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Abstract The stabilization problem of modified Leslie–Gower type prey–predator model
with Holling-type II functional response is investigated. By approximate linearization
approach, a feedback control law is obtained which stabilizes the closed loop system. On the
other hand, by suitable change of coordinates in the state space, a feedback control law is
obtained. This feedback control renders the complex nonlinear system to be linear control-
lable system such that the positive equilibrium point of the closed-loop system is globally
asymptotically stable. Numerical experiments substantiate the analytic findings.

Keywords Prey–predator model · Exact linearization · Asymptotically stable ·
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Introduction

The dynamic relationship between predators and their prey has long been and will continue to
be one of dominant themes in both system biology and mathematical ecology due to its univer-
sal existence and importance. Predator–prey models are a classic and relatively well-studied
example of interactions. In this optic, Lotka–Volterra model is one of the earliest predator–
prey models based on sound mathematical and ecological principles. It forms the basis of
many models in the analysis of population dynamics and received extensive attentions from
mathematicians and ecologists [1–4]. In Lotka–Volterra model, the predator is also assumed
to be growing logistically with carrying capacity depending on the availability of variable
resource (prey). This formulation is based on the assumption that reduction in a predator
population has a reciprocal relationship with per capita availability of its preferred food.
Based on experiments, Holling [5] suggested three different kinds of functional responses
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(functional response describes the relationship between an individual’s rate of consumption
and food density) for different species to model the phenomena of predation, which made the
standard Lotka–Volterra system more realistic. Many authors investigated the mathematical
properties of these models and explained their implication in biology [6–8]. Biologically, it
is quite natural to study the existence and asymptotic stability of equilibria, and limit cycles
for autonomous predator–prey systems with these functional responses. This prompted us to
study the predator–prey system with Holling type-II functional response. For Holling type-II
functional response, the predation rate increases as prey density rises, eventually levels off
due to the predators handling time. The model also incorporates a modified version of the
Leslie–Gower functional response [9–13]. The Leslie–Gower predator–prey model formu-
lation is based on the assumption that reduction in a predator population has a reciprocal
relationship with per capita availability of its preferred food. Indeed, Leslie [14] introduced
a predator–prey model where the carrying capacity of the predators environment is propor-
tional to the number of prey. This interesting formulation for the predator dynamics has been
discussed in Refs. [15] and [16]. One of the most basic and important problems in ecology
concerns the survival of species. Owing to the fact that the ecosystems are usually subjected
to a lot of perturbation in the real world, it is indispensable to exert suitable control in order
to maintain the balance in ecological models. Some investigators applied optimal control
techniques to the management of renewable resources in ecosystem [17–19]. Furthermore,
some authors studied the optimal control harvesting or optimal control of ecosystem [20,21].

The study on feedback control in complex systems has received considerable interest after
the seminal work of Ott et al. [22]. From the point of view of biology, this method seems to be
promising due to its simplicity and convenience. However,to the best of our knowledge, the
application of feedback linearization control in this field is relatively new [23,24]. In the past
few years, feedback linearization approach based on differential geometry provides effective
analysis and design of nonlinear systems in engineering. With reference to ecological system,
very little has been done so far [25].

This paper investigates the results of modified Leslie–Gower type prey–predator model
with Holling type-II functional response, showing that appropriately chosen control approach
can achieve global stability of equilibrium states.

The prey–predator dynamics is governed by the following system of differential equations:

d X

dT
= X

(
a1 − bX − c1Y

X + k1

)
,

dY

dT
= Y

(
a2 − c2Y

X + k2

)
. (1)

Here, the prey species X (t) is growing logistically with Holling-type II functional response
and modified Leslie–Gower type growth is considered for the predator Y (t) [10]. All model
parameters are assumed to be positive and have usual meaning as follows:

a1 is the logistic growth and b is the strength of interspecies competition amongst the prey.
The constant c1 represents consumption of prey per predator and k1 is the extent of protection
from predator provided to prey species by the environment. For predator species, a2 describes
the logistic growth rate, c2 is crowding effect and k2 signifies the extent of another option in
surroundings for predation apart from X .

The number of parameters can be reduced from 6 to 4 by the following scaling transfor-
mations:

X = a1x/b, Y = a2
1 y/bc1, T = t/a1 and

a = b1 K1/a1, q = c2/c1, p = a2/a1, r = bK2/a1.
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Accordingly, the non-dimensional system takes the form

dx

dt
= x (1 − x) − xy

x + a
,

dy

dt
= y

(
p − qy

x + r

)
. (2)

The non-negative initial conditions are associated with system (2)

x ≥ 0, y ≥ 0. (3)

Preliminaries

In this section, positive invariance and boundedness for the system (2) are established. Since
the state variables x and y represent populations, positivity insures that they never become
negative and population always survive. The boundedness may be interpreted as a natural
restriction to growth as a consequence of limited resources.

Positive Invariance

Theorem 1 The positive quadrant int(R2+) is invariant for system (2).

Proof It is observed that boundaries of non-negative quadrant R
2+ are invariant; this is obvious

from system R
2+. Therefore, the densities x(t), y(t) are positive for t ≥ 0, if x(0) > 0, y(0) >

0 then x(t) > 0, y(t) > 0. The basic existence and uniqueness theorem for differential
equation ensures that positive solution and axis cannot intersect [26] i.e. any trajectory starting
in R

2+ cannot cross the coordinate planes. ��
Boundedness

Theorem 2 All the solutions of the system (2) with initial conditions (3) that initiate in R
2+

are uniformly bounded.

Proof Let us define

W = x + y.

The time derivative gives

dW

dt
= dx

dt
+ dy

dt
= x (1 − x) − xy

x + a
+ y

(
p − qy

x + r

)
.

For any L > 0,

dW

dt
+ LW ≤ x (1 + L − x) + y

(
p + L − qy

1 + r

)
≤ (1 + L)2

4
+ (1 + r)(p + L)2

4
.

Thus we can define a constant M > 0 such that

M = (1 + L)2

4
+ (1 + r)(p + L)2

4
> 0.

This shows that

dW

dt
+ LW ≤ M.
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Applying the theory of differential inequality [27], it is obtained

0 < W (x, y) ≤ M

L
(1 − e−Lt ) + e−Mt W (x(0), y(0)).

Thus for t → ∞, 0 < W (x, y) ≤ M
L . Hence all solutions of (2) that initiate in R

2+ are
confined in the region

B =
{
(x, y) ∈ R

2+ : W = M

L
+ ξ for any ξ > 0

}

for all t ≥ T , where T depends on the initial values (x(0), y(0)). This proves the theorem.��

Existence and Local Stability of Equilibrium Points

The system (2) has following three trivial boundary equilibria:

E0 = (0, 0), Ex = (1, 0), Ey =
(

0,
pr

q

)
.

The nonzero unique interior equilibrium point E∗ = (x∗, y∗) exists if pr < qa as

x∗ = −(aq + p − q) + √
(aq + p − q)2 − 4q(pr − qa)

2q
, y∗ = p(x∗ + r)

q
.

The variational matrix around an arbitrary equilibrium point (x̂, ŷ) is obtained as⎛
⎝ 1 − 2x̂ − a ŷ

(x̂+a)2 − λ − x̂
(x̂+a)

q ŷ2

(x̂+r)2 p − 2 q ŷ
(x̂+r)

− λ

⎞
⎠ .

The behavior of boundary equilibrium points and interior equilibrium point of system (2)
can be summarized in the following results [28]:

(i) The steady state E0(0, 0) is unstable node.
(ii) The steady state Ex is saddle which is stable in x-direction and unstable in y-direction.

(iii) The steady state Ey is asymptotically stable provided pr > qa. Ey is globally asymp-
totically stable under above condition.

(iv) The non-trivial equilibrium point E∗(x∗, y∗) if exists, is stable if

p > −x∗ + px∗(x∗ + r)

q(x∗ + a)2 .

It undergoes Hopf bifurcation around E∗(x∗, y∗) whenever

p = −x∗ + px∗(x∗ + r)

q(x∗ + a)2 .

(v) The system (2) has unstable unique equilibrium point (x∗, y∗) under

p + x∗ − px∗(x∗ + r)

q(x∗ + a)2 < 0. (4)

The system (2) admits a limit cycle (closed loop) under condition (4).
The objective of next section is to stabilize the closed loop system (2) under (4) so as to reach
a dynamic balance by feedback linearization design.
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Feedback Linearization

Feedback linearization transforms original system into equivalent system of a simpler form.
The idea is to algebraically transform nonlinear systems dynamics into simpler, fully or partly
linear dynamics. This linearization approach differs entirely from conventional linearization
(using Taylor series). The feedback linearization is achieved by exact state transformation
and feedback [29], rather than by linear approximations of the dynamics. There are two types
of approaches of feedback linearization: approximate linearization and exact linearization.
These are discussed in the next two subsections.

Approximate Linearization

Here, approximate linearization approach is employed to design feedback control law and
to solve local stability problem. Using Taylor expansion, a nonlinear system can always be
linearized by a linear system to first degree. But, the idea of approximate linearization here
is to approximate a nonlinear system up to highest possible degree.

Theorem 3 For system (2), there exists a smooth feedback control law which asymptotically
stabilizes the closed-loop system:

u = k1(x − x∗) + k2(y − y∗),

k1 >

(
x∗ − px∗(x∗+r)

q(x∗+a)2

)
(−p + k2)(

x∗
x∗+a

) − p2

q
,

k2 < p + x∗ − px∗(x∗ + r)

q(x∗ + a)2 .

Proof A linear control u be exerted on the system (2) as

dx

dt
= x (1 − x) − xy

x + a
,

dy

dt
= y

(
p − qy

x + r

)
+ u. (5)

Using the transformation v = x − x∗ and w = y − y∗, the system (5) is transformed around
the nontrivial equilibrium point E∗(x∗, y∗) as

v̇ = (v + x∗)
(
1 − (v + x∗)

) − (v + x∗)(w + y∗)
(v + x∗) + a

,

ẇ = (w + y∗)
(

p − (w + y∗)
(v + x∗) + r

)
+ u. (6)

The linearized form (6) is written as

U̇ = AU + Bu, (7)

where

U =
(

v

w

)
, A =

⎛
⎝−x∗ + px∗(x∗+r)

q(x∗+a)2 − x∗
x∗+a

p2

q −p

⎞
⎠ , B =

(
0
1

)
.

In linear feedback, each control variable is a linear combination of the state variables, so
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u = K U. (8)

The row vector K = (
k1 k2

)
, K is a constant feedback (or gain) matrix. Substituting (8)

into (7), yields

U̇ = (A + BK )U = CU (9)

and

C = A + BK =
⎛
⎝−x∗ + px∗(x∗+r)

q(x∗+a)2 − x∗
x∗+a

p2

q + k1 −p + k2

⎞
⎠.

For the matrix C , the trace and determinant are computed as

Trace C = −p − x∗ + px∗(x∗ + r)

q(x∗ + a)2 + k2,

det C =
(

−x∗ + px∗(x∗ + r)

q(x∗ + a)2

)
(−p + k2) +

(
p2

q
+ k1

)(
x∗

x∗ + a

)
.

According to Routh–Hurwitz criterion, the necessary and sufficient conditions for stability of
controlled system (9) are Trace C < 0, det C > 0. For the closed loop system (2), condition
(4) holds. However, the controlled system (9) has stable equilibrium state for the following
choices of k1 and k2:

k2 < p + x∗ − px∗(r + x∗)
q(a + x∗)2 < 0 (10)

and

k1 >

(
x∗ − px∗(x∗+r)

q(x∗+a)2

)
(−p + k2)(

x∗
x∗+a

) − p2

q
. (11)

This proves the result. ��
As a matter of fact, approximate linearization approach employs Taylor series expansion at
the equilibrium point to get the linear approximation. The error in linearization process is
the main weakness of approximate linearization approach. In particular, the error will be
enlarged with the extension of the domain of definition.

Exact Linearization

To overcome the defect of approximate linearization, in this section, a different scenario is
considered, namely, the use of exact linearization scheme. It is achieved by exact state trans-
formation. Unlike traditional approximate linearization method, exact linearization design
does not ignore any higher order terms. Thus, the design is not only exact, but also globally
valid.

Feedback linearization may be applied to nonlinear systems of the form

Ẋ = f (X) + g(X)ú, X(0) = X0,

X̃ = h(X), (12)

where X ∈ Rn is the state vector, ú ∈ Rm is the control input vector and the output vector
X̃ ∈ Rm is a smooth function of X. f, g are smooth vector fields on Rn with f (0) = 0.
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The goal is to develop a state feedback control

ú = α(X) + β(X)v, (13)

v being the external reference input and a change of variables z = �(X), with a nonsingular
Jacobian, that transforms the nonlinear system into a linear controllable system.

Accordingly, the system (2) admits the form

Ẋ =
⎛
⎝ x (1 − x) − xy

x+a

y
(

p − qy
x+r

)
⎞
⎠ +

(
0
1

)
ú, (14)

where ú is exerted control and an output X̃ = x − x∗ is introduced, which denotes tracking
of prey species.

The next theorem provides feedback control law for control the closed loop system (2).
For its proof, the following definitions/results will be required:

(i) L��(X) denotes the Lie derivative of the vector function �(X) along the vector field
�:

L��(X) � �n
i=1

∂�

∂X
�i (X).

The constant r designates the relative degree of X = h(X) if and only if Lg Lr−1
f h(X) 
=

0 [29].
(ii) The system (12) has relative degree r , then row vectors dh(X), d L f h(X), . . . dr−1L f h

(X) are linearly independent [30].
(iii) A necessary and sufficient condition for the system Ẋ = AX to be globally asymptoti-

cally stable is that, for any symmetric positive definite matrix Q, there exists a positive
definite matrix P that satisfies the Lyapunov equation AT P + P A = −Q.

Theorem 4 If there exists a feedback control law as

ú = (x − x∗)(x + a)

x
+ ay2

(x + a)2 + qy2

(x + r)
− ay(1 − x)

(x + a)

−py + 2((1 − x)2(x + a) − y), (15)

then the closed loop system (14) is globally asymptotically stable.

Proof Make a transformation x̄ = x − x∗, ȳ = y − y∗, system (14) can be modified in the
form

˙̄X = f (X̄) + g(X̄)ú,

X̃ = h(X̄) = x̄, (16)

where

f (X̄) =
⎛
⎝ (x̄ + x∗) (1 − (x̄ + x∗)) − (x̄+x∗)(ȳ+y∗)

(x̄+x∗)+a

(ȳ + y∗)
(

p − (ȳ+y∗)
(x̄+x∗)+r

)
⎞
⎠ , g(X̄) =

(
0
1

)

and X̄ =
(

x̄
ȳ

)
.

As h(X̄) = x̄ , then
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L f h(X̄) = ˙̄x = x(1 − x) − xy

(x + a)
, (17)

obviously,

Lg Lr−1
f h(X̄) = Lg L2−1

f h(X̄) = − x

x + a

= 0. (18)

Accordingly, the relative degree, r is equal to 2.
Now, Change of variables

z = �(X̄) =
(

h(X̄)

L f h(X̄)

)
=

(
x̄
˙̄x
)

, (19)

h(X̄) and L f h(X̄) are linearly independent. From result (ii), it is global diffeomorphism. In
the new z-coordinate system is described

ż1 = z2,

ż2 = v, (20)

where v is a input that is related to actual input u by

v = L2
f h(X̄) + Lg L f h(X̄)ú, Lg L f h(X̄) 
= 0,

or

ú = 1

Lg L f h(X̄)
(−z1 − z2 − L2

f h(X̄)). (21)

This is called Brunovsky canonical form (chain of integrators) [31].
The system (2) becomes equivalent to the linear system. Since the Brunovsky linear system

is fully controllable [31], using result (iii), system (2) is globally asymptotic stable.
By using (19), (17) and (18), ú can be obtained from (21),

ú = 1(
− x

x+a

)
[
−(x − x∗) −

(
x(1 − x) − xy

(x + a)

)
− L f

(
x(1 − x) − xy

(x + a)

)]
.

(22)

Control law is, thus, obtained in the form

ú = (x − x∗)(x + a)

x
+ ay2

(x + a)2 + qy2

(x + r)
− ay(1 − x)

(x + a)

−py + 2

(
(1 − x)2(x + a) − y

)
. (23)

��
Numerical Simulation

In this section, numerical experiments are performed to substantiate the stabilization of the
system (2). The parameters are chosen as follows [32]:

a = 0.01, p = 2.0, q = 0.721, r = 0.001. (24)

For this choice of parameters, the equilibrium point E∗(0.004, 0.014) of the system (2) is
unstable as condition (4) is satisfied. Figures 1 and 2 show a closed loop (unstable focus) and
corresponding oscillating time series, respectively for system (2).
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Fig. 1 Closed loop (unstable
focus) of original system (2)
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Fig. 2 Oscillating time series of original system (2)

Fig. 3 State curve of system (2) after approximate linearization

When feedback control is applied, then the feedback control law u = K U, K = (
2 − 1

2

)
is obtained by approximate linearization and closed loop system gets asymptotically stabi-
lized. The time series, plotted in Fig. 3, shows the asymptotic stability of the closed loop
system (2).

From Theorem 3.2, the system (2) is globally asymptotically stable under feedback control
law (23),

ú = x(x + 0.01)

x
+ 0.01y2

(x + 0.01)2 + 0.721y2

(x + 0.001)
− 0.01y(1 − x)

(x + 0.01)

−0.721y + 2

(
(1 − x)2(x + 0.01) − y

)
. (25)
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Fig. 4 State curve of system (2) after exact linearization

Stable state curves are drawn in Fig. 4 which show the asymptotic stability to E∗(0.004, 0.014)

of the system (2) through exact linearization.

Conclusions

In this paper, it is analyzed the stability of closed loop system using feedback linearization.
It is shown that appropriate control can change the undesirable behavior and a dynamic bal-
ance can be achieved. The approximate linearization approach is used for local stabilization
while exact linearization approach is used for global stability. The main feature of the exact
linearization approach is to algebraically transform a nonlinear dynamics into a linear one, so
that the well-developed linear control techniques can be applied. Numerical simulations are
also given to substantiate the analytical findings. It is expected that the results will contribute
to construct an effective control policy to make the system permanent.

Linearization approaches are important methods of dealing with nonlinear dynamical
models. Now, biological systems may also be studied by this approach.
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