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Abstract In this paper we study the solitary waves of the Rosenau-RLW equation. By using
some trigonometric function methods, a family of stable solitary wave solutions are obtained,
revealing an intrinsic relationship among the amplitude, frequency and wave speed, for what
should be an equation relevant to modeling in a number of fields.
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Introduction

This paper is concerned with the existence and stability of exact solitary wave solutions of
the Rosenau-RLW equation

ut + εux + αutxx + βutxxxx + uux = 0, (1)

where ε > 0, β > 0 and α ∈ R are constants. Zuo et al. in [36] considered (1) as a generaliza-
tion of the Rosenau equation (α = 0) which is used to describe the dynamics of dense discrete
systems [24–26]. He studied the initial-boundary value problem of the Rosenau-RLW equa-
tion by a Crank–Nicolson difference scheme. Equation (1) is a regularized counterpart of the
Rosenau-KdV equation

ut + εux + αuxxx + βutxxxx + uux = 0, (2)
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which has been studied in [17,35]. When α < 0 and β = 0, (1) can be also considered as a
generalization of the BBM equation [7,23] which together with the KdV equation,

ut + uxxx + uux = 0, (3)

arise as models for one-dimensional long wavelength surface waves propagating in weakly
nonlinear dispersive media [1,11,19,23,31], as well as the evolution of weakly nonlinear ion
acoustic waves in plasmas [29].

Our interest in the present paper is first to search for exact solutions of (1). Next we
investigate the orbital stability of the obtained solitary waves. By a solitary wave solution of
the Rosenau-RLW equation, we mean a traveling-wave solution of Eq. (1) of the form

us(x, t) = ϕc(ξ) = ϕc(x − ct)

decaying at infinity, where c ∈ R is the speed of wave propagation. Alternatively, it is a
solution ϕc of the equation

(c − ε)ϕc + αcϕc
′′ + βcϕc

′′′′ − 1

2
ϕc

2 = 0, (4)

where “′ = d/dξ”. To find solutions of (4), because of the well known solitary traveling-
wave solution associated with the KdV equation, we use trigonometric methods [8,9,16],
based on the sech-method, including two families of traveling wave solutions of (4). Various
traveling wave solutions are obtained, revealing an intrinsic relationship among the amplitude,
frequency and wave speed.

Following the methods in [6,10,12,18,28,30], we employ the invariants

Q(u) = 1

2

∫

R

(
u2 − αu2

x + βu2
xx

)
dx (5)

and

E(u) = −
∫

R

(
ε

2
u2 + 1

6
u3

)
dx, (6)

as well as the fact that a solitary wave ϕc of (1) is a critical point of energy E(·) + cQ(·)
subject to constant charge Q, to show that the usual necessary and sufficient condition for
the stability of solitary wave holds: defining d(c) = E(ϕc) + cQ(ϕc), the solitary wave
ϕc is stable if d ′′(c) > 0. A direct computation shows that d ′(c) = Q(ϕc) (see [28]).
One can also observe that (1) has the hamiltonian structure. Indeed, one has ut = JE ′(u),
where

J = ∂x M−1 and M = I + α∂2
x + β∂4

x .

The main ingredient in stability theory presented in [6,10,12,18,28,30] is to verify the
following spectral condition holds ([4]).

Assumption 1 (Spectral structure) There exists (ω1, ω2) ⊂ R, with ε ≤ ω ≤ ω2 ≤ +∞,
such that c �→ ϕc is a nontrivial smooth curve, and for each c ∈ (ω1, ω2) and a solitary wave
ϕc, the linearized operator

L = αc
d2

dξ2 + βc
d4

dξ4 − ϕc + c − ε (7)
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is self-adjoint closed unbounded on a dense subspace of L2(R) and enjoys the following
spectral properties: it has a unique negative simple with eigenfunctionχc, the zero eigenvalue
is simple with eigenfunction ϕc

′ and the remainder of the spectrum of L is positive and
bounded away zero. Moreover the mapping c �→ χc is a continuous curve with values in
H2(R) and χc(x) > 0.

It is clear that L is self-adjoint closed unbounded linear operator from H2(R) into H−2(R),

M1/2 L M1/2 is self-adjoint on L2(R), and L(ϕc
′) = 0, where

M = I + α d2

dξ2 + β
d4

dξ4 .

To verify the spectral properties of L , we will apply the results of Albert [2], and Albert and
Bona [3]. In [2,3], the authors considered the following KdV-type equation

ut + u pux −Mux = 0, (8)

where M is a Fourier multiplier M̂g(ξ) = m(ξ)ĝ(ξ) and m is a measurable locally bounded
even function on R satisfying

C1|ξ |ν1 ≤ m(ξ) ≤ C2(1+ |ξ |)ν2 ,

for ν1 ≤ ν2, |ξ | ≥ |ξ0| and C1,C2 > 0, and m(ξ) > κ > 0, for all ξ ∈ R. It is shown
that, for a solitary wave ϕc of (8), the associated linearized operator M + c − ϕc satisfies
the spectral structure mention above provided that ϕc is a positive solitary wave such that
ϕ̂c > 0 and ϕ̂c

p belongs to the P F(2)-class defined by Karlin in [20] (see Definition 2). It
is worth noticing that Souganidis and Strauss in [28] considered Assumption (1) and used
the ideas of [12,18,30] to study the instability of solitary waves of the following BBM-type
equation

ut +Mut + ux + u pux = 0, (9)

where M̂g(ξ) = m(ξ)ĝ(ξ) is a Fourier multiplier with appropriate conditions, similar to (8),
on m. We will apply the ideas of [2,3,12,18,28] to show the stability of our explicit solitary
wave solutions of (1). Rest of this paper is divided into three sections. The next section is
devoted the local and global well-posedness of (1), by using the properties of the kernel H

(see (12)). In the third section, some explicit solitary waves will be obtained. Finally in the
last section, we prove the orbital stability of the obtained solutions. We end this section by
introducing some notations that will be used throughout this article.

Notation

We shall denote by ϕ̂ the Fourier transform of ϕ, defined as

ϕ̂(ζ ) =
∫

R

ϕ(ω)e−iωζ dω.

For 1 ≤ p <∞, L p = L p(R) connotes the pth-power Lebesgue-integrable functions with
the usual modification for the case p = ∞.

For s ∈ R, we denote by Hs = Hs (R) , the nonhomogeneous Sobolev space defined by

Hs (R) = {
ϕ ∈ S ′ (R) : ‖ϕ‖Hs (R) <∞

}
,
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where

‖ϕ‖Hs (R) =
⎛
⎝

∫

R

(
1+ |ζ |2)s |ϕ̂(ζ )|2dζ

⎞
⎠

1/2

,

and S ′ (R) is the space of tempered distributions.
If X is any Banach space and T > 0, C(0, T ;X) is the class of continuous functions from

[0, T ] into X with its usual norm

‖u‖C(0,T ;X) = max
t∈[0,T ] ‖u(t)‖X.

If Y ⊂ X is a subset, then C(0, T ;Y) is the collection of elements u in C(0, T ;X) such that
u(t) ∈ Y for t ∈ [0, T ]. When T = +∞, C(0,+∞;X) is a Fréchet space with defining
set of semi-norms maxt∈[0,N ] ‖u(t)‖X, for N ∈ N. The Banach space C1(0, T ;X) is the
subspace of C(0, T ;X) for which the limit

u′(t) = lim
h→0

u(t + h)− u(t)

h

exists in C(0, T ;X). It is equipped with the obvious norm. Inductively, one defines
Ck(0, T ;X) and Ck(0,+∞;X).

Given a solitary wave ϕc of (1), the orbit of Oϕc is defined by the set Oϕc = {τrϕc; r ∈ R},
where τrϕc(·) = ϕc(· + r). We also denote by

Uε = Uϕc,ε =
{

u0; inf
ψ∈Oϕc

‖u0 − ψ‖H2 < ε

}

the ε-neighborhood of the orbit Oϕc .

For any positive numbers a and b, the notation a � b means that there exists a positive
constant k such that a ≤ kb.

Well-Posedness

In this section we are going to study the well-posedness issue for (1). In this section we
assume that α < 2

√
β.

Definition 1 An evolution equation ut = Au, with u(0) = u0, is said to be locally (in time)
well-posed in a Banach space X if for any u0 ∈ X, there is a positive number T such that
the equation possesses a unique solution u which lies in C(0, T ;X). Moreover, the solution
u must depend continuously on u0. The evolution equation is well-posed globally in time if
T can be chosen arbitrarily large.

We note that a formal integration in the temporal variable then leads to the Rosenau-RLW
integral equation

u(t) = u0(x)+
t∫

0

∫

R

H(x − y)

(
εu(y, s)+ 1

2
u2(y, s)

)
dy ds, (10)

where u0(x) = u(x, 0) is the initial data and

Ĥ(ξ) = iξ

1− αξ2 + βξ4 . (11)
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Fig. 1 Kernel H in (12) for β = 1. Figures correspond to α = −3, α = −2 and α = 1 respectively from left
to right and then up to down

More precisely, by using the residue theorem, one can easily see that

H(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

πsgn(x)
β(λ2

1−λ2
2)

(
e−λ1|x | − e−λ2|x |) , α < −α∗,

−πsgn(x)

2 4
√
β3
|x |e−β−1/4|x |, α = −α∗,

πsgn(x)e−σ |x |
2βσω(σ 2+ω2)

(
σ 2 H1(x)− ωH2(x)

)
, α ∈ (−α∗, α∗),

(12)

where

α∗ = 2β1/2,

λ1 =
√
− 1

2β (α +
√
α2 − 4β),

λ2 =
√
− 1

2β (α −
√
α2 − 4β),

σ = 1
2

√
2β−1/2 − αβ−1,

ω = 1
2

√
2β−1/2 + αβ−1,

H1(x) = cos(σ x)− sin(σ |x |),
H2(x) = σ cos(ωx)− ω sin(ω|x |).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13)

Figure 1 illustrates the shape of kernel of (12) for β = 1, and α = −3, α = −2 and
α = 1 respectively.

First we study the local well-posedness, based on Definition 1, in Lq(R)-spaces. See [23]
for similar results.
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Theorem 2 Let q ≥ 2. Then (10) is well-posed in Lq(R) in the sense of Definition 1.
Moreover, the flow map G : u0 �→ u, that associates to the initial data u0 the unique solution
u, is real analytic.

Proof First one can observe from (11) that H ∈ L�(R), for any 1 ≤ � ≤ ∞. Thus by the
Young inequality,

∥∥∥∥H ∗
(
εu + 1

2
u2

)∥∥∥∥
Lq (R)

≤ C
(
‖H‖L1(R)‖u‖Lq (R) + ‖H‖Lq/(q−1)(R)‖u‖2Lq (R)

)
,

which is to say,

H ∗
(
εu + 1

2
u2

)
∈ Lq(R).

Now we define the constants r = 2‖u0‖Lq (R) and

T = 1

2C
(‖H‖L1(R) + ‖H‖Lq/(q−1)(R)r

)

and define X = XT,r = C(0, T ; Br (u0)), where Br (u0) is the closed ball in Lq(R) of the
radius r centered at u0. The set X is a complete metric space with the distance d induced
by the norm on C(0, T ; Lq(R)). We show that the operator

Φ(u) = u0(x)+
t∫

0

∫

R

H(x − y)

(
εu(y, s)+ 1

2
u2(y, s)

)
dy ds

is contractive from X to itself.
For any u ∈ X , we have

d(Φ(u), 0) = ‖Φ(u)‖X ≤ ‖u‖Lq (R) + T C
(‖H‖L1(R)r + ‖H‖Lq/(q−1)(R)r

2) ≤ r, (14)

so that Φ maps X to X . Moreover the Cauchy–Schwarz inequality implies for u, v ∈ X
that ∥∥∥∥H ∗

(
ε(u − v)+ 1

2

(
u2 − v2))∥∥∥∥

Lq (R)

≤ C0
(‖H‖L1(R) + ‖H‖Lq/(q−1)(R)r

) ‖u − v‖Lq (R), (15)

Consequently, it holds that

‖Φ(u)−Φ(v)‖Lq (R) ≤ C

t∫

0

[‖H‖L1(R) + ‖H‖Lq/(q−1)(R)r
] ‖u(τ )− v(τ)‖Lq (R)dτ.

Therefore, we obtain that

d(Φ(u),Φ(v)) ≤ CT
[‖H‖L1(R) + ‖H‖Lq/(q−1)(R)r

] ‖u − v‖X
≤ 1

2
‖u − v‖X = 1

2
d(u, v).

It shows that Φ is contractive which implies the desired local well-posedness result.
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To prove the second part of theorem, we will use an argument analogous to [5], [14,
Theorem 3], [27, Theorem 3.3] and [32–34] (see also [13,21,22]). Define an operator Ψ as

Ψ (u) =
t∫

0

H ∗ (εu + g(u))ds,

where g(u) = 1
2 u2. It is straightforward to see that Ψ is Fréchet differentiable and for

v, z ∈ C(0, T ; Lq(R)) we have

Ψ ′(v)z =
t∫

0

∫

R

H(x − y)(1+ g′(v))z dydτ.

Now we define, for a, b ∈ C(0, T ; Lq(R)), that

Λ(a, b) = b − a − Ψ (b);
so that when a = u0 and b = u, where u is the fixed point of the operator Ψ corresponding
to initial data u0, then Λ(u0, u) = 0 and

DbΛ(u0, u)z = z − Ψ ′(u)z.
Furthermore, it is seen from the definition that

‖Ψ ′(u)z‖Lq (R) ≤ T sup
0≤t≤T

‖H ∗ ((ε + g′(u))z)‖Lq (R)

≤ CT
(‖H‖L1(R) + ‖H‖Lq/(q−1)(R)r

) ‖z‖X
= 1

2
‖z‖X .

Hence,

DvΛ(u0, u) = I − Ψ ′(u)
is invertible and therefore, by Implicit Function Theorem [15], the flow map G(u0) = u is a
C1 map, and

Du0 u = − (
I − Ψ ′(u))−1

DaΛ(u0, u);
and the second assertion of Theorem 2 follows. �
Theorem 3 Let s ≥ 0. Then for any u0 ∈ Hs(R), there is a number T > 0 and a unique
solution u ∈ C(0, T ; Hs(R)) of (10) with u(0) = u0. Moreover, the flow map G : u0 �→ u,
that associates to the initial data u0 the unique solution u, is real analytic. In addition, u(t)
satisfies E(u(t)) = E(u0) and Q(u(t)) = Q(u0) for all t ∈ [0, T ).

Proof Take the Fourier transform in (10) with respect to the spatial variable, we obtain

û(ξ, t) = û0(ξ)+
t∫

0

iξ

1− αξ2 + βξ4

(
εû + 1

2
û2

)
(ξ, τ )dτ.

Now we define, for any T > 0, an operator A : C(0, T ; Hs)→ C(0, T ; Hs) by

Âu(ξ, t) = û0(ξ)+
t∫

0

iξ

1− αξ2 + βξ4

(
εû + 1

2
û2

)
(ξ, τ )dτ.
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When s ≥ 0, if u ∈ Hs, then for any ξ ∈ R,

(1+ |ξ |)s |û2(ξ)| ≤ (
(1+ | · |)s |̂u(·)|) ∗ (

(1+ | · |)s |̂u(·)|) (ξ)
≤

∫

R

(1+ |ξ |)2s |̂u(ξ)|2dξ = ‖u‖2Hs . (16)

Consequently,

∫

R

(1+ |ξ |)2s ξ2

(1− αξ2 + βξ4)2
|û2(ξ)|2dξ � ‖u‖4Hs ;

and it is concluded that Au ∈ C(0,+∞; Hs(R)), if u ∈ C(0,+∞; Hs(R)). Following the
steps laid out in the proof of Theorem 2, it can be shown that in all cases, when T > 0
is chosen sufficiently small, the operator A is contractive in C

([0, T ); B2‖u0‖s (0)
)
, where

the ball B2‖u0‖s (0) is in Hs(R). The contraction mapping principle completes the proof.
Invariance of E and Q follows by a standard argument. �

Theorem 4 Let s ≥ 2. Then for any u0 ∈ Hs(R), there is a unique solution u ∈
C(0,+∞; Hs(R)) of (10) with u(0) = u0.

Proof By Theorem 3, there exists a T > 0 and a unique solution u of (1) with u(0) = u0

such that u ∈ C(0, T ; Hs(R)). It remains to show that T can be taken arbitrarily large.
First we note for s = 2 that the invariant (6) implies that the solution can be extended from
C(0, T ; H2(R)) to C(0,+∞; H2(R)). Next, when s > 2, we multiply both sides of (1)
by 2(I + D)2s−4u(x, t) and integrate over R with respect to x to obtain at least for smooth
solutions that

2
∫

R

(
(I + D)2s−4u(x, t)

)
Mut (x, t)dx

= −2
∫

R

(
(I + D)2s−4u(x, t)

) (
εu(x, t)+ 1

2
u2(x, t)

)
x

dx

= −
∫

R

iξ(1+ |ξ |)2s−4û(ξ, t) û2(ξ, t)dξ,

where D = (−∂2
x )

1/2 and M = I + α∂2
x + β∂4

x . Using the fact

1− αξ2 + βξ4 ∼ (1+ |ξ |)4, (17)

it follows that

d

dt

∫

R

(1− αξ2 + βξ4)(1+ |ξ |)2s−4 |̂u(ξ, t)|2dξ

≤
∫

R

(1+ |ξ |)2s−3 |̂u(ξ, t)|
∣∣∣û2(ξ, t)

∣∣∣ dξ

≤ ‖u(t)‖Hs‖u2(t)‖Hs−3

≤ ‖u(t)‖Hs‖u2(t)‖Hs . (18)
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Now by (17) and the invariance E, we have

‖û(t)‖2L1 � ‖u‖2H2 �
∫

R

u2 − αu2
x + βu2

xx dx

=
∫

R

u2
0 − α(∂x u0)

2 + β(∂2
x u0)

2dx � ‖u0‖2H2 .

This implies that

‖u2(t)‖2Hs =
∫

R

(1+ |ξ |)2s |û2(ξ, t)|dξ

�
∫

R

∫

R

(
1+ |ξ − η|2s + |η|2s) |̂u(ξ − η, t )̂u(η, t)|2dηdξ

� ‖û(t) ∗ û(t)‖2L2 + ‖D̂su(t) ∗ û(t)‖2L2 � ‖û(t)‖2L1‖u(t)‖2Hs

≤ C‖u(t)‖2Hs , (19)

where C = C(‖u0‖H2). Combining (18) and (19) leads to

d

dt

∫

R

(
1− αξ2 + βξ4) (1+ |ξ |)2s−4 |̂u(ξ, t)|2dξ � ‖u(t)‖2Hs . (20)

Integrating the last inequality with respect to t and using (17) yields

‖u(t)‖2Hs ≤ C1‖u0‖2Hs + C2

t∫

0

‖u(τ )‖2Hs dτ.

By the Gronwall lemma, there are two constants C1 and C2 in which C1 is dependent only
on ‖u0‖Hs and C2 only on ‖u0‖H2 such that ‖u(t)‖Hs ≤ C1 exp(C2t). This a priori bound
allows us to iterate the local theory and achieve a globally defined solution. �

Solitary Waves

In this section, we establish the existence of solitary waves of (1). Here, we propose two
types of L1-solutions of (4). We first consider the sech-ansatz; actually our hypothesis is
ϕc(ξ) = Asechq(bξ),where A is the amplitude of the solitary wave and b is the inverse width
of the solitary wave. One can see after balancing ϕc

′′′′ with ϕc
2 that q = 4. Hence plugging

Asech4(bξ) into (4), collecting the coefficients sech j (bξ) and equating these coefficients to
zero, there obtains ⎧⎨

⎩
−2ε + 2c + 512βcb4 + 32cαb2 = 0,
−40α − 208βb2 = 0,
−A + 1680βcb4 = 0.

(21)

After some calculations, we obtain from system (21) that

A = A(c) = 35

12
(c − ε) and b = b(c) = 1

12

√
13(ε − c)

cα
, (22)
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such that α < 0, c > ε and

β = 36cα2

169(c − ε) . (23)

One can also easily check that dA
dc > 0 and db

dc > 0, for all c > ε; so that the mapping c→ ϕc

is smooth from (ε,+∞) into Hs(R), for all s ∈ N. Therefore, we obtain

ϕc(ξ) = ϕc(x − ct)

= 35

12
(c − ε)sech4

(√
13(ε − c)

144cα
(x − ct)

)
. (24)

By using the idea of the sech-ansatz method above, we propose the second type of solution
which is

ϕc(ξ) =
4∑

j=1

A j sech j (bξ),

where A j , b ∈ R. It is straightforward to see after balancing ϕc
′′′′ with ϕc

2 that A1 = A3 = 0.
Hence plugging this form into (4), collecting the coefficients sech j (bξ) and equating these
coefficients to zero, there obtains⎧⎪⎪⎨

⎪⎪⎩

32βcb4 + 8cαb2 + 2c − 2ε = 0,
−A2

2 − 240βcb4 A2 − 12cαb2 A2 + 2A4
(
c − ε + 256βcb4 + 16cαb2

) = 0,
−40cαb2 A4 + 240βcb4 A2 − 2A2 A4 − 2080βcb4 A4 = 0,
−A4 + 1680βcb4 = 0.

(25)

After some calculations, we obtain from system (25) that

A2 = 910

293
(c − ε), A4 = 1085

293
(c − ε) and b = 1

1758

√
799890 (ε − c)

αc
, (26)

such that c > ε, α < 0 and

β = 27249cα2

828100(c − ε) . (27)

One can also observe that
dA j
dc > 0, j = 2, 4, and db

dc > 0, for all c > ε; so that the mapping
c→ ϕc is smooth from (ε,+∞) into Hs(R), for all s ∈ N. Therefore, we obtain

ϕc(ξ) = ϕc(x − ct)

= 910

293
(c − ε)sech2 (b(x − ct))+ 1085

293
(c − ε)sech4(b(x − ct)), (28)

where b is as above.
Finally, we propose the ansatz

ϕc(ξ) =
2∑

j=1

A j

(B j + cosh(bξ)) j
.

One can see after balancing again ϕc
′′′′ with ϕc

2 that A1 = 0. Hence plugging

ϕc(ξ) = A

(B + cosh(bξ))2
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into (4), collecting the coefficients sech j (bξ) and equating these coefficients to zero, there
obtains⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

16βcb4 + 4cαb2 − ε + c = 0,
−33βcb4 + 3cαb2 − 2ε + 2c = 0,
72βcb4 B2 − 240βcb4 − A + 12cB2 − 12cαb2 − 12εB2 = 0,
−A + 96βcb4 + 4cB2 − 4εB2 − 2βcb4 B2 − 2cαb2 B2 − 12cαb2 = 0,
2cB4 − 12cαb2 B2 + 240βcb4 − 48βcb4 B2 − 2εB4 − AB2 = 0.

(29)

After some computations, we obtain from system (29) that

A = 35

3
(c − ε), B = ±1 and b =

√
13(ε − c)

36αc
, (30)

such that c > ε, α < 0 and

β = 36cα2

169(c − ε) . (31)

Therefore, we obtain

ϕc
±(ξ) = ϕc

±(x − ct) = 35(c − ε)
3

(
1± cosh

(√
13(ε−c)

36αc (x − ct)

))2 . (32)

One can observe that ϕc
+ is actually identical with solution (24), while ϕc

− has a singularity
in ξ = 0 (see Fig. 3).

Figure 2 shows the wave profiles of (24) and (28) and their Fourier transform.

Stability

In this section, we are going to study the orbital stability of the solitary waves obtained in the
previous section. Hereafter we assume that α < 0 and c > ε. First we recall the definition
of orbital stability.

Definition 2 We say thatϕc is orbitally stable in H2(R)by the flow generated by the Rosenau-
RLW equation (1) if the initial value problem associated to (1) is globally well-posed in
H2(R), and for every ε, there is δ > 0 such that for all u0 ∈ Uδ the solution u(t) of (1) with
u(0) = u0 satisfies u(t) ∈ Uε for all t > 0.

Definition 3 A function w : R → R is said to be in the class P F(2) if for all x ∈ R,

w(x) > 0,

w(x1 − y1)w(x2 − y2) ≥ w(x1 − y2)w(x2 − y1), for x1 < x2 and y1 < y2 (33)

and the strict inequality holds in (33) whenever the intervals (x1, x2) and (y1, y2) intersect.

The following result is proved in [3].

Theorem 5 If f a twice-differentiable positive function on R satisfying

d2

dx2 log f (x) < 0,

for x �= 0, then f ∈ P F(2).
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Fig. 2 Up is solitary waves of
(24) and (28) at t = 0, and down
is their Fourier transform. The
circle-curves correspond to (28)
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Fig. 3 The graph of solution ϕc
− given by (32)
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The following theorem [2] gives some spectral structure of the linearized operator L about
a solitary wave ϕc.

Theorem 6 Let ϕc be an even positive solitary wave of (1). Suppose that ϕ̂c ∈ P F(2), then
the operator L satisfies Assumption 1.

By using Theorem 6, the proof of the following stability theorem can be obtained by using
the arguments given in [6,10,18,30].

Theorem 7 Let ϕc be a positive solitary wave of (1). Suppose that Assumption 1 holds for
the linearized operator L . Then ϕc is orbitally stable, if d ′′(c) > 0.

Theorem 8 Let c > ε and α < 0. Then the solitary wave ϕc of (1) obtained in (24) is
orbitally stable by the flow of the Rosenau-RLW equation.

The proof of Theorem 7 is a special case of [18, Theorem 3.5], and we will give it for the
sake of completeness.

Lemma 1 Let d ′′(c) > 0. Then 〈Ly, y〉 > 0, if y ∈ H2(R) and 〈y, Q′(ϕc)〉 = 〈y, ϕc
′〉 = 0.

Proof First by using d ′(c) = Q(ϕc), we have

0 < d ′′(c) = 〈Mϕc, dϕc/dc〉 = − 〈Ldϕc/dc, dϕc/dc〉 .
Write

dϕc

dc
= a0χc + b0ϕc

′ + p0,

where p0 is in the positive subspace of L . Recall that Lχc = −λ2χc with λ > 0 and
L(ϕc

′) = 0. It follows that 〈Lp0, p0〉 < 0. Now suppose that

〈y, ϕc
′〉 = 〈y, Q′(ϕc)〉 = 0

and decompose y into the sum aχc + p with p in the positive subspace of L . Because

0 = 〈Ldϕc/dc, y〉 = −a0aλ2 + 〈Lp0, p〉,
it is inferred that

〈Ly, y〉 ≥ −a2λ2 + 〈Lp, p0〉2
〈Lp0, p0〉 > −a2λ2 + (a0aλ)2

a2
0λ

2
= 0,

as required. �
It can be proved exactly as in the analogous case of [12] that there exists ε > 0 and a

unique C1-map � : Uε → R such that for every u ∈ Uε and r ∈ R, 〈u(· + �(u)), ϕc
′〉 = 0,

�(u(· + r)) = �(u)− r and

�′(u) = ϕc
′(· − �(u))∫

R
u(x)ϕc

′′(x − �(u)) dx
.

Lemma 2 Let d ′′(c) > 0. Then there is C > 0 and ε > 0 such that

E(u)− E(ϕc) ≥ C‖u(· + �(u))− ϕc‖2H2 ,

for all

u ∈ Ũε = {u ∈ Uε : Q(u) = Q(ϕc)} .
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Proof Write u in the form

u(· + �(u)) = (1+ a)ϕc + y,

where 〈ϕc, y〉 = 0 and a is a scalar. Then by the translation invariance Q and Taylor’s
theorem,

Q(ϕc) = Q(u) = Q(ϕc)+ 〈ϕc, u(· + �(u))− ϕc〉 + a,

where

a = O
(‖u(· + �(u))− ϕc‖2H2

)
.

Hence

S(u) = S(u(· + �(u))) = S(ϕc)+ 1

2
〈Lv, v〉 + o

(‖v‖2H2

)
,

where

v = u(· + �(u))− ϕc = aϕc + y.

Thus

E(u)− E(ϕc) = 1

2
〈Lv, v〉 + o(‖v‖2H2) = 1

2
〈Ly, y〉 + o

(‖v‖2H2

)
.

Since y is orthogonal to both ϕc and ϕc
′, it follows from Lemma 1 that

E(u)− E(ϕc) ≥ 2C‖y‖2H2 + o(‖v‖2H2),

for some constant C. It follows that

E(u)− E(ϕc) ≥ ‖v‖2H2 ,

by using the fact

‖y‖H2 = ‖v − aϕc‖H2 ≥ ‖v‖H2 − O
(‖v‖2H2

)
,

for ‖v‖H2 small. The proof of lemma is now complete. �
Proof of Theorem 7 Assume that d ′′(c) > 0. Let un,0 ∈ H2(R) be any sequence such that

inf
r
‖un,0 − ϕc(· + r)‖H2 → 0,

as n→∞. If un is the unique solution (1) with initial data un(0) = un,0, let tn be an arbitrary
sequence of times such that, for each n, un(·, tn) ∈ ∂Uε/2. Since E and Q are continuous on
H2(R) and translation invariant,

E(un(·, tn)) = E(un,0)→ E(ϕc)

and

Q(un(·, tn)) = Q(un,0)→ Q(ϕc).

Next choose wn ∈ Uε so that Q(wn) = Q(ϕc) and

‖wn − un(·, tn)‖H2 → 0.

By Lemma 2,

0← E(wn)− E(ϕc) ≥ C‖wn(· + �(wn))− ϕc‖2H2 = C‖wn − ϕc(· − �(wn))‖H2 ,
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and therefore

‖un(·, tn)− ϕc(· − �(wn))‖H2 → 0.

This means that un(·, tn) tends to Oϕc . This contradiction completes the proof of Theorem 7.
�

Now we are in position to prove Theorem 8.

Proof of Theorem 8 By Theorem 7, first of all we should study the behavior of the first two
eigenvalues associated with the operator

L = αc
d2

dξ2 + βc
d4

dξ4 − ϕc + c − ε.

By applying Theorem 6, it suffices to show that ϕ̂c ∈ P F(2).But a straightforward calculation
reveals from (24) that

ϕ̂(ξ) = A
πξ

3b2

(
1+ ξ2

4b2

)
csch

(
πξ

2b

)

and

d2

dξ2 log ϕ̂c(ξ)

=−C(24)

(64b6+12ξ4b2) cosh2
(
πξ
2b

)
−12ξ4b2−ξ6π2−16ξ2π2b4−8ξ4π2b2−64b6

(
cosh2

(
πξ
2b

)
−1

)
ξ2

(
4b2+ξ2

)2
,

where C(24) = Aπ
12b4 , where A and b is are as in (22). By using the Taylor expansion

cosh2
(
πξ

2b

)
= 1

2
+
∞∑

n=0

1

2(2n)!
(
πξ

b

)2n

, (34)

it is readily seen that

d2

dξ2 log ϕ̂c(ξ) < 0,

for ξ �= 0. Then by Theorem 7, we need to calculate d
dc Q(ϕc). Actually, we have from (24)

that

Q(ϕc) =
(

1

b
− 16

9
αb + 1024

99
βb3

)
16A2

35
,

and

d

dc
Q(ϕc) = K(24)

(
1400c3 − 1856εc2 + 403cε2 + 53ε3

)
c
√
(ε−c)c
α

> 0.

where

K(24) = 70
√

13

11583
.

This completes the proof of Theorem 8. �
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Theorem 9 Let c > ε and α < 0. Then the solitary wave ϕc of (1) obtained in (28) is
orbitally stable by the flow of the Rosenau-RLW equation.

Proof First we note that

ϕ̂c(ξ) = πξ

b2

(
A2

2
+ A4

3

(
1+ ξ2

4b2

))
csch

(
πξ

2b

)

and

d2

dξ2 log(ϕ̂c) = −C(28)
η(ξ)(

cosh
(
πξ
2b

)2 − 1

)
ξ2(6A2b2 + 4A4b2 + A4ξ2)2

,

where C(28) = π
4b4 and

η(ξ) = (12A2
4ξ

4b2 + 192A2b6 A4 + 144A2
2b6 + 64A2

4b6) cosh

(
πξ

2b

)2

−36ξ2π2 A2
2b4 − 16ξ2π2 A2

4b4 − 64A2
4b6

−144A2
2b6 − 48ξ2π2 A2b4 A4

−12ξ4π2 A2b2 A4 − 12A2
4ξ

4b2 − ξ6π2 A2
4 − 192A2b6 A4 − 8ξ4π2 A2

4b2

By a straightforward calculation, it is readily seen from (34) that

d2

dξ2 log(ϕ̂c) < 0

for all ξ �= 0. By the proof of Theorem 8, it is enough to calculate d
dc Q(ϕc). Indeed, we have

from (28) that

Q(ϕc) = −8αb

15

(
A2

2 +
16

7
A4 A2 + 32

21
A2

4

)
+ 32βb3

21

(
A2

2 +
512

165
A2

4 +
16

5
A4 A2

)

+2

b

(
A2

2

3
+ 8

15
A4 A2 + 8

35
A2

4

)
.

and

d

dc
Q(ϕc) = K(28)

(
235578848c3 − 323443550c2ε + 73379707cε2 + 14484995ε3

)
c
√
(ε−c)c
α

> 0,

where

K(28) = 20
√

799890

32372885259
,

and A2, A4 and b is are as in (26); and the proof of Theorem 9 is now complete. �
Figure 1 illustrates the shape of kernel of (12) for β = 1, and α = −3, α = −2 and

α = 1 respectively. Finally, we observed in Theorem 3 that the solutions of (1) satisfies the
conservation laws Q and E in (5) and (6). We calculate these conserved quantities by using
the solitary waves given by (24), (28) and (32). Actually, we obtain

E(24)(ϕc) = −16εA2

35b
− 256A3

2079b
,

123



Differ Equ Dyn Syst (January 2014) 22(1):93–111 109

2 4 6 8 10 12 14 16 18 20

−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

3
x 10

4

x

Fig. 4 Invariants of Q and E of solution (24) as the functions in terms of c. The dash-curve corresponds to E

Fig. 5 Invariants of E in down
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where A and b is are as in (22),

E(28)(ϕc) = −8A3
2

45b
−

(
ε

3
+ 8A4

35

)
2A2

2

b
−

(
ε + 8A4

21

)
16A2 A4

15b
−

(
ε

5
+ 16A4

297

)
16A2

4

7b

where A2, A4 and b is are as in (26).
Figures 4 and 5 illustrate the graphs of the invariants E and Q in terms of c,when α = −1

and ε = 1, for solutions (24) and (28), respectively.
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