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Abstract A mathematical model to study the depletion and conservation of forestry biomass
in presence of industrialization is proposed and analyzed. In the modeling process, it is
assumed that due to forestry biomass industries migrate in the region under consideration and
their growth increases due to the availability of forestry biomass. It is also assumed that both
the intrinsic growth rate and carrying capacity of forestry biomass depend on industrialization
and technological efforts. The model analysis shows that the increase in carrying capacity
of forestry biomass due to technological efforts has destabilizing effect. It is found that, by
taking growth rate coefficient of carrying capacity of forestry biomass due to technological
efforts as a bifurcation parameter, periodic solutions may arise through Hopf-bifurcation.
Further, using center manifold theory, the direction and stability of periodic solutions have
also been discussed. Numerical simulation is performed to support analytic results.

Keywords Mathematical model · Forestry biomass · Industrialization · Stability ·
Hopf-bifurcation

Introduction

Forests are important natural resource which maintains the ecological balance in ecosphere.
Forests reduce carbon dioxide from environment through photosynthesis and thus global
warming. During photosynthesis process trees absorb carbon dioxide and produce oxygen,
which is vital for the survival of various species including human on earth. Apart from
this important phenomenon, forest also restricts soil erosion and maintains ground water
level, biodiversity, etc. [13]. The population of various countries is significantly increas-
ing and thus industrialization [8]. This rapidly growing industrialization affects the forests
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negatively, as the trees are cut down to provide raw material for products and land being
cleared to develop new factories. The pollutants emitted from industries also affect the
growth rate of forest biomass. Due to continuous increase in industrialization, forests are
depleting and now the depletion of forests has become a major problem. A typical exam-
ple for deforestation due to industrialization is Doon Valley in Uttarakhand, India [20,21].
There are some industries (e.g. pulp-paper, timber, furniture, etc.), those are wholly depen-
dent on forestry biomass. Industrialization affects the growth rate of forestry biomass in
two ways, namely; (i) reducing its intrinsic growth rate, and (ii) reducing the forest area
and thus the carrying capacity. The emission of pollutants from industries decreases both
the intrinsic growth rate and carrying capacity but in the case of development of new
industries, the required land is obtained by clearing the forests, which decrease only the
carrying capacity of forestry biomass in the region under consideration. Thus for the con-
servation of forestry biomass it is necessary to increase the carrying capacity of forestry
biomass along with its intrinsic growth rate by using appropriate technological efforts. These
technological efforts may be considered as genetically engineered plants, which increase
the intrinsic growth rate and the carrying capacity of forestry biomass in the region under
consideration.

In the last few decades, some mathematical models have been proposed and analyzed to
study the depletion of forestry biomass due to population [3,12,19,22,24], pollution [4,18,23]
and industrialization ([17,20,21] and the references therein). In particular, Shukla and Dubey
[22] presented a mathematical model for the depletion of forest biomass due to population
and pollution. In this study, it is shown that the density of forestry biomass decreases as the
population or pollution increases and it may extinct if the population and pollution increase
without control. They have also proposed a model for the conservation of density of forest
biomass and it is shown that it can be maintained at a desired level if appropriate efforts
are applied to conserve forest biomass and control the population and pollution. Damage
of ecosystem can be minimized by using taxation, license fees, lease of property rights,
seasonal harvesting, etc. [16]. Naresh et. al. [18] have studied the effects of toxicant on
plant biomass by using a non-linear mathematical model. In this study, it is shown that as
the emission rate of pollutants increases, the density of biomass decreases. Toxicants are
affecting the growth of plants and the proper dose of fertilizers is the best way to ensure
the optimal growth of plants [1]. Dubey et. al [5,8,9] have proposed and analyzed mathe-
matical models to study the depletion of forestry resources due to population, pollution and
population pressure augmented industrialization. Further the survival of biological species,
which depends on the resource biomass, has been studied by using mathematical models
[6,10].

The conservation of forestry biomass is very important for maintaining the ecological
balance in ecosphere but a little attention has been paid on this aspect. Keeping this in mind,
in this paper, we propose and analyze a nonlinear mathematical model to study the depletion
of forestry biomass due to industrialization and its conservation by using some technological
efforts.

The organization of the paper is as follows. In the next section we develop our model.
In “Equilibrium Analysis” section, we derive criteria for the existence of equilibria. Local
stability behavior and the existence of Hopf-Bifurcation are discussed in “Stability Analy-
sis” section and “Existence of Hopf-Bifurcation” sections respectively. In “Direction and
Stability of Hopf-Bifurcation” section, we have shown the direction and stability of periodic
solutions arising through Hopf-bifurcation. A numerical example to illustrate our results
is discussed in “Numerical Simulation” section. A brief discussion takes place in the final
section.
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Mathematical Model

We consider a forest habitat where forests are depleted due to rapid increase in industrializa-
tion. It is assumed that the density of forestry biomass is governed by generalized logistic
model. It is further assumed that the intrinsic growth rate as well as carrying capacity of the
forestry biomass are depleted due to industrialization and some technological efforts are used
to increase them. Again it is considered that some forest based industries migrate in the region
and their growth rate increases in accordance with the density of forestry biomass. Thus, the
system dynamics is governed by following non-linear ordinary differential equations:

d B

dt
= s B

(
1 − B

L

)
− βB I − β1 B2 I + φ1 BT + φ2 B2T,

d I

dt
= νB + θβB I + θ1β1 B2 I − θm I 2, (1)

dT

dt
= φ (L − B)− φ0T,

where B(0) ≥ 0, I (0) ≥ 0, T (0) ≥ 0.
In the model system (1), B is the density of forestry biomass, I is the density of industrial-

ization and T is the intensity of technological efforts applied for the conservation of forestry
biomass. The constants s and L are intrinsic growth rate and carrying capacity of forestry
biomass respectively in absence of industrialization. The constants β and β1 represent the
depletion rate coefficients in intrinsic growth rate and carrying capacity of forestry biomass
respectively, due to industrialization. The constants φ1 and φ2 are the growth rate coefficients
of intrinsic growth rate and carrying capacity of forestry biomass respectively due to techno-
logical efforts. The constants β1 and φ2 affect only the carrying capacity of forestry biomass
(it has been discussed further in detail). In model system (1), ν is the growth-rate coefficient
of industrialization caused by migration of industries to the forest region under consideration,
which is assumed to be proportional to the density of forestry biomass. The coefficients θ
and θ1 are the proportionality constants which represent growth of industrialization due to
forestry biomass. The constant θm > 0 corresponds to the intraspecific interference coef-
ficient between industries. The constants φ and φ0 are growth rate and natural depletion
rate coefficients of technological efforts applied for the conservation of forestry biomass
respectively.

For the explanation of the terms βB I and φ1 BT in the first equation of model system
(1), reader is referred to Dubey et al. [9,11] and Dubey [4]. In the following, we provide an
explanation for the terms β1 B2 I and φ2 B2T . As we know that the logistic equation for the
growth rate of forestry biomass with intrinsic growth rate s and carrying capacity L is

d B

dt
= s B

(
1 − B

L

)
. (2)

By incorporating the terms β1 B2 I and φ2 B2T , the above equation modifies as

d B

dt
= s B

(
1 − B

L

)
− β1 B2 I + φ2 B2T

= s B −
( s

L
+ β1 I − φ2T

)
B2

= s B

(
1 − B

Lm

)
, (3)
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where Lm is the modified carrying capacity of forestry biomass and is given by the relation

1

Lm
=

(
1

L
+ β1 I − φ2T

s

)
.

From this relation it is evident that Lm decreases as industrialization increases and it increases
as technological efforts increases. Thus from the right hand side of Eq. (3) we can say that
the terms β1 B2 I and φ2 B2T affect only the carrying capacity of forestry biomass without
affecting its intrinsic growth rate.

Equilibrium Analysis

The above model system (1) has following two non-negative equilibria.

(i) E0

(
0, 0,

φL

φ0

)
and (ii) E1(B

∗, I ∗, T ∗).

The existence of equilibrium E0 is obvious, hence omitted. In the following, we prove the
existence of equilibrium E1.

Existence of E1(B∗, I ∗, T ∗)

In the equilibrium E1, the values of B∗, I ∗ and T ∗ are the positive solutions of the following
algebraic equations:

s

(
1 − B

L

)
− (β + β1 B)I + (φ1 + φ2 B)T = 0, (4)

θm I 2 − (θβB + θ1β1 B2)I − νB = 0, (5)

φ(L − B)− φ0T = 0. (6)

From Eq. (5), we get

I = 1

2θm

[
(θβB + θ1β1 B2)+

√
(θβB + θ1β1 B2)2 + 4θmνB

]

= f (B) (say). (7)

Again from Eq. (6), we have

T = φ(L − B)

φ0
. (8)

By using above values of I and T in Eq. (4), we get the following equation in B:

F(B) = s

(
1 − B

L

)
− (β + β1 B) f (B)+ (φ1 + φ2 B)

φ(L − B)

φ0
= 0. (9)

From Eq. (8), we may note that T < 0 for B > L . Thus for positive value of T ∗, we are
interested in a root of Eq. (9), which lies in the open interval (0, L).
Now from Eq. (9), we may easily note the following facts:

(i) F(0) = s + φφ1L /φ0, which is positive,
(ii) F(L) = −(β + β1L) f (L), which is negative.
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The above points (i) and (ii) together imply that there exists a positive root (B = B∗) of
Eq. (9) in the interval (0, L). Further this root will be unique provided F ′(B) is negative in
(0, L).
After knowing the value of B = B∗, we get the positive values of I = I ∗ and T = T ∗ from
Eqs. (7) and (8) respectively.

Stability Analysis

The local stability behavior of equilibria E0 and E1 may be determined by finding the sign
of eigenvalues of the corresponding Jacobian matrix. For this purpose, the Jacobian matrix
J for the model system (1) is given as follows:

J =
⎛
⎝−a11 −(β + β1 B)B (φ1 + φ2 B)B

b11 −b12 0
−φ 0 −φ0

⎞
⎠,

where

a11 = s

(
1 − 2B

L

)
− β I − 2β1 B I + φ1T + 2φ2 BT,

b11 = (ν + θβ I + 2θ1β1 B I ), b12 = (−θβB − θ1β1 B2 + 2θm I ).

Let Ji be the matrix J , evaluated at the equilibrium Ei (i = 0, 1). Now from matrix J0, we
may note that one eigenvalue of this matrix is always positive, so it is unstable in B-direction.

The stability behavior of interior equilibrium E1 follows from the following theorem:

Theorem 1 The interior equilibrium E1 is locally asymptotically stable iff the following
conditions hold:

A1 > 0, A3 > 0 and A1 A2 − A3 > 0. (10)

Proof The characteristic equation for J1 is given as follows:

λ3 + A1λ
2 + A2λ+ A3 = 0, (11)

where

A1 = a1 + φ0 + b2,

A2 = a1φ0 + a1b2 + b2φ0 + a2b1 + a3φ,

A3 = a1b2φ0 + a2b1φ0 + a3b2φ,

In the above expressions of A1, A2 and A3, the values of a1, a2, a3, b1 and b2 are given as
follows:

a1 =
( s

L
+ β1 I ∗ − φ2T ∗) B∗, a2 = (β + β1 B∗)B∗, a3 = (φ1 + φ2 B∗)B∗,

b1 = (ν + θβ I ∗ + 2θ1β1 B∗ I ∗), b2 =
(
νB∗

I ∗ + θm I ∗
)
.

Here it may be noted that if the condition
s

L
+ β1 I ∗ − φ2T ∗ > 0 (12)

is satisfied then all the conditions stated in (10) are satisfied. Now using Routh–Hurwitz
criterion, we can say that the interior equilibria E1 is locally asymptotically stable.
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From the above condition (12), we may easily note that for large values ofφ2 this condition
may not be satisfied and thus the conditions stated in (10) may also be violated. This implies
that system (1) may lose its stability and Hopf-bifurcation may occur for large values of φ2.
Keeping this in mind, we study the behavior of dynamical system (1) in detail with respect
to this parameter. ��

Existence of Hopf-Bifurcation

Now we investigate the possibility of Hopf-bifurcation from the interior equilibrium E1 by
choosing φ2 as a bifurcation parameter and leaving the remaining parameters fixed.

Theorem 2 The necessary and sufficient conditions for the occurrence of Hopf-bifurcation
from the interior equilibrium E1 are that there exists a φ2 = φ2c such that

(i) A1(φ2c) > 0 and A3(φ2c) > 0,

(ii) G(φ2c) = A1(φ2c)A2(φ2c)− A3(φ2c) = 0,

(iii) Re

[
d(λ j )

dφ2

]
φ2=φ2c

�= 0 for j = 1, 2.

Proof For φ2 = φ2c, we have A3 = A1 A2. Using this fact, the characteristic equation (11)
reduces to the following form:

(λ+ A1)(λ
2 + A2) = 0, (13)

which has three roots λ1,2 = ±iw and λ3 = μ, where μ = −A1 = −(a1 + b2 + φ0) and
w = √

A2 = √
a1φ0 + a1b2 + b2φ0 + a2b1 + a3φ. Since A2 > 0 at φ2 = φ2c so for some

ε > 0 there exists an ε-neighborhood ofφ2c say (φ2c −ε, φ2c +ε) for which φ2c −ε > 0 such
that A2 > 0 for φ2 ∈ (φ2c − ε, φ2c + ε). Thus for φ2 ∈ (φ2c − ε, φ2c + ε), the characteristic
equation (13) cannot have real positive root.

λ1(φ2) = u(φ2)+ iv(φ2),

λ2(φ2) = u(φ2)− iv(φ2),

λ3 = −A1(φ2).

To show the transversality condition, we substitute λ = u(φ2) + iv(φ2) in Eq. (11) and
separating the real and imaginary parts we have

u3(φ2)− 3u(φ2)v
2(φ2)+ A1(φ2)(u

2(φ2)− v2(φ2))

+A2(φ2)u(φ2)+ A3(φ2) = 0 (14)

3u2(φ2)v(φ2)− v3(φ2)+ 2A1(φ2)u(φ2)v(φ2)+ A2(φ2)v(φ2) = 0. (15)

Now differentiating (14) and (15) with respect to φ2, we get

F1(φ2)u
′(φ2)− F2(φ2)v

′(φ2)+ F3(φ2) = 0,

F2(φ2)u
′(φ2)+ F1(φ2)v

′(φ2)+ F4(φ2) = 0, (16)

where

F1(φ2) = 3(u2(φ2)− v2(φ2))+ 2A1(φ2)u(φ2)+ A2(φ2),

F2(φ2) = 6u(φ2)v(φ2)+ 2A1(φ2)v(φ2),

F3(φ2) = A3
′(φ2)+ (u2(φ2)− v2(φ2))A1

′(φ2)+ u(φ2)A2
′(φ2),

F4(φ2) = 2u(φ2)v(φ2)A1
′(φ2)+ v(φ2)A2

′(φ2).
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Since F1(φ2)F3(φ2)+ F2(φ2)F4(φ2) �= 0, we have

Re

[
dλ j

dφ2

]
φ2=φ2c

= − F1 F3 + F2 F4

F1
2 + F2

2 �= 0

and

λ3(φ2c) = −A1(φ2c) �= 0.

Therefore the transversality condition holds. This implies that Hopf-bifurcation occurs at
φ2 = φ2c (see [7,15]). ��

Direction and Stability of Hopf-Bifurcation

To analyze the direction and stability of Hopf-bifurcation, we will follow the method given
in [14]. To describe the center manifold and analyze the flow therein, we first translate the
origin of the coordinate system to the equilibrium (B∗, I ∗, T ∗) by writing

B = B − B∗, I = I − I ∗, T = T − T ∗. (17)

Then the model system (1) can be written in the form

d

dt

⎛
⎝ B

I
T

⎞
⎠ = J1

⎛
⎝ B

I
T

⎞
⎠ +

⎛
⎝ h1

h2

h3

⎞
⎠. (18)

Here the nonlinear terms are

h1 = − s B
2

L
− βB I − β1 B

2
I − β1 B

2
I ∗ − 2β1 B∗ B I

+ φ1 B T + φ2 B
2
T + φ2 B

2
T ∗ + 2φ2 B∗ B T ,

h2 = θβB I + θ1β1 B
2

I + θ1β1 B
2

I ∗ + 2θ1β1 B∗ B I − θm I
2
,

h3 = 0.

If the eigenvectors of J1 corresponding to λ1,2 are W1 ± iW2 and the eigenvector asso-
ciated with λ3 is W3 (W1, W2 and W3 are real), then it can be shown that the matrix
M = (W1,W2,W3) is non-singular and

M−1 J1 M =
⎛
⎝ 0 w 0

−w 0 0
0 0 μ

⎞
⎠.

For model system (1), we have calculated the matrix M and it is given as follows:

M =
⎛
⎝ a3b2 a3w a3(b2 + μ)

a3b1 0 a3b1

a1b2 + a2b1 − w2 w(a1 + b2) (a1 + μ)(b2 + μ)+ a2b1

⎞
⎠. (19)

Now

M−1 = 1

D

⎛
⎝ q11 q12 q13

q21 q22 q23

q31 q32 q33

⎞
⎠ = Q (say), (20)
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where

q11 = −a3b1w(a1 + b2),

q12 = −a3w(μ
2 + a2b1 − b2

2),

q13 = b1wa3
2,

q21 = −a3b1(μ
2 + μa1 + μb2 + w2),

q22 = a3(μb2
2 + μ2b2 − μa2b1 + μw2 + b2w

2),

q23 = μa3
2b1,

q31 = a3b1w(a1 + b2),

q32 = −a3w(b2
2 + w2 − a2b1),

q33 = −a3
2b1w,

and D = −(μ2 + w2)a3
2b1w.

Now we use the linear transformation⎛
⎝ B

I
T

⎞
⎠ = M

⎛
⎝ k1

k2

k3

⎞
⎠, (21)

which can be written as

S = M K , (22)

where S = (B I T )′ and M is given by (19).
Now using (22) in Eq. (18), we get

d

dt
(M K ) = J1 M K + F(M K ), (23)

where F(S) = (h1, h2, h3)
′. From above equation, we have

d K

dt
= (M−1 J1 M)K + M−1 F(M K ), (24)

where K = (k1, k2, k3)
′.

Further we can write (24) in the following form:

ẋ = H1x + G1(x, y),

ẏ = H2 y + G2(x, y), (25)

where

x =
(

k1

k2

)
, y = (k3), H1 =

(
0 w

−w 0

)
, H2 = (μ), G1 =

(
g1

g2

)
and G2 = (g3).

Here both G1 and G2 are C2 functions.
Now system (24) can be written as follows:

d

dt

⎛
⎝ k1

k2

k3

⎞
⎠ =

⎛
⎝ 0 w 0

−w 0 0
0 0 μ

⎞
⎠

⎛
⎝ k1

k2

k3

⎞
⎠ + Q

⎛
⎝ h1

h2

h3

⎞
⎠. (26)

Now we use the following theorems.
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Theorem 3 System (26) has a local center manifold y = η(x), |x | < δ where η is C2.

The function η(x) can be approximated to any degree of accuracy as proved in the fol-
lowing theorem:

Theorem 4 Let ψ be a C1 mapping of a neighborhood of the origin in R2 into R with
ψ(0) = 0, ψ ′(0) = 0 and (Nψ)(x) = O(|x |p) as x → 0, where Nψ(x) = ψ ′(x)[H1x +
G1(x, ψ(x))] − H2ψ(x) − G2(x, ψ(x)) and p > 1. Then |η(x) − ψ(x)| = O(|x |p) as
x → 0.

For the proofs of Theorems 3 and 4 see Carr [2].
Following the result of Theorem 4, we approximate the center manifold upto a quadratic

approximation as

k3 = η(k1, k2) = 1

2

(
k11k2

1 + 2k12k1k2 + k22k2
2

) + h.o.t. (27)

where h.o.t. stands for higher order terms.
From (27), it follows that

dk3

dt
=

(
∂η

∂k1
.
dk1

dt
+ ∂η

∂k2

dk2

dt

)

= w(−k11 + k22)k1k2 + wk12k2
1 − wk12k2

2, (28)

Also from (25), we have

dk3

dt
= μk3 + g3,

= μ

2

(
k11k2

1 + 2k12k1k2 + k22k2
2

) + [
Q1k2

1 + Q2k1k2 + Q3k2
2

]
, (29)

where

Q1 = 1

D

[
q31

(
− s

L
p2

11 − βp11 p21 − β1 I ∗ p2
11 − 2β1 B∗ p11 p21 + φ1 p11 p31

+φ2T ∗ p2
11 + 2φ2 B∗ p11 p31

)
+ q32(θβp11 p21 + θ1β1 I ∗2 p2

11

+2θ1β1 B∗ p11 p21 − θm p2
21)

]
,

Q2 = 1

D

[
q31

(
−2s

L
p11 p12 − βp12 p21 − 2β1 I ∗ p11 p12 − 2β1 B∗ p12 p21

+φ1(p11 p32 + p12 p31)+ 2φ2T ∗ p11 p12 + 2φ2 B∗(p11 p32 + p12 p31)

)

+q32(θβp12 p21 + 2θ1β1 I ∗ p11 p12 + 2θ1β1 B∗ p12 p21)

]
,

Q3 = 1

D

[
q31

(
− s

L
p2

12 − β1 I ∗ p2
12 + φ1 p12 p32 + φ2T ∗ p2

12 + 2φ2 B∗ p12 p32

)

+q32θ1β1 I ∗ p2
12

]
.

Equating (28) and (29) and comparing the coefficients k2
1, k1k2 and k2

2 , we obtain a system
of linear equations for k11, k12 and k22. On solving these equations, we get

123



34 Differ Equ Dyn Syst (January 2015) 23(1):25–41

k11 = −
[
w2(Q1 + Q3)+ μ

2 (wQ2 + μQ1)

μ3

4 + w2μ

]
,

k12 = −
[
μ2 Q2

4 + wμ
2 (Q3 − Q1)

μ3

4 + w2μ

]
, (30)

k22 = −
[
μ2 Q3

2 − wμQ2
2 + w2(Q1 + Q3)

μ3

4 + w2μ

]
.

The flow on the central manifold is governed by the following two-dimensional system:

ẋ = H1x + G1(x, η(x)). (31)

Now, we state a theorem which tells that the behaviour of solutions of (31) contains all
information about the behaviour of the solutions of (25).

Theorem 5 Suppose that the zero solution of (31) is stable (asymptotically stable) (unstable),
then the zero solution of (25) is stable (asymptotically stable) (unstable) [2].

Now, (31) can be written as

d

dt

(
k1

k2

)
=

(
0 w

−w 0

) (
k1

k2

)
+

(
g1

g2

)
, (32)

where

g1 = 1

D

(
q11h1

′ + q12h2
′ + q13h3

′) + h.o.t.,

g2 = 1

D

(
q21h1

′ + q22h2
′ + q23h3

′) + h.o.t.

and also the values of h1
′, h2

′ and h3
′ are given below:

h1
′ = − s

L
(p11k1 + p12k2)

2 − sp13 Z

L
(p11k1 + p12k2)− βp21k1(p11k1 + p12k2)

− 1

2
βp13 p21 Zk1 − 1

2
βp23 Z(p11k1 + p12k2)− β1 p21k1(p11k1 + p12k2)

2

− β1 I ∗(p11k1+ p12k2)
2−β1 I ∗ p13 Z(p11k1+ p12k2)−2β1 B∗ p21k1(p11k1 + p12k2)

− β1 B∗ p23 Z(p11k1+ p12k2)−β1 B∗ p13 p21k1 Z +φ1(p11k1+ p12k2)(p31k1 + p32k2)

+ 1

2
φ1 p33 Z(p11k1+ p12k2)+ 1

2
φ1 p13 Z(p31k1+ p32k2)+φ2 B∗ p13 Z(p31k1+ p32k2)

+ φ2T ∗(p11k1 + p12k2)
2+φ2T ∗ p13 Z(p11k1+ p12k2)+φ2 B∗ p33 Z(p11k1+ p12k2)

+ 2φ2 B∗(p11k1+ p12k2)(p31k1+ p32k2)+φ2(p11k1+ p12k2)
2(p31k1+ p32k2),

h2
′ = θβp21k1(p11k1 + p12k2)+ 1

2
θβp13 p21 Zk1 + 1

2
θβp23 Z(p11k1 + p12k2)

+ θ1β1 p21k1(p11k1+ p12k2)
2+θ1β1 I ∗(p11k1+ p12k2)

2+θ1β1 I ∗ p13 Z(p11k1+ p12k2)

+ 2θ1β1 B∗ p21k1(p11k1+ p12k2)+θ1β1 B∗ p23 Z(p11k1+ p12k2)+θ1β1 B∗ p13 p21 Zk1

− θm p21
2k1

2 − θm p21 p23k1 Z ,

h3
′ = 0,
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here

Z = (
k11k2

1 + 2k12k1k2 + k22k2
2

)
.

Now, the sign of the following quantity ‘W ’ will determine the stability of limit cycle arising
from Hopf-bifurcation:

W = ΓRe

[
dλ j

dφ2

]
φ2=φ2c

= 1

w
[g1

12(g
1
11 + g1

22)− g2
12(g

2
11 + g2

22)− g1
11g2

11 + g1
22g2

22]

−[g1
111 + g2

112 + g1
122 + g2

222], (33)

here g1
i j denotes the partial derivative ∂2g1 /∂ki k j at the origin and the quantities with three

subscripts represent third-order partial derivatives evaluated at origin. IfΓ > 0 (Γ < 0), then
the Hopf-bifurcation is supercritical (subcritical). Further, if W > 0 (W < 0), the bifurcating
limit cycle is stable (unstable). Now, we find that

g1
11 = 1

D

[
q11

(
− 2

L
sp2

11 − 2βp11 p21 − 2β1 I ∗ p2
11 − 4β1 B∗ p11 p21

+2φ1 p11 p31 + 2φ2T ∗ p2
11 + 4φ2 B∗ p11 p31

)
+ q12(2θβp11 p21

+2θ1β1 I ∗ p2
11 + 4θ1β1 B∗ p11 p21 − 2θm p2

21)

]
, (34)

g2
11 = 1

D

[
q21

(
− 2

L
sp2

11 − 2βp11 p21 − 2β1 I ∗ p2
11 − 4β1 B∗ p11 p21

+2φ1 p11 p31 + 2φ2T ∗ p2
11 + 4φ2 B∗ p11 p31

)
+ q22(2θβp11 p21

+2θ1β1 I ∗ p2
11 + 4θ1β1 B∗ p11 p21 − 2θm p2

21)

]
, (35)

g1
12 = 1

D

[
q11

(
− 2

L
sp11 p12 − βp12 p21 − 2β1 I ∗ p11 p12 − 2β1 B∗ p12 p21

+φ1 p12 p31 + φ1 p11 p32 + 2φ2T ∗ p11 p12 + 2φ2 B∗ p12 p31 + 2φ2 B∗ p11 p32

)

+q12(θβp12 p21 + 2θ1β1 I ∗ p11 p12 + 2θ1β1 B∗ p12 p21)

]
, (36)

g2
12 = 1

D

[
q21

(
− 2

L
sp11 p12 − βp12 p21 − 2β1 I ∗ p11 p12 − 2β1 B∗ p12 p21

+φ1 p12 p31 + φ1 p11 p32 + 2φ2T ∗ p11 p12 + 2φ2 B∗ p12 p31 + 2φ2 B∗ p11 p32

)

+q22(θβp12 p21 + 2θ1β1 I ∗ p11 p12 + 2θ1β1 B∗ p12 p21)

]
, (37)
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g1
22 = 1

D

[
q11

(
− 2

L
sp2

12 − 2β1 I ∗ p2
12 + 2φ1 p12 p32 + 2φ2T ∗ p2

12

+4φ2 B∗ p12 p32

)
+ 2q12θ1β1 I ∗ p2

12

]
, (38)

g2
22 = 1

D

[
q21

(
− 2

L
sp2

12 − 2β1 I ∗ p2
12 + 2φ1 p12 p32 + 2φ2T ∗ p2

12

+4φ2 B∗ p12 p32

)
+ 2q22θ1β1 I ∗ p2

12

]
, (39)

g1
111 = 1

D

[
q11

(
− 6

L
sp11 p13k11 − 3βp11 p23k11 − 3βp13 p21k11 − 6β1 p21 p2

11

−6β1 I ∗ p11 p13k11 − 6β1 B∗ p11 p23k11 − 6β1 B∗ p13 p21k11

+3φ1 p13 p31k11 + 3φ1 p11 p33k11 + 6φ2 p2
11 p31 + 6φ2T ∗ p11 p13k11

+6φ2 B∗ p11 p33k11 + 6φ2 B∗ p13 p31k11

)
+ q12(3θβp13 p21k11

+3θβp11 p23k11 + 6θ1β1 p21 p2
11 + 6θ1β1 I ∗ p11 p13k11

+6θ1β1 B∗ p11 p23k11 + 6θ1β1 B∗ p13 p21k11 − 6θm p21 p23k11)

]
, (40)

g2
222 = 1

D

[
q21

(
− 6

L
sp12 p13k22 − 3βp12 p23k22 − 6β1 I ∗ p12 p13k22

−6β1 B∗ p12 p23k22 + 3φ1 p13 p32k22 + 3φ1 p12 p33k22 + 6φ2 p2
12 p32

+6φ2T ∗ p12 p13k22 + 6φ2 B∗ p12 p33k22 + 6φ2 B∗ p13 p32k22

)

+q22(3θβp12 p23k22 + 6θ1β1 I ∗ p12 p13k22 + 6θ1β1 B∗ p12 p23k22)

]
, (41)

g1
122 = 1

D

[
q11

(
− 4

L
sp12 p13k12 − 2

L
sp11 p13k22 − βp13 p21k22 − 2βp12 p23k12

−βp11 p23k22 − 2β1 p21 p2
12 − 4β1 I ∗ p12 p13k12 − 2β1 I ∗ p11 p13k22

−4β1 B∗ p12 p23k12 − 2β1 B∗ p11 p23k22 − 2β1 B∗ p13 p21k22 + 2φ1 p12 p33k12

+φ1 p11 p33k22 + 2φ1 p13 p32k12 + φ1 p31 p13k22 + 2φ2 p2
12 p31 + 4φ2 p11 p12 p32

+4φ2T ∗ p12 p13k12 + 2φ2T ∗ p11 p13k22 + 4φ2 B∗ p12 p33k12 + 2φ2 B∗ p11 p33k22

+4φ2 B∗ p13 p32k12 + 2φ2 B∗ p13 p31k22

)
+ q12(θβp11 p23k22 + 2θβp12 p23k12

+θβp13 p21k22 + 2θ1β1 p21 p2
12 + 4θ1β1 I ∗ p12 p13k12 + 2θ1β1 I ∗ p11 p13k22

+4θ1β1 B∗ p12 p23k12+2θ1β1 B∗ p11 p23k22+2θ1β1 B∗ p13 p21k22−2θm p21 p23k22)

]
,

(42)

g2
112 = 1

D

[
q21

(
− 2

L
sp12 p13k11 − 4

L
sp11 p13k12 − 2βp13 p21k12 − βp12 p23k11

−2βp11 p23k12 − 4β1 p11 p12 p21 − 2β1 I ∗ p12 p13k11 − 4β1 I ∗ p11 p13k12

−2β1 B∗ p12 p23k11 − 4β1 B∗ p11 p23k12 − 4β1 B∗ p13 p21k12 + φ1 p12 p33k11
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+2φ1 p11 p33k12 + φ1 p13 p32k11 + 2φ1 p13 p31k12 + 4φ2 p11 p12 p31 + 2φ2 p32 p2
11

+4φ2T ∗ p11 p13k12 + 2φ2T ∗ p12 p13k11 + 2φ2 B∗ p12 p33k11 + 4φ2 B∗ p11 p33k12

+2φ2 B∗ p13 p32k11 + 4φ2 B∗ p13 p31k12

)
+ q22(θβp12 p23k11 + 2θβp11 p23k12

+2θβp13 p21k12 + 4θ1β1 p11 p12 p21 + 2θ1β1 I ∗ p12 p13k11 + 4θ1β1 I ∗ p11 p13k12

+2θ1β1 B∗ p12 p23k11+4θ1β1 B∗ p11 p23k12+4θ1β1 B∗ p13 p21k12−4θm p21 p23k12)

]
.

(43)

For finding the sign of W , we can evaluate the various quantities present in expression of W
in terms of the system parameters and substituting the resulting expression into Eq. (33).

Numerical Simulation

To check the feasibility of our analysis regarding existence of interior equilibrium and its
stability conditions, we have conducted some numerical computation using MATLAB by
choosing the following set of parameter values in model system (1):

s = 0.5, L = 100, β = 0.09, β1 = 0.0001, ν = 0.43, θ = 0.02, θ1 = 0.01,

θm = 0.1 φ1 = 0.02, φ2 = 0.001, φ = 0.01, φ0 = 0.03. (44)

The following equilibrium values are obtained for the above set of parameters:

B∗ = 49.2475, I ∗ = 15.0145, T ∗ = 16.9174.

For the above set of parameter values, it may be checked that the stability conditions stated
in theorem 1 are satisfied.

The eigenvalues of the Jacobian matrix J1 corresponding to the equilibrium E1 for the
model system (1) are:
−2.0952, −0.1668 + 0.1699i, and − 0.1668 − 0.1699i .
We note that one eigenvalue of Jacobian matrix J1 is negative and the other two eigenvalues
are with negative real part. Hence, the interior equilibrium E1 is locally asymptotically stable.

For the above set of parameter values, the critical value of φ2 (i.e. φ2c) is 0.002. The
variation of different variables with respect to time for φ2 = 0.001 and φ2 = 0.0022 has
been shown in Figs. 1 and 2, respectively. From these figures, it is clear that for the value of
φ2 less than φ2c, the system get stabilized but for φ2 greater than φ2c, sustained oscillations
occur. Bifurcation diagrams of the model system (1) are drawn with respect to the parameter
φ2 in Fig. 3. This figure clearly shows that as φ2 passes through a critical value, the system
loses its stability and periodic solutions arise through Hopf-bifurcation. This means that the
carrying capacity of forestry biomass can be increased only up to a certain level by applying
suitable technological efforts. If we try to increase the carrying capacity of forestry biomass
beyond a certain limit by using technological efforts, the system loses its stability. For the
above given set of parameter values, the sign of Γ and W are calculated and found to be
positive. Hence, in this case, supercritical Hopf-bifurcation occurs and bifurcating periodic
solutions are stable. Figure 4 shows the periodic solutions are orbitally stable.
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Fig. 1 Variation of forestry biomass, industrialization and technological efforts with respect to time for
φ2 = 0.001
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Fig. 2 Variation of forestry biomass, industrialization and technological efforts with respect to time for
φ2 = 0.0022

Conclusion

In this paper, a non-linear mathematical model is proposed and analyzed to study the depletion
of forestry biomass due to industrialization and its conservation through suitable technologi-
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Fig. 3 Bifurcation diagram of forestry biomass, industrialization and technological efforts with respect to φ2.
The other parameters are same as given in (44)
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Fig. 4 Stable limit cycle for φ2 = 0.0022

cal efforts, like genetically engineered plants. In the modeling process, we have assumed that
the intrinsic growth rate as well as carrying capacity of the forestry biomass are depleted due
to industrialization. It is also assumed that technological efforts are applied to increase the
intrinsic growth rate and carrying capacity of forestry biomass. The model is analyzed using
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stability theory of differential equations. It is found that the proposed model exhibits one
axial equilibrium and an interior equilibrium. Conditions for stability of interior equilibrium
have been derived which are stated in Theorem 1. It is found that these conditions may be
violated for higher values of φ2 implying that the growth rate coefficient of carrying capacity
of forestry biomass due to technological efforts have destabilizing effect on the dynamics of
the system. The Hopf-bifurcation analysis is performed by taking φ2 as a bifurcation parame-
ter. It is shown that when φ2 passes through a critical value, the interior equilibrium E1 loses
its stability and periodic solutions arise through Hopf-bifurcation. The stability and direction
of Hopf-bifurcation have also been discussed in detail by using the center manifold theorem.
The obtained results reveal that with the help of technological efforts, we can increase the
carrying capacity of forestry biomass only up to a certain level. Further attempts to increase
the carrying capacity of forestry biomass results into the destabilization of the system i.e. the
density of forestry biomass oscillates and does not settle down to its equilibrium level. Thus
through applying technological efforts, it is not possible to increase the carrying capacity of
forestry biomass up to any desired level.
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