ∗, P∗) = (3.1033, 0.0330, 6.1000). The eigenvalues corresponding to this interior
equilibrium are ξ1 = −3.3321, ξ2 = −0.1711 and ξ3 = 0.1210 which imply that the interior
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equilibrium is a saddle point also. For difficulty we skip the case when there exists three
interior equilibrium points.

Note: For all the three functional responses, it is observed that the trivial equilibrium is
always unstable saddle for all parametric values. When λ <

μ
K , E1 is locally asymptotically

stable if

α <
δ

K θ
, α <

δ(K + a)

K θ
and α <

δ(a2 + K 2)

θK 2

for linear, hyperbolic and sigmoidal functional responses, respectively. These conditions are
independent of the Allee parameter.

Observation 5 Usefulness of sigmoidal type interaction
(a) Figure 6 illustrates the parameter regions for the asymptotic stability of the axial

equilibrium E1 in λ − α parameter plane. Regions R1, R2, R3 depict the stability areas of
E1 corresponding to linear, hyperbolic and sigmoidal response functions. It is to be noted
that the stability region increases gradually as we pass from linear mass-action response
function to hyperbolic through sigmoidal. This indicates that the stability of the equilib-
rium E1 is stronger for hyperbolic functional response compared to other two responses.
It may be used as a possible control measure to save small group of endangered species
(may be due to the Allee effect) by culling its predators which is in well agreement with
the observations of [38]. Another study by [7] also revealed that culling predators with a
hyperbolic functional response may save the pest from extinction when they become small
in numbers.
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Fig. 6 Parameter regions for the global stability of the equilibrium E1 in α −λ parameter space, for different

functional responses. All the other parameters are same as in Table 1. In R1 =
{
(λ, α)/λ <

μ
K , α < δ

K θ

}
, E I

1

attracts all positive solutions (for linear functional response). In R2 =
{
(λ, α)/λ <

μ
K , α <

δ(a+K )
K θ

}
, E I I

1

attracts all positive solutions (for hyperbolic functional response). In R3 =
{
(λ, α)/λ <

μ
K , α <

δ(a2+K 2)
K 2θ

}
,

E I I I
1 attracts all positive solutions (for sigmoidal functional response)
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Fig. 7 Parameter regions for the local stability of the equilibrium E2 in α − λ parameter space, for different
functional responses. All the other parameters are same as in Table 1. In R1 = {(λ, α)/λ >

μ
K , α1 = α <

1
μθ

[δλ + rβμθ(λK−μ)

wλ2K+μλK+rμ
]}, E I

2 attracts all positive solutions (for linear). In R2 = {(λ, α)/λ >
μ
K , α2 =

α <
λa+μ
λμθ [δλ+ rβμθ(λK−μ)

wλ2K+μλK+rμ
]}, E I I

2 attracts all positive solutions (for hyperbolic). In R3 = {(λ, α)/λ >

μ
K , α3 = α < λ2a2+mu2

μ2λθ
[δλ + rβμθ(λK−μ)

wλ2K+μλK+rμ
]}, E I I I

2 attracts all positive solutions (for sigmoidal)

(b) Figure 7 illustrates the parameter regions for the asymptotic stability of the plan-
ner equilibrium E2 in α − λ parameter plane. In this case also, the parameter regions
for the asymptotic stability of the predator-free equilibrium E2 increases as we pass
from linear response to hyperbolic through sigmoidal. R1, R2 and R3 are the parame-
ter regions for which E2 is locally asymptotically stable for linear, hyperbolic and sig-
moidal respectively. It is observed that in both the cases hyperbolic functional response
has larger stability regions in parameter space compared to the other two functional
responses.

(c) Figure 8a, b illustrate the parametric regions for the stability of the disease-free equi-
librium, E3, in α − λ parameter space for lower and higher infection rates, respectively.
R1, R2 and R3 are the parameter regions for which E3 is locally asymptotically stable for
linear, hyperbolic and sigmoidal respectively. It is observed that in both the cases sigmoidal
functional response has larger stability regions compared to other two. In a predator–pest
interaction, sigmoidal response behaves as if there are some pest refuges. This pest refuges
reduce predation rates by decreasing encounter rates between predator and pest and thereby
stabilize the predator–pest interaction for a wide range of parameter values [2,37]. Therefore,
the stability of the equilibrium E3 is much stronger in case of sigmoidal response function
compared to the other two. Please note that such a situation is desirable from ecological point
of view where susceptible pest and predator coexist. In the above two observations (a) and
(b) hyperbolic functional response demonstrates larger stability for the equilibrium E1and 2,
which is not a desirable control mechanism at all for a biological system, because the natural
predator go to extinction in such occasion.

If we see, that the interactions between predator and pest is of sigmoidal type, the region
of stability increases and as such no precaution measure is necessary at that moment. It can
be concluded that this situation is more robust one.
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(a)

(b)

Fig. 8 a In R1 = {(λ, α)/λ <
μ
K , α1 = δ

K θ
< α < δ/(wθK )(w + √

(w2 + wK )) = α2}, E I
3 attracts all

positive solutions. In R2 = {(λ, α)/λ <
μ
K , α3 = δ(K+a)

K θ
< α <

δ(2K+3a)
2K θ

= α4}, E I I
3 attracts all positive

solutions. In R3 = {(λ, α)/λ <
μ
K , α >

δ(a2+K 2)
K 2θ

= α5}, E I I I
3 attracts all positive solutions. Parameters

are as in Table 1. b In R1 = {(λ, α)/λ >
μ
K , α1 = δλ

μθ < α < δ/(wθK )(w + √
(w2 + wK )) = α2}, E I

3

attracts all positive solutions. In R2 = {(λ, α)/
μ
K < λ <

3μ
2K , α3 = δ(aλ+μ)

μθ
< α <

δ(2K+3a)
2θK = α4}, E I I

3

attracts all positive solutions. In R3 = {(λ, α)/λ >
μ
K , α5 = α > δ

θ
+ a2δλ2

θμ2 }, E I I I
3 attracts all positive

solutions. Parameters are as in Table 1

Numerical Simulation

In this section, we will present some numerical simulation results to validate our analytical
findings. From the existence conditions and stability analysis of the equilibria, the parameters
e and mi , i = 1, 2, 3 are recognized to be important. But, we cannot compare the dynamics
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Table 5 Comparison table for stability of the equilibria in original parameters

Fun rsp → Linear type Hyperbolic type Sigmoidal type
Equilibria ↓
E0 Saddle-node Saddle-node Saddle-node
E1 Locally stable if Locally stable if Locally stable if

λ <
μ
K λ <

μ
K λ <

μ
K

α < δ
K θ

α <
δ(K+a)

K θ
α <

δ(a2+K 2)
θK 2

E2 Locally stable if Locally stable if Locally stable if
λ >

μ
K λ >

μ
K λ >

μ
K

α < 1
μθ

[
δλ+ α <

λa+μ
λμθ

[
δλ+ α <

λ2a2+μ2

μ2λθ

[
δλ+

rβμθ(λK−μ)

wλ2K+μλK+rμ

]
rβμθ(λK−μ)

wλ2K+μλK+rμ

]
rβμθ(λK−μ)

wλ2K+μλK+rμ

]

(w2K )λ4 + (wμK 2− (w2K )λ4 + (
wμK 2−

(
w2K

)
λ4 + (

wμK 2−
2w2Kμ

)
λ3 −

(
3wKμ2

)
λ2 2w2Kμ

)
λ3 −

(
3wKμ2

)
λ2 2w2Kμ)λ3 −

(
3wKμ2

)
λ2

−
(
wμ2r + μ3K

)
λ −

(
wμ2r + μ3K

)
λ −

(
wμ2r + μ3K

)
λ

−μ3r < 0 −μ3r < 0 −μ3r < 0
E3 Locally stable if Locally stable if Locally stable if

λ <
μ
K λ <

μ
K λ <

μ
K

α > δ
K θ

δ(a+K )
K θ

< α <
δ(2K+3a)

2K θ
α >

δ(a2+K 2)
θK 2

wθα(θαK − 2δ) < δ2

Locally stable if Locally stable if Locally stable if
λ >

μ
K

μ
K < λ <

3μ
2K λ >

μ
K

α > δλ
μθ

δ(aλ+μ)
μθ

< α <
δ(2K+3a)

2θK α > δ
θ

+ a2δλ2

θμ2

wθα(θαK − 2δ) < δ2

E∗ Always unstable Always unstable Always unstable

of the model (3) in the e−mi parameter plane as mi are different for different i . So, we first
rewrite all the conditions of different theorems in the original system parameters in Table 5
and compare the result in the α − λ parameter plane and observe the changes in stability
regions due to presence of the Allee effect.

By reduction in population stability wemean destabilization of competitive predator–prey
systems [12], extended time in reaching stable equilibrium [44], prevention from exhibiting
sustained cycle [7,25] and reduction of equilibrium population size. In the following we
shall measure the stability of an equilibrium point by the region in the parameter space (λ,
epidemiological - α, ecological) for which the system is stable, hence larger stability region
implies stronger stability.

Stability of E1(1, 0, 0)

We choose fixed parameter values as described in Table 1 and vary only one ecological
parameter α, predators attack rate on susceptible pest, and one epidemiological parame-
ter λ, the rate of infection. For the above set of parameter values we observe that E1 will
be stable if α is less than 0.005, 0.3 and 0.25 day−1 for linear, hyperbolic and sigmoidal,
respectively when λ < 0.0053 day−1. A simple conclusion is that the Allee effect has no
effect on infected and predator free equilibria (see Fig. 1a). We select the parameter val-
ues λ = 0.003 day−1 and α = 0.004 day−1, for linear functional response. We observe
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that all the trajectories with different initial conditions [(30, 10, 15), (15, 20, 10), (10,
5, 5)] converge to the equilibrium where susceptible pest, S, exists in the form of a sta-
ble equilibrium (see Fig. 2a, the figures for hyperbolic and sigmoidal functional responses
are qualitatively similar with linear, hence omitted). This indicates that equilibrium E1 is
locally asymptotically stable for all three functional responses. It is quite natural that in
absence of predation and infection the equilibrium density of the susceptible population
will approach to its carrying capacity (K ) asymptotically which is not affected by the Allee
constant.

Stability of E2(S∗, I ∗, 0)

The net reproductive ratio R0 of an infectious disease, is defined as the number
of secondary infections produced by a single infected individual over his/her entire
infectious period when the susceptible population is at a fixed demographic equilib-
rium (level S∗). Note that the net reproductive ratio, R0, for all three cases, is given
by

R0 = λS∗

μ
.

The numerator is the number of secondary infections λS∗ per unit of time while the denom-
inator denotes the inverse of the average infectious period. If R0 < 1, the disease dies
out, but if R0 > 1, it remains endemic in the host population. Also observe that the net
reproductive ratio increases in direct proportion to susceptible population, S. Thus, if the
basic reproductive ratio be less than 1 even at maximum host level K (i.e. λK

μ
< 1 or

λ <
μ
K ), the infection cannot spread in the susceptible population. Biologically, it implies

that if the infection rate is smaller than the average infectious period, the infected popula-
tion can not survive and the system converge to the equilibrium where only healthy pest
exists.

From Table 5 one can observe, if the infection rate is very high and the search rate of sus-
ceptible population be moderate then the predator population cannot survive and the system
converges to the equilibrium where susceptible pest and infected pest coexist in the form
of a stable equilibrium. For the above set of parameter values ( see Table 5) we observe
that for the stability of E2 the value of λ should be greater than 0.0053 day−1. Choos-
ing λ = 0.015 day−1, we observe that α should less than 0.166 day−1, 5.165 day−1 and
5.008 day−1 for linear, hyperbolic and sigmoidal response functions, respectively. Thus, for
λ = 0.015 day−1 and α = 0.005 day−1, we observe that all trajectories converge to the
predator-free equilibrium E2 where susceptible pest and infected pest coexist in the form of
a stable equilibrium (see Fig. 2b, similar conclusion holds for other two functional responses).
The density of infected pests decreases due to the Allee effect while density of susceptible
pest remains unchanged (see Fig. 1b). Thus the equilibrium E2 is locally asymptotically
stable for all three response functions. A simple conclusion is that the equilibrium den-
sity of infected pest decreases at high infection rate as Allee parameter increases (see Fig.
3).

From ecological point of view, when density of susceptible population is high, parasite
can infect them quickly on a per capita basis as infection rate is high (i.e. λ >

μ
K ). As a result,

the parasite quickly spreads and S decreases when I increases. This result is also reflected
in Fig. 2b. Note that, the qualitative behavior of the solutions are same in all three response
functions.
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Table 6 Parameter ranges and default values for lower and higher infection rate

Functional response Range of λ Default value of λ Range of α Default value of α

A. Lower Infection Rate
Linear λ < 0.0053 0.003 0.005 < α < 0.0167 0.007
Hyperbolic λ < 0.0053 0.003 0.3 < α < 0.3375 0.33
Sigmoidal λ < 0.0053 0.003 α > 0.25 0.50
B. Higher Infection Rate
Linear λ > 0.0053 0.008 0.0075 < α < 0.0167 0.009
Hyperbolic 0.0053 < λ < 0.008 0.0054 0.3234 < α < 0.3375 0.33
Sigmoidal λ > 0.0053 0.017 α > 0.479 0.8

Stability of E3(S∗, 0, P∗)

One can observe from Table 5 that the system can be stable around E3 when infection
rate is low or high and accordingly the predation rate must be low or high. For conve-
nience we tabulate (see Table 6) the corresponding numerical ranges of λ and α for E3

for the parameter values as in Table 5. In case of lower infection rate, we observe that
all trajectories with default values as in Table 6 converge to the disease-free equilibrium
E3 where susceptible pest and predator population coexist in the form of a stable equi-
librium (see Fig. 2c). Again observe that all trajectories with the default values in case of
higher infection rate converge to the disease-free equilibrium E3 where susceptible pest
and predator population coexist in the form of a stable equilibrium (see Fig. 2d). This indi-
cates that the equilibrium E3 is locally asymptotically stable for all three response functions
with different infection and attack rates. A simple conclusion is that the equilibrium density
of natural predator decreases at high predation rate as Allee parameter increases (see Fig.
9).

Stability of E∗(S∗, I ∗, P∗)

For all three functional responses it is observed that the interior equilibrium, where all three
species exist, is unstable for all parametric values. The interior equilibrium becomes saddle
or outward spiral with stable manifold of dimension two. This stable manifold separates
the domains of attraction of the SI and SP equilibrium points. Thus, if the initial value of
the system is contained in the invariant domain which contains the equilibrium point E2,
the solution will eventually approach E2 under suitable parametric conditions and if the
initial value of the system is contained in the invariant domain which contains the equilib-
rium point E3, the solution will eventually approach E3 under suitable parametric condi-
tions.

In a disease free system, when pest exhibits a weak Allee effect and predators have
hyperbolic functional response, the populations can cycle for a larger range of pest carrying
capacities and predator mortality rates [7]. On the contrary, if pest is subjected to the disease
induced mortality, then stable coexistence of all three populations (susceptible, infected,
predator) is not possible neither as a stable equilibrium state nor as a limit cycle oscillations.
It depends on the conservation managers to adopt management actions based on the situation
of disease driven extinction or predator driven extinction of pest populations. Our model may
provide solutions in such conservation problem because, both disease-free and predator-free
boundary equilibria is to be locally asymptotically stable under certain range of ecological and
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(a)

(b)

Fig. 9 Change in equilibrium density of natural predator in α − λ parameter space, a for the Allee parameter
w = 10 and b for the Allee parameter w = 30, for the linear mass-action functional response (model (4)).
Here, blue region is for the density of natural predator at the equilibrium E I

1 , yellow region is for the density

at E I
2 and green region is for the density at E I

3 . Here, α ∈ [0, 0.01], λ ∈ [0.005, 0.02] and other parameters
are same as in Table (1). (Color figure online)
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epidemiological parameter values. Thus tuning the ecological and epidemiological conditions
artificially, one can prevent the extinction of pest populations in either cases.

Conclusion

The basic goal of this paper is to address some meaningful management aspects to save
the population from disease induced eradication. An eco-epidemiological model with weak
Allee effect is proposed and analyzed with Holling type functional responses. The reason for
using different types of Holling’s functional response is to observe which functional response
would be a suitable candidate to represent disease eradication. The question may arise why
Rosenzweig - MacArthur formulation and why only Holling type functional responses? Eco-
epidemiological models under the influence of Allee effect is still in its infancy stage and
needs in depth study. Moreover, the use of functional response is also a debatable issue.
To start such study we follow the general advice espoused by Anderson [3], to explore
fundamental components, before increasing model complexity (i.e. “learning to walk before
we run”).

Biological controls are often specific for a particular pest because other helpful insects,
animals or people can go unaffected or disturbed by their use and less dangerous on the
environment. This study may help better to explain the interactions of different management
goals while applying management strategies in pest control program so that the biological
balance of nature is conserved. The role of Allee effect plays a significant role to determine
the optimal control strategy for the pest, so that the natural predator survives. Future endeavor
to explore the effects of Allee effect in IPM would be more informative in decision making
having well defined biological objectives, for instance, efficient use of strong Allee effect
may be required for a complete eradication of the pest when a complete eradication of pest
is necessary. One can easily see that, the modeling framework in this study is built on a
general eco-epidemiological systems, hence may have wider range of applications across
disciplines.

If the pest becomes dominant, then crop will be affected heavily with economic loss.
Also, if the prey becomes extinct, then the natural predator will die out, that may affect the
biological balance of the ecosystem. Thus, it is very important to maintain the biological
balance of the ecosystem in such a way so that in one hand crop yield will be maximized and
predators also survive. As already discussed that, if the pest population becomes abundant and
natural predators are small in numbers, then the pest can be controlled through viral infection.
However, in application of virus based control, a potential problem is that, infected pests may
be harmful to the predators. If the abundance of infected pest becomes high, predator will be
washed away by consuming the infected pests, although, crop yield will may be maximized
by use of virus control. Hence introduction of viral infection should be done at an optimal
level so that the conservation of natural predator is preserved.

Especially, our analysis can have an important message for management actions to save a
species populations from disease induced extinction. If a pest disease would have advanced
towards an endemic state in absence of predators, an introduction of predators/ natural ene-
mies with a sigmoidal functional response would be most effective to eradicate the disease
in pest. One should also stress that, such management strategies does not depend only on the
traits of the natural enemies, but also on the quantities released [7]. Thus use of predators
as disease control agents may not be always useful if there is limitations in finding mates
among predator populations [21]. Future endeavor along this direction by considering the
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Allee effect in predator may provide helpful insight in management strategies in disease
eradication and preservation of biological populations.

Before ending the article we like to mention that existing functional responses are cate-
gorized mostly mechanistically by most of the work, which corroborates the vast amount of
literature from 1989 onwards after the initiation of Ratio-dependent theory. Taking account
of the mechanistic functional form may be justified as it is mathematically simpler to incor-
porate, but it lacks reliability for some predators in justifying their population dynamics in
the light of their evolutionary adaptation based on prey dynamics. Naturally, the choice
of functional response is a big issue in population biology. Should we look forward to
frame a new functional response model or should continue with its old mechanistic counter-
parts?
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Appendix

An approach of Model (3): The growth of susceptible pest with Allee effect can be justified
biologically. In absence of disease and predation, the susceptible pest population grows
according the generic single species population model with the Allee effect:

dS

dt
= r S

(
1 − S

K

)
S

w + S
= b(S)︸︷︷︸

density dependent growth in presence of Allee effect

− d(S)︸︷︷︸
density independent death in presence of Allee effect

= b(S) − daS

Here we have considered density independent natural death rate da of the susceptible pest,
which is a function of r , K and w.

Now in presence of infected population, the reproduction of susceptible population will
be governed by the Allee effect, limited resources and reduced competition due to disease.
In addition, intra-specific competition due to mate limitations/limited resource reduce the
possible reproduction in susceptible population. When there is an Allee effect in the host
population, there will be less interaction between individuals of susceptible and infected
population. As a consequence the frequency of interaction of susceptible individuals due to
intra-specific competition with infected populations is reduced. Thus the growth equation
for susceptible class in the presence of infectives (absence of predation) can be formulated
as:

dS

dt
= r S

(
1 − S

K

)
S

w + S
︸ ︷︷ ︸

reduced growth due to the Allee effect

− r SI

K

(
S

w + S

)

︸ ︷︷ ︸
reduced interaction due to the Allee effect

− λSI

= r S

(
1 − S + I

K

)
S

w + S
− λSI
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Thus, the dynamics of infected class can be described by

dI

dt
= λSI − da I︸︷︷︸

density independent natural death

− μd I︸︷︷︸
disease induced additional death

= λSI − (da + μd) I

= λSI − μI
︸︷︷︸

total mortality due to disease and natural death
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