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Abstract Using a semi-analytic approach, the effect of oblateness of an artificial satellite
on the periodic orbits around the triangular Lagrangian points of the Earth–Moon system is
studied. The primaries in this system move in elliptic orbits about their common barycenter,
hence we have an elliptic restricted three-body problem. The frequencies of the long and
short orbits of the periodic motion are affected by the oblateness of the primaries (Earth and
Moon) and of the third body (artificial satellite); and so are their eccentricities, semi-major
and semi-minor axes.
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Introduction

Let us briefly recall that the restricted three-body problem (R3BP) consists of two massive
bodies (primaries) moving in orbits (circular or elliptic) around their common barycenter
and a third body of negligible mass being influenced, but not influencing them. The elliptic
R3BP (ER3BP) describes the three-dimensional motion of a particle under the gravitational
attraction force of two finite bodies which revolve on elliptic orbits in a plane around their
common center of mass. A typical example of the ER3BP is the motion of an asteroid, an
artificial satellite or a space probe under the gravitational attraction of the Sun–Jupiter or
the Earth–Moon systems. There exist five co-planar equilibrium points in the R3BP, three
collinear with the primaries (collinear points), and two form equilateral triangles with the
line (ξ -axis) joining the primaries. The collinear points are generally unstable; while the
triangular points are conditionally stable [9,12,18,78]. As a result of rotational motion, long
and short periodic orbits exist around these points. The shapes, orientation and sizes of
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the orbits are determined by the eccentricities, inclination and the semi-major axes of the
orbits. The three-body problem in general relativity has also been a subject of several studies
[33,53,54].

The classical restricted three-body problem considers the bodies to be strictly spherical,
but in the solar (e.g., Sun, Earth, Jupiter and Saturn), [24,57,58,64,82] and stellar (e.g.,
Achernar, Alfa Arae, Regulus, VFTS 102, Vega and Altair) systems, some planets, stars
and their satellites (Moon, Charon) are sufficiently oblate. This justifies the inclusion of
oblateness in the study of motion of celestial bodies. The oblateness or triaxiality of a body
can produce perturbations-deviations in the two-body motion. The most striking example
of perturbations arising from oblateness in the solar system is the orbit of the fifth satellite
of Jupiter, Amalthea. This planet is so oblate and the satellite’s orbit is so small that its
line of apsides advances about 900o in a year [49]. The extremely fast rotation of stars
produces an equatorial bulge due to centrifugal force [13,15,28,46,47,79,83]. Neutron stars
and black dwarfs (the result of the cooling of white dwarfs) may due to their rapid rotation
after formation also be considered oblate. On formation, a neutron star can rotate at a rate
of nearly a thousand rotations per second [7,8,14,20–22,26,27,43,50,63]. The millisecond
pulsar PSR B1937+21, spinning about 642 times a second and the pulsar PSR J1748-2446ad,
spinning 716 times a second are some of the swiftest spinning pulsars [23]. It is notable that
the effect of having an arbitrary shape is only important for close neighbors. For instance,
the Earth’s gravitational field is the major controller of the orbit of an artificial Earth satellite
[25,29,30,32,53–56]. Here the line of nodes and the perigee point move very rapidly under
the force field arising from the oblateness of the Earth. This inspired several researchers
(Elipe and Ferrer [17], Sharma et al. [66]) to include oblateness of the primaries in their
studies of the R3BP. Sharma and Rao (1976) considered the primary in their investigation
of triangular points as an oblate spheroid whose equatorial plane coincides with the plane of
motion, and proved that the range of the mass parameter leading to stable solutions decreases
due to oblateness. Taking both primaries as triaxial rigid bodies with one of the axes as axis
of symmetry and its equatorial plane coinciding with the plane of motion, Elipe and Ferrer
[17] examined three rigid bodies under central forces in the CRP and obtained collinear and
triangular solutions, while Sharma et al. [66] described the stability of the equilibrium points
when the bigger primary is a triaxial rigid body and a source of radiation and found that
collinear points are unstable, whereas the triangular points are conditionally stable.

In addition, Sharma [62], Singh and Ishwar [68], Ishwar andKushvah [35], Tsirogiannis et
al. [77], AbdulRaheem and Singh [1,2], Vishnu et al. [80], Mital et al. [48], Sahoo and Ishwar
[61], Singh and Umar [69–72], Abouelmagd [3], Ammar [6] have included oblateness of one
or both primaries in their communications. Taking account of the oblateness of the Earth,
Ammar (2012) have conducted an analytic theory of the motion of a satellite and solved
the equations of the secular variations in a closed form, while Abouelmagd [3] analyzed the
effect of oblateness of the more massive primary up to J4 in the planar CR3BP and proved
that the positions and stability of the triangular points are affected by this perturbation. The
quadruple mass moment J2 of an aspherical body disturbs the motion of a satellite also at
the Post-Newtonian level (Soffel et al. 1989), so also does a body’s octupolar mass moment
J4. J4 has important effects particularly in the satellite’s secular perturbation and orbital
precessions. These shifts are quite significant in a number of practical applications including
global gravity field determination [38,55] and fundamental physics in space [24–27,73].

The orbits of most celestial and stellar bodies are elliptic rather than circular; as a result,
the study of the elliptic restricted three-body problem (ER3BP) can have significant effects.
When the primaries’ orbit is elliptic, a nonuniformly rotating-pulsating coordinate system is
commonly used. This new coordinate system has the felicitous property that, the positions
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of the primaries are fixed; however, the Hamiltonian is explicitly time-dependent [76]. Such
an oscillating coordinate system has been introduced by using the variable distance between
the primaries as a unit of length of the system by which distances are divided. Several
studies ([5,40–42,45,60,71–73,84], Singh and Umar [74]) have examined the influence of
the eccentricity of the orbits of the primary bodies with or without radiation pressure(s).
Zimovshchikov and Tkhai [84] established the conditions of stability for the collinear and
triangular points for various values of the eccentricity of the Keplerian orbits and the mass
ratio of the primary bodies. Finally, Singh and Umar [70–72] considering both luminous
primaries to be oblate spheroids as well, investigated the existence of triangular, collinear
and the out of plane equilibrium points in the ER3BP respectively.

A vast number of researches ([10,19,37,39,51,52,66,76], Sharma et al. 2003, 2007 and
[59]) have been carried out on periodic orbits in the R3BP under various assumptions. The
consideration of the primaries as either point masses or spherical in shape and with circular
orbits may neglect a good number of practical problems. This is as a result of the fact that
most celestial and stellar bodies are axisymmetric and their orbits are elliptic. The re-entry
of artificial satellites and the minimization of station keeping have shown the importance
of periodic orbits. The existence of two families of periodic motions near the Lagrangian
solutions in the planar CR3BP was proved for arbitrary values of the parameterμ by Charlier
[10] and Plummer [39], while Sarris [60] studied the families of symmetric-periodic orbits in
the three-dimensional elliptic problemwith a variation of themass ratioμ and the eccentricity
e. Khanna and Bhatnagar [37], Sharma et al. [66], Singh and Begha [67] have studied the long
and short periodic orbits around the Lagrangian point(s). Also, Mital et al. [48] in examining
periodic orbits, determinedperiodic orbits for different values of themass parameterμ, energy
constant h, and oblateness factor [4,59] explored the effect of the oblateness of Saturn on
the regions of quasi-periodic motion around both primaries in the Saturn–Titan system, and
combined effects of oblateness and radiation on periodic orbits in the circular framework of
the restricted three-body problem respectively. The oblateness of the Earth and the Moon has
continued to fascinate and intrigue many researchers [11,16,81]. It is a fundamental property
of the Earth under stable rotation. Poincare surface section (PSS)was used byWinter [81] and
Dutt and Sharma [16] to study the location and stability of periodic orbits and quasi-periodic
motion, for the Earth–Moon system and they identified periodic solutions, quasi-periodic
and chaotic regions in the CRTBP.

General relativity describes the gravitational field by curved space-time and introduces
into the R3BP apart from the Newtonian gravitational potential a third force that attracts the
particle slightly more strongly than the Newtonian gravity, especially at small radii. This
third force causes the particle’s elliptical orbit to precess in the direction of the rotation. The
R3BP is determined by the so called famous three-body problem. The motions of natural
and artificial bodies in their orbits under the mutual gravitational fields of stars and of point-
like objects fields similar to those in astrophysical scenarios constitute a two-body problem.
This has resulted in three of the most famous and empirically investigated gravitomagnetic
features; Lense-Thirring [44] effect, the gyroscope precession and the gravitomagnetic clock
effect.

This paper investigates in the elliptic framework of the problem, the long and short peri-
odic orbits around the triangular points when both primary bodies and the third body of
infinitesimal mass are oblate spheroids. The analytic results obtained are applied to the
Earth–Moon–Artificial satellite system.

The paper is organized as follows: “Equations of Motion” section provides the equations
ofmotion for the system under investigation; “Periodic Orbits” section computes the long and
short periodic orbits; and “Elliptic orbits” section examines the eccentricities, semi-major and
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semi-minor axes; while “Numerical Applications” sections are the numerical applications
and conclusion respectively.

Equations of Motion

The equations of motion of an axisymmetric body (artificial satellite) in the vicinity of oblate
primaries in the ER3BP are presented [73] as

ξ ′′ − 2η′ = Ωξ , η′′ + 2ξ ′ = Ωη, ζ ′′ = Ωζ (1)

Ω = (1 − e2)−
1
2

[
ξ2 + η2

2
+ 1

n2

{
(1 − μ)

r1
+ μ

r2
+ (1 − μ) A

2r31
+ μA

2r32

+ (1 − μ) A1

2r31
+ μA2

2r32

}]
, (2)

where

r21 = (ξ + μ)2 + η2 + ζ 2, r22 = (ξ + μ − 1)2 + η2 + ζ 2, (3)

n2 =
(
1 + e2

) 1
2
(
1 + 3A1

2 + 3A2
2

)
a(1 − e2)

= 1

a

(
1 + 3e2

2
+ 3A1

2
+ 3A2

2

)
. (4)

Andμ is the ratio of themass of the smaller primary to the sum of themasses of the primaries;
0 < Ai << 1 (i = 1, 2) and A << 1, are the factors characterizing oblateness of the
primaries and the third body respectively; while n is the mean motion of the primaries; a and
e are the semi-major axis and eccentricity of their orbits respectively. The prime represents
differentiation w.r.t. the eccentric anomaly E.

Periodic Orbits

The triangular Lagrangian points L4,5 (ξ0,±η0) are given by [73]

ξ0 = 1

2
− μ + 1

2
(A1 − A2) ,

η0 = ±
[
a2/3(1 − e2 − A1 + A1a

−2/3 + Aa−2/3 − A2 − 1

4
(1 + 2A1 − 2A2)

] 1
2

. (5)

We give these points a small displacement (x, y) and obtain the characteristic equation as
[70]

λ4 −
(
�0

ξξ + �0
ηη − 4

)
λ2 + �0

ξξ�
0
ηη −

(
�0

ξη

)2 = 0.

The superscript 0 indicates that the partial derivatives are to be evaluated at the triangular
points (ξ0,±η0). We substitute a = 1 − α, and neglect second and higher order terms and
their products with α, A, Ai and e2 in evaluating these partial derivatives. The characteristic
eqn. has pure imaginary roots in the interval 0 < μ < μc. Thus, the motion in this region is
bounded and made up of two harmonic motions with frequencies s1 and s2 given by

x = C1 cos s1E + S1 sin s1E + C2 cos s2E + S2 sin s2E,

y = C1 cos s1E + S1 sin s1E + C2 cos s2E + S2 sin s2E,
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where

s1 =
[
27μ (1 − μ)

4
+ 45

4
μ (1 − μ) e2 + 3μ (1 − μ) α + 9μ (1 − μ) (A + A1 + A2)

] 1
2

,

s2 =
[
1 − 3

4
e2 − 3

2
A − 3(1 − μ)

2
A1 − 3μ

2
A2 − 9

2
μ (1 − μ) (A + A1 + A2)

−3

2
μ (1 − μ) α − 27μ (1 − μ)

8
−45

4
μ (1 − μ) e

]
, (6)

and

Ci =	i (2nSi si −�ξηCi ); Si =−	i (2nCi ci −�0
ξηSi ); 	i = 1

S2i + �0
ηη

>0, i=1, 2

The terms C1, S1,C1 and S1 are called the long period terms while C2, S2,C2 and S2 the
short period terms, while E is the eccentric anomaly.

Elliptic Orbits

The function � around the triangular point L4 can be expressed as

� = �0 + �0
ξξ

2
(x2) + �0

ξη(xy) + �0
ηη

2
(y2) + 0(x3y3), (7)

which is a quadratic form in x and y, indicating that the periodic orbits around L4 are elliptic
and we write it as � = Px2 + Qxy + Ry2 + L , with

P =
[
3

8
+ α

4
+ 9

16
e2 +

(
9

8
− 3μ

2

)
A1 +

(
3μ

2
− 3

8

)
A2

]
,

R =
[
9

8
− α

4
+ 3

16
e2 + 3

2
A + 3

8
(A1 + A2)

]
,

Q = ±
√
3

2

[(
3

2
− 3μ

)
+

(
1

2
− 2μ

3

)
α +

(
5

4
− 5μ

2

)
e2 + (1 − 2μ) A

+
(
5

2
− 2μ

)
A1 −

(
1

2
+ 2μ

)
A2

]
,

L =
[
3

2
+ μ

2
(1 − μ) − 1

4
(3 − μ(1 − μ))e2 − α − 2A −

(
1 + μ

2

)
A1

−
(
3

2
− μ

2

)
A2

]
. (8)

Using the transformation x = x cosψ − y sinψ; y = x sinψ + ycosψ by introducing the
variables x and y, we obtain what is equivalent to a rotation of the coordinate system x, y
through an angle ψ. The new quadratic form is thus � = Px2 + Qxy + Ry2 + L .
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� =
[
3

2
+ μ

2
(1 − μ) − 1

4
(3 − μ(1 − μ))e2 − α − 2A −

(
1 + μ

2

)
A1 −

(
3

2
− μ

2

)
A2

]

+
(
P cos2 ψ + RSin2ψ + Q

sin 2ψ

2

)
x2 + (Q cos 2ψ − P sin 2ψ + R sin 2ψ) x y

+
(
P sin2 ψ − Q

sin 2ψ

2
+ R cos2 ψ

)
y2,

where

P =
[
3

8
+ α

4
+ 9

16
e2 ±

(
9

8
− 3μ

2

)
A1 +

(
3μ

2
− 3

8

)
A2

]
cos2 ψ,

±
√
3

2

[(
3

2
− 3μ

)
+

(
1

2
− 2μ

3

)
α +

(
5

4
− 5μ

2

)
e2 + 2 (1 − 2μ) A

+
(
5

2
− 2μ

)
A1 +

(
−1

2
− 2μ

)
A2

]
sin 2ψ

2

+
[
9

8
− α

4
+ 3

16
e2 + 3

2
A +

(
3

8

)
(A1 + A2)

]
sin2 ψ,

Q =
[{

±
√
3

2

[(
3

2
− 3μ

)
+

(
1

2
− 2μ

3

)
α +

(
5

4
− 5μ

2

)
e2

+ (1 − 2μ) A

(
5

2
− 2μ

)
A1 +

(
−1

2
− 2μ

)
A2

]}
cos 2ψ

−
[{

3

8
+ α

4
+ 9

16
e2 + 3

2
A +

(
9

8
− 3μ

2

)
A1 +

(
3μ

2
− 3

8

)
A2

}

+
{
9

8
− α

4
+ 3

16
e2 + 3

2
A +

(
3

8

)
(A1 + A2)

}]
sin2ψ

]
,

R =
[{

3

8
+ α

4
+ 9

16
e2 +

(
9

8
− 3μ

2

)
A1 +

(
3μ

2
− 3

8

)
A2

}
sin2 ψ

−
{

±
√
3

2

[(
3

2
− 3μ

)
+

(
1

2
− 2μ

3

)
α +

(
5

4
− 5μ

2

)
e2

+ (1 − 2μ) A

(
5

2
− 2μ

)
A1 +

(
−1

2
− 2μ

)
A2

]}
sin 2ψ

2

+
[
9

8
− α

4
+ 3

16
e2 + 3

2
A +

(
3

8

)
(A1 + A2)

]
cos2 ψ

]
,

L =
[
3

2
+ μ

2
(1 − μ) − 1

4
(3 − μ(1 − μ))e2 − α − 2A −

(
1 + μ

2

)
A1

−
(
3

2
− μ

2

)
A2

]
. (9)

Now, we choose ψ such that the term containing xy in � vanishes, that is Q = 0, which
provides us with

tan 2ψ = sin 2ψ

cos 2ψ
= H

G
,
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where

H =
[{

±
√
3

2

[(
3

2
− 3μ

)
+

(
1

2
− 2μ

3

)
α +

(
5

4
− 5μ

2

)
e2 + (1 − 2μ) A

+
(
5

2
− 2μ

)
A1 −

(
1

2
+ 2μ

)
A2

}]

G =
[
3

4
− α

2
− 3

8
e2 + 3

2
A +

(
−3

4
+ 3μ

2

)
A1 +

(
3

4
− 3μ

2

)
A2

]
.

Eccentricities of the Ellipses

The function around the triangular point is given by Eq. (7), but the Jacobian constant C = 2�
implies that

C =
{
3 + μ(1 − μ) − 2α − 4A − (2 + μ) A1 − (3 − μ)A2 − 3

2
e2 + μ

2
(1 − μ) e2

}

+
{
3

4
+ α

2
+ 9

8
e2 +

(
9

4
− 3μ

)
A1 +

(
3μ − 3

4

)
A2

}
x2

+
{
9

4
− α

2
+ 3

8
e2 + 3

2
A +

(
3

4

)
(A1 + A2)

}
y2

×
{
±√

3

[(
3

2
− 3μ

)
+

(
1

2
− 2μ

3

)
α +

(
5

4
− 5μ

2

)
e2 + (1 − 2μ) A

+
(
5

2
− 2μ

)
A1 +

(
−1

2
− 2μ

)
A2

]}∣∣∣∣ xy
= ax2 + bxy + cy2 + d.

The determinant of which is

=
[
27μ (1 − μ)

4
+ 45

4
μ (1 − μ) e2 + 3μ (1 − μ) α + 9μ (1 − μ) (A + A1 + A2)

]
.

The characteristic equation of the associated matrix is thus

λ2 − 3

(
1 + e2

2
+ A + (1 − μ)A1 + μA2

)
λ + 27

4
μ(1 − μ) + 3μ(1 − μ)α

+45

4
μ(1 − μ)e2 + 9μ(1 − μ)(A + A1 + A2) = 0. (10)

Its roots are

λ1 = 3 + 3A + 3(1 − μ)A1 + 3μA2 − 3μ(1 − μ)(A + A1 + A2) − μ(1 − μ)α + 3

2
e2,

−9

4
μ(1 − μ) − 15

4
μ(1 − μ)e2

λ2 = 9

4
μ(1 − μ) + 15

4
μ(1 − μ)e2 + μ(1 − μ)α + 3μ(1 − μ)(A + A1 + A2).

The eccentricities of the ellipses are given by [76]

ei = (1 − φ2
i )

1
2 , φi = 2si

s2i + λ
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where λ is one of the roots of Eqn. (10). For i = 1, we have

φ2
1 = 3μ(1 − μ) − 9μ2(1 − μ)2 + 4

3
μ(1 − μ)α − 8μ2(1 − μ)2α + 2μ(1 − μ)e2

− 30μ2(1 − μ)2e2 − 6μ(1 − μ)A − 6μ(1 − μ)2A1 − 6μ2(1 − μ)A2

+ 4μ(1 − μ)(A + A1 + A2) − 24μ2(1 − μ)2(A + A1 + A2),

φ2
2 = 1

4
− 3

8
e2 − 9

16
μ(1 − μ) − 243

64
μ2(1 − μ)2 − μ

4
(1 − μ)α − 27μ2

8
(1 − μ)2α

− 57

32
μ(1 − μ)e2

405

32
μ2(1 − μ)e2 − 3

4
A − 27

16
μ(1 − μ)A

− 3

4
μ(1 − μ)(A + A1 + A2) − 81

8
μ2(1 − μ)2(A + A1 + A2)

− 3(1 − μ)

4
A1 − 27

16
μ(1 − μ)2A1 − 3μ

4
A2 − 27

16
μ2(1 − μ)A2. (11)

And therefore

e1 = 1 − 3

2
μ(1 − μ) + 9

2
μ2(1 − μ)2 − 2

3
μ(1 − μ)α + 4μ2(1 − μ)2α + 3μ(1 − μ)A,

−2μ(1 − μ)(A + A1 + A2) + 3μ(1 − μ)2A1 + 3μ2(1 − μ)A2

+12μ2(1 − μ)2(A + A1 + A2) − μ(1 − μ)e2 + 15μ2(1 − μ)2e2,

e2 = ±
√
3

2

[
1 + e2

4
+ 3

8
μ(1 − μ) + 81

32
μ2(1 − μ)2 + μ

6
(1 − μ)α + 9

4
μ2(1 − μ)2α

+19

16
μ(1 − μ)e2 + 135

16
μ2(1 − μ)e2 + μ

2
(1 − μ)(A + A1 + A2)

+27

4
μ2(1 − μ)2(A + A1 + A2) + (1 − μ)

2
A1 + 9

8
μ(1 − μ)2A1 + 9

8
μ2(1 − μ)A2

+μ

2
A2 + A

2
+ 9

8
μ(1 − μ)A

]
. (12)

Semi-major and Semi-minor Axes

The semi-major and semi-minor axes of the periodic orbits are given by

ai =
(

ξ20 + η20

φ2
i

) 1
2

and bi = (
φ2
i ξ

2
0 + η20

) 1
2 (i = 1, 2)

respectively. Now, using Eqs. (5) and (6), we obtain

a1 =
√
5

2

[
1 + 1

10μ
− 2

5
μ(1 − μ) − 3

5
μ

(
1 − μ

2

)
− 2

45

(
(1 − μ)

μ
+ 2(1 + μ)

μ

)
α

− (1 − μ)

15μ
e2+ 3

5
(1 − μ)2e2− 2

15μ
(μ+1)e2+

(
(1 − μ)

15μ
+ 2(1+μ)

15μ
+ 2(1 − μ)2

5

)
A

+ 2

5

(
μ − 1

2

)
(A1 − A2) −

(
(1 + μ)

15μ
+ (1 − μ)2

5

)
(A1 + A2)

+
(
4(1 − μ)2

5
− 2(1 − μ)

15μ

)
(A + A1 + A2) + (1 − μ)2

5μ
A1 + (1 − μ)

5
A2

]
,
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Table 2 Zonal harmonics from the GOCE/GRACE-base solution GOCO01S

Degree (�) Normalized Stokes coefficient C�,0 Mass moment J� Statistical errors σC�,0

2 −4.8416496889 × 10−4 0.001083 4 × 10−14

3 9.571980 × 10−7 −2.5 × 10−6 3 × 10−14

4 5.4000331 × 10−7 −1.6 × 10−6 8 × 10−14

5 6.867018 × 10−8 −2.3 × 10−7 6 × 10−14

6 −1.4995817 × 10−7 5.41 × 10−7 4 × 10−14

7 9.051062 × 10−8 −3.5 × 10−7 4 × 10−14

Table 3 Frequencies of the long and short periods, the eccentricities, semi-major and semi-minor axes of the
Earth–Moon system

Oblateness of
satellite A

Frequencies Eccentricities Semi-major axes Semi-minor axes

S1 S2 e1 e2 a1 a2 b1 b2

0 0.343322 0.933814 0.975219 0.874449 −2.05485 1.08403 0.485830 0.371912

0.01 0.344892 0.918273 0.975356 0.878957 −1.85703 1.08438 0.491566 0.360847

0.02 0.346455 0.902733 0.975494 0.883464 −1.65921 1.08473 0.497302 0.349431

0.03 0.348011 0.887193 0.975631 0.887972 −1.46139 1.08508 0.503038 0.337630

0.04 0.34956 0.871653 0.975768 0.892479 −1.26357 1.08542 0.508773 0.325402

0.05 0.351102 0.856112 0.975906 0.896987 −1.06575 1.08577 0.514509 0.312695

0.06 0.352638 0.840572 0.976043 0.901495 −0.867925 1.08612 0.520245 0.299450

0.07 0.354166 0.825032 0.976618 0.906002 −0.670105 1.08647 0.525981 0.285591

0.08 0.355689 0.809491 0.976318 0.910510 −0.472285 1.08682 0.531716 0.271024

0.09 0.357204 0.793951 0.976455 0.915017 −0.274465 1.08717 0.531716 0.255628

0.1 0.358714 0.778411 0.976593 0.919525 −0.0766449 1.08510 0.543188 0.239244

a2 =
√
13

2

[
1 + 23

26
μ(1 − μ) + 729

104
μ2(1 − μ)2 − 16

39
α − 6μ

13
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13
+ 99

52
μ(1 − μ)e2 + 1215

52
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26
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13
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13
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and

b1 =
√
3

2

[
1 + μ(1 − μ) − 7μ2(1 − μ)2 + 12μ3(1 − μ)3

−
(
4

3
− 2

3
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)
e2
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Fig. 1 Long periodic orbit around L4 of the Earth–Moon system for zero oblateness

Fig. 2 Short periodic orbit
around L4 of the Earth–Moon
system for zero oblateness
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Fig. 3 Long periodic orbit around L4 of the Earth–Moon system for satellite oblateness A = 0.05

Fig. 4 Short periodic orbit around L4 of the Earth–Moon system for satellite oblateness A = 0.05

Fig. 5 Long period around L4 of
the Earth–Moon system for
satellite oblateness A = 0.09
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Fig. 6 Short periodic orbit around L4 of the Earth–Moon system for satellite oblateness A = 0.09
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Fig. 7 Effect of increasing oblateness [0, 0.05, 0.1] of the satellite on the short periodic orbit around L4 of
the Earth–Moon system
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Fig. 8 Effect of increasing oblateness [0, 0.02, 0.04] of the satellite on the short periodic orbit around L4 of
the Earth–Moon system

Numerical Applications

Following [73] (in which double pulsars were applied to the collinear and triangular points of
the axisymmetric bodies in the ER3BP under consideration), we use the relevant orbital and
physical parameters of the Earth–Moon system given in Table 1 to compute the frequencies
of the long and short periodic orbits, their eccentricities, semi-major and semi-minor axes
by the aid of Eqs. (6), (10), (11) & (12) and present them in Table 3 for some assumed
oblateness of an artificial satellite, where the mass ratio of the Earth–Moon–Satellite system
μ = 0.0121537. The Earth’s global gravity field has after nearly half a century of precise
orbit determination of dozens of geodesy-satellite orbit around the Earth been solved to high
harmonic degrees. In one of the most recent global Earth’s gravity solutions, we present the
results of [31] in Table 2 for � = 2, 3, 4, 5, 6, 7 from the GOCE/GRACE-base solution
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GOCO01S [36] where J� = −√
(2� + 1)C�,0, with C as the normalized Stokes coefficient

andσC�,0 the formal statistical errors.And also inTable 1 are the solutions for theMoon’sGM
degree 2 and 3 GRAIL PM, normalized without permanent tide (with bar) and unnormalized
(without bar) [38].

Conclusions

By considering the primaries and the third body as oblate spheroids moving in elliptic orbits
around their common barycenter, the expressions for the frequencies of the long and short
periods around the triangular points with their orientations, eccentricities, semi-major and
semi-minor axes have been obtained. They have been found to be influenced by the eccen-
tricity of the orbits, oblateness and semi-major axis of the primaries and of the third body.

In a numerical exploration, the effect of oblateness of an artificial satellite in orbit around
the Earth–Moon system is investigated. Table 3 shows clearly the effect of oblateness of
an artificial satellite on the long and short periods around the Earth–Moon system. The
frequencyof the longperiod increaseswith increase in oblatenesswhile that of the short period
decreases. This agrees with [2] in the circular case with the absence of small perturbations
in the Coriolis and centrifugal forces in their study. In the circular case (e = 0), our results
also validate (Sharma et al. 2001, [34]) when the smaller primary is non-luminous and the
bigger is spherical in shape.

Equation (10) gives the eccentricities of the long and short periods; they increase with
increase in oblateness of third body (Table 3). The eccentricity of the orbits and the effect
of oblateness of the satellite are shown graphically in Figs. 1, 2, 3, 4, 5, 6, 7, 8 for the
Earth–Moon system. We see reduction in the sizes of the periodic orbits with increase in
oblateness in this axisymmetric ER3BP. In the absence of these perturbations, the results
are in accordance with [76]. An interesting study which could yield significant results is the
consideration of misaligned bulges of the primaries, this we shall treat in future.
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