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Abstract In this paper a class of recurrent neural networks with variable coefficients and
mixed delays is considered. After introducing definitions and preliminary lemmas, we prove
under convenient assumptions the existence of an almost automorphic solution of the con-
sidered model. Moreover, the global exponential stability of the almost automorphic solution
is studied. In addition, two examples are also given to illustrate the theory.
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Introduction

Almost automorphic functions are part of a hierarchy of functions which starts with periodic
functions and these functions were first introduced in the literature by Bochner [3] as a natural
generalization of the classical family of almost periodic function. This concept became a
natural generalization of almost periodicity which is one of the most attractive topics in the
qualitative theory of differential equations because of their significance and applications in
physics, mathematical biology, control theory, and other related fields.

Generally, the research for the solutions almost automorphic for dynamic systems are
more complicated since the fundamental property of uniform continuity which is valid for
almost periodic functions is not verified by the almost automorphic functions. In particular,
the recurrent neural networks (RNNs) are non linear dynamic systems with some resemblance
of biological neural networks in the brain. Recently, many RNNs have been developed and
applied extensively in many fields such as signal processing, pattern recognition, optimiza-
tion, robotics and control and associative memories. For instance, in [13], the authors analyzed
the following model:
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ẋi (t) = −di hi (xi (t))+
n∑

j=1

ai j (t) f j (x j (t))+
n∑

j=1

bi j (t) g j (x j
(
t − τ j (t)

)
)+ Ji (t) .

Hence, by using the Lyapunov functional method, applying classical techniques such as
M-matrix and topological degree theory, the global exponential stability and the existence
of periodic solutions are given. As we all know, when modeling neural networks, both the
discrete and distributed time delays should be taken into account. So, in [16], the authors
have studied the dynamics of a class of recurrent neural networks with mixed delays and
variable coefficients which is described by the following integro-differential equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋi (t) = −di hi (xi (t))+
n∑

j=1
ai j (t) f j (x j (t))+

n∑
j=1

bi j (t) g j (x j (t − τ1 (t)))

+
n∑

j=1
ci j (t)

t∫
t−τ2

Ki j (t − s) h j (x j (s))ds + Ji (t).

Recently, Xiang and Cao [19] investigated the almost periodic oscillatory behavior for the
following system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋi (t) = −di (xi (t))+
n∑

j=1
ai j (t) f j (x j (t))+

n∑
j=1

bi j (t) g j (x j
(
t − τi j (t)

)
)

+
n∑

j=1
ci j (t)

t∫
−∞

Ki j (t − s) h j (x j (s))ds + Ji (t).

By utilizing a suitable functional, analysis technique and the fact that the kernel is a piecewise
continuous integrable function and it satisfies

t∫

−∞
Ki j (t − s) ds = 1,

∞∫

0

Ki j (s) exp (αs) ds < +∞,

the authors derived new conditions for the existence of an almost periodic solution for this
model. Motivated by the above discussions we give, in this paper, some new sufficient con-
ditions ensuring the existence and attractivity of almost automorphic solution by employing
Banach fixed point theory and using differential inequality technique. Roughly speaking, we
are concerned with the following recurrent neural networks:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋi (t) = −di (t) xi (t)+
n∑

j=1
ai j (t) f j (x j (t))+

n∑
j=1

bi j (t) g j
(
x j
(
t − τ j (t)

))

+
n∑

j=1
ci j (t)

t∫
−∞

Ki j (t − s) h j (x j (s))ds + Ji (t)

xi (t) = x̂i (t) , −∞ < t ≤ 0, i = 1, . . . , n.

(1)

This model have been the object of intensive analysis by numerous authors in recent years
since it presents a generalized class of RNNs with mixed delays and variable coefficients.
Furthermore, from the mathematical point of view, systems with constant coefficients and
finite delays are different from those with variable coefficients and infinite distributed delays,
and classical mathematical methods do not directly apply. But research has focused mainly
on the study of the existence and stability of periodic and/or almost periodic solutions (see,
for example, [4,6,7,11,13,15–17,19] and the references therein) and to the best of our knowl-
edge, the almost automorphic behavior for the recurrent neural network is never considered.
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So the principal motivation of the paper is to establish the existence and the stability of the
unique almost automorphic solution to the model (1).

Clearly, the study of the dynamics of system (1) includes many previous models, such as
models above, and the concept of almost automorphy is more general than almost periodicity.

The paper is organized in the following way. In “Almost Automorphic Functions”, we
will recall the basic properties of the almost automorphic functions. In “Description System
and Preliminaries”, we will introduce some necessary notations, definitions and preliminar-
ies which will be used later. In “Existence of the Almost Automorphic Solution and Global
Exponential Stability of Almost Automorphic Solution”, several sufficient conditions are
derived for the existence and the global exponential stability of the unique almost automor-
phic solutions of the equation (1) in the suitable convex set of AA(R,Rn). In “Illustrative
Examples”, we present two illustrative examples. In particular, we study the cases n = 2 and
n = 3. Finally, conclusions and some comments are drawn in “Global Exponential Stability
of Almost Automorphic Solution”.

It should be mentioned that the main results include Theorems 2 and 3.

Almost Automorphic Functions

In this section, we would like to recall some basic notations and results related to the concept
of almost automorphy which shall come into play later on.

Definition 1 [2] A continuous function f : R −→ R
n is said to be almost automorphic if

for every sequence of real numbers (s′
n)n∈N there exists a subsequence (sn)n∈N such that

g(t) := lim
n→∞ f (t + sn)

is well defined for each t ∈ R, and

lim
n→∞ g(t − sn) = f (t)

for each t ∈ R.

Remark 1 Note that the function g in definition above is measurable but not necessarily
continuous. Moreover, if g is continuous, then f is uniformly continuous. Besides, if the
convergence above is uniform in t ∈ R, then f is almost periodic. Denote by AA(R,Rn) the
collection of all almost automorphic functions

AP(R,Rn) ⊂ AA(R,Rn) ⊂ BC(R,Rn),

where AP(R,Rn) and BC(R,Rn) are respectively the collection of all almost periodic func-
tions and the set of bounded continuous functions from R to R

n .

Among others things, almost automorphic functions satisfy the following properties:

Theorem 1 [9] For all f, f1, f2 ∈ AA(R,Rn), one has

1. f1 + f2 ∈ AA(R,Rn).

2. λ f ∈ AA(R,Rn) for any scalar λ ∈ R

3. fα ∈ AA(R,Rn) where fα : R −→ X is defined by fα (·) = f (· + α).

4. Let f ∈ AA(R,Rn), then the range R f := { f (t), t ∈ R} is relatively compact in X, thus
f is bounded in norm.

5. If fn −→ f uniformly on R where fn ∈ AA(R,Rn), then f ∈ AA(R,Rn).

6. (AA(R,Rn), ‖ . ‖∞) is a Banach space.
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Definition 2 A function f ∈ C(R × R
n,Rn) is said to be almost automorphic in t ∈ R for

each x ∈ X if for every sequence of real numbers (s′
n)n∈N there exists a subsequence (sn)n∈N

such that

g(t, x) := lim
n→∞ f (t + sn, x)

is well defined for each t ∈ R, x ∈ R
n and

lim
n→∞ g(t − sn, x) = f (t, x)

for each t∈ R, x∈ R
n .The collection of such functions will be denoted by AA (R × R

n,Rn) .

Example 1 A classical example of an almost automorphic function which is not almost
periodic, as it is not uniformly continuous, is the function defined by

f (t) = cos

(
1

2 + sin t + sin π t

)
, t ∈ R.

Example 2 The function

f (t, x) = sin
1

2 + cos t + cos
√

2t
cos x,

is almost automorphic in t ∈ R for each x ∈ X , where X = L2 ([0, 1]).

Description System and Preliminaries

The model of the recurrent neural network considered in this paper is described by the
following state equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋi (t) = −di (t) xi (t)+
n∑

j=1
ai j (t) f j (x j (t))+

n∑
j=1

bi j (t) g j
(
x j
(
t − τ j (t)

))

+
n∑

j=1
ci j (t)

t∫
−∞

Ki j (t − s) h j (x j (t))ds + Ji (t)

xi (t) = x̂i (t) , −∞ < t ≤ 0, i = 1, . . . , n,

where n is the number of the neurons in the neural network, xi (t) denotes the state of the i th
neural neuron at time t , f j (x j (t)), g j (x j (t)) and h j (x j (t)) are the activation functions of jth
neuron at time t. The functions ai j (·), bi j (·) and ci j (·) denote, respectively, the connection
weights, the discretely delayed connection weights, and the distributively delayed connection
weights, of the j th neuron on the i neuron. Ji (·) is the external bias on the i th neuron, di (·)
denotes the rate with which the i th neuron will reset its potential to the resting state in isolation
when disconnected from the network and external inputs and τ j (·) is the time delay.

Let us list some assumptions which will be used in the paper.

(H1) The activity functions f j , g j and h j are assumed to be global Lipschitz continuous,
that is, there exist L f j , Lg j , Lh j > 0 such that for all u, v ∈ R

∣∣ f j (u)− f j (v)
∣∣ < L f j |u − v|, ∣∣g j (u)− g j (v)

∣∣ < Lg j |u − v|,
∣∣h j (u)− h j (v)

∣∣ < Lh j |u − v|.
Furthermore, we suppose that f j (0) = g j (0) = h j (0) = 0.

123



Differ Equ Dyn Syst (April 2014) 22(2):191–207 195

(H2)J (·) = (J1(·), . . . , Jn(·)) ∈ AA(R,Rn) and for all 1 ≤ i, j ≤ n the functions
ai j (·), bi j (·) , ci j (·) and di j (·) are almost automorphic.
(H3) In addition

r = max
1≤i≤n

sup
s∈R

(∑n
j=1

∣∣ai j (s)
∣∣ L f j + ∣∣bi j (s)

∣∣ Lg j + M
w

∣∣ci j (s)
∣∣ Lh j

d̃

)
< 1,

where for all 1 ≤ i ≤ n

d̃i = min
ξ∈R

di (ξ) , d̃ = min
1≤i≤n

d̃i .

(H4) The kernel Ki j (·) is almost automorphic and there exist M > 0 and w > 0 such
that

∣∣Ki j (t)
∣∣ ≤ Me−tw.

Existence of the Almost Automorphic Solution

In this section, we establish some results for the existence, uniqueness of the almost auto-
morphic solution of (1). First, we shall recall and prove some technical lemmas which is
necessary to prove the first main theorem in this paper.

Lemma 1 (see [8]) Let f : R × R
n → R

n be an almost automorphic function in t ∈ R for
each x ∈ R

n and assume that f satisfies a Lipschitz condition in x uniformly in t ∈ R. Let
ϕ : R −→ R

n be an almost automorphic function. Then the function

φ : t 
−→ φ (t) = f (t, ϕ (t))

is almost automorphic.

Lemma 2 Suppose that assumptions (H1), (H4) hold and x j (·) ∈ AA(R,R) then

φ : t 
−→
t∫

−∞
Ki j (t − s) h j (x j (s))ds

belongs to AA(R,R).

Proof By the composition theorem of almost automorphic functions [9], the functions ψ :
s 
−→ h j (x j (s)) belongs to AA(R,R) whenever x j ∈ AA(R,Rn). Now, let

(
s′

n

)
be a

sequence of real numbers. By (H3) we can extract a subsequence (sn) of
(
s′

n

)
such that for

all t, s ∈ R

lim
n→+∞ Ki j (t − s + sn) = K 1

i j (t − s) , lim
n→+∞ K 1

i j (t − s − sn) = Ki j (t − s),

and

lim
n→+∞ψ (t + sn) = ψ1 (t) , lim

n→+∞ψ
1 (t − sn) = ψ (t).

Pose

φ1 : t 
−→
t∫

−∞
Ki j (t − s) ψ1(s)ds.
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Clearly

φ1 (t + sn)− φ1 (t) =
t+sn∫

−∞
Ki j (t − s + sn) ψ(s)ds −

t∫

−∞
Ki j (t − s) ψ1(s)ds

=
t∫

−∞
Ki j (t − u) ψ(u + sn)du −

t∫

−∞
Ki j (t − s) ψ1(s)ds

=
t∫

−∞
Ki j (t − u)

∣∣ψ(u + sn)− ψ1(s)
∣∣ ds

≤
t∫

−∞
Me−(t−s)w

∣∣ψ(s + sn)− ψ1(s)
∣∣ ds.

By the well known Lebesgue Dominated Convergence Theorem and (H2) , we have for all
t ∈ R

lim
n→∞φ(t + sn) = φ1 (t).

Similarly for each t ∈ R

lim
n→∞φ

1(t − sn) = φ (t),

which implies that φ : t 
−→
t∫

−∞
Ki j (t − s) h j (x j (s))ds belongs to AA(R,R). ��

Lemma 3 Suppose that assumptions (H1), (H2) and (H3) hold. Define the nonlinear oper-
ator Γ by: for each ϕ ∈ AA(R,Rn)

(Γ ϕ)(t) = col

⎧
⎨

⎩

t∫

−∞
e
−

t∫
s

di (ξ)dξ

⎡

⎣
n∑

j=1

ai j (s) f j (ϕ j (s))

+
n∑

j=1

bi j (s) g j
(
ϕ j
(
s − τ j (s)

))

+
n∑

j=1

ci j (s)

t∫

−∞
Ki j (s − u) h j (ϕ j (u))du + J j (s)

⎤

⎦ ds

⎫
⎬

⎭.

Then Γ maps AA(R,Rn) into itself.

Proof First of all, let us check that Γ is well defined. Indeed, by Theorem 1, the space
AA(R,Rn) is translation invariant. Besides, by Lemmas 1 and 2 the function

χi : s 
−→
n∑

j=1

ai j (s) f j (ϕ j (s))+
n∑

j=1

bi j (s) g j

(
ϕ j
(
s − τ j (s)

) )

+
n∑

j=1

ci j (s)

t∫

−∞
Ki j (s − u) h j

(
ϕ j (u)

)
du + Ji (s)
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belongs to AA(R,R). Consequently we can write

(Γ ϕ)(t) := col

⎧
⎨

⎩

t∫

−∞
exp

⎛

⎝−
t∫

s

di (ξ) dξ

⎞

⎠χi (s) ds

⎫
⎬

⎭.

Let
(
s′

n

)
be a sequence of real numbers. By (H3) we can extract a subsequence (sn) of

(
s′

n

)

such that for all t, s ∈ R

lim
n→+∞ di (t + sn) = d1

i (t) , lim
n→+∞ d1

i (t − sn) = di (t)

and

lim
n→+∞χi (t + sn) = χ1

i (t) , lim
n→+∞χ1

i (t − sn) = χi (t).

Pose

(Γ 1ϕ)(t) :=
t∫

−∞
exp

⎛

⎝−
t∫

s

d1
i (ξ) dξ

⎞

⎠χ1
i (s) ds.

It follows that

(Γ 1ϕ)(t + sn)− (Γ 1ϕ)(t) =
t+sn∫

−∞
e
−

t+sn∫
s

di (ξ)dξ
χi (s) ds −

t∫

−∞
exp

−
t∫

s
d1

i (ξ)dξ
χ1

i (s) ds

=
t+sn∫

−∞
e
−

t∫
s−sn

di (σ+sn)dσ
χi (s) ds −

t∫

−∞
e
−

t∫
s

d1
i (ξ)dξ

χ1
i (s) ds

=
t∫

−∞
e
−

t∫
u

di (σ+sn)dσ
χi (u + sn) du −

t∫

−∞
e
−

t∫
s

d1
i (ξ)dξ

χ1
i (s) ds

=
t∫

−∞
e
−

t∫
u

di (σ+sn)dσ
χi (u+sn) du−

t∫

−∞
e
−

t∫
u

di (σ+sn)dσ
χ1

i (u) du

+
t∫

−∞
e
−

t∫
u

di (σ+sn)dσ
χ1

i (u) du −
t∫

−∞
e
−

t∫
u

d1
i (ξ)dξ

χ1
i (u) du

=
t∫

−∞
e
−

t∫
u

di (σ+sn)dσ (
χi (s + sn)− χ1

i (s)
)

ds

+
t∫

−∞

⎛

⎝e
−

t∫
u

di (σ+sn)dσ − e
−

t∫
s

d1
i (ξ)dξ

⎞

⎠χ1
i (s) ds.

Again by the Lebesgue Dominated Convergence Theorem we obtain immediately that ∀t ∈ R

lim
n→+∞(Γ

1ϕ)(t + sn) = (Γ 1ϕ)(t).
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The same approach proves that ∀t ∈ R

lim
n→+∞(Γ

1ϕ)(t − sn) = (Γ ϕ)(t) ∀t ∈ R.

Consequently, the function (Γ ϕ) belongs to AA(R,R). ��

Theorem 2 Suppose that assumptions (H1)− (H4) hold. Then the recurrent neural networks
(1) has a unique almost automorphic solution in the region

B = B(ϕ0, r) =
{
ϕ ∈ AA(R,Rn), ‖ϕ − ϕ0‖ ≤ r ‖J‖∞

d̃ (1 − r)

}
,

where

ϕ0 (t) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t∫
−∞

exp

(
−

t∫
s

d1 (ξ) dξ

)
J1 (s) ds

...

...
t∫

−∞
exp

(
−

t∫
s

dn (ξ) dξ

)
Jn (s) ds

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Proof Set

B = B(ϕ0, r)

=
{
ϕ ∈ AA(R,Rn), ‖ϕ − ϕ0‖ ≤ r ‖J‖∞

d̃ (1 − r)

}
.

Clearly, B is a closed convex subset of AA(R,Rn). One has immediately

‖ϕ0 (t)‖ = max
1≤i≤n

sup
t∈R

∥∥∥∥∥∥

t∫

−∞
e
−

t∫
s

di (ξ)dξ
Ji (s) ds

∥∥∥∥∥∥

≤ ‖J‖∞ max
1≤i≤n

sup
t∈R

t∫

−∞
e−(t−s)d̃i ds

= ‖J‖∞
d̃

.

Therefore, for any ϕ ∈ B and by using the estimate just obtained, we see easily that

‖ϕ‖ ≤ ‖ϕ − ϕ0‖ + ‖ϕ0‖
≤ r ‖J‖∞

d̃ (1 − r)
+ ‖J‖∞

d̃
= ‖J‖∞

d̃ (1 − r)
.

Now we prove that Γ is a self-mapping from B to B. In fact, for arbitrary ϕ ∈ B it follows:

‖(Γ ϕ)(t)− ϕ0(t)‖

= max
1≤i≤n

sup
t∈R

∥∥∥∥∥∥

t∫

−∞
e
−

t∫
s

di (ξ)dξ

⎧
⎨

⎩

n∑

j=1

ai j (s) f j (ϕ j (s)) +
n∑

j=1

bi j (s) g j
(
ϕ j
(
s − τ j (s)

))
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+
n∑

j=1

ci j (s)

t∫

−∞
Ki j (t − σ) h j

(
ϕ j (σ )

)
dσ

⎫
⎬

⎭ ds

∥∥∥∥∥∥

= max
1≤i≤n

sup
t∈R

∑n
j=1 L f j

∣∣ai j (t)
∣∣+∑n

j=1 Lg j

∣∣bi j (t)
∣∣+ M

w

∑n
j=1 Lh j

∣∣bi j (t)
∣∣

d̃
‖ϕ‖∞

≤ r ‖J‖∞
d̃ (1 − r)

,

which implies that (Γ ϕ) ∈ B. Next, we prove the mapping Γ is a contraction mapping of
B. In view of (H2), for any ϕ,ψ ∈ B, we get the following estimates:

‖(Γ ϕ)(t)− (Γ ψ)(t)‖ ≤ max
1≤i≤n

sup
t∈R

t∫

−∞
e
−

t∫
s

di (ξ)dξ

⎧
⎨

⎩

n∑

j=1

∣∣ai j (s)
∣∣ ∣∣ f j (ϕ j (s))− f j (ψ j (s))

∣∣

+
n∑

j=1

∣∣bi j (s)
∣∣ ∣∣g j

(
ϕ j
(
s − τ j (s)

))− g j
(
ψ j
(
s − τ j (s)

))∣∣

+
n∑

j=1

∣∣ci j (s)
∣∣

t∫

−∞
Ki j (t − σ)

∣∣h j (ϕ j (σ ))− h j (ψ j (σ ))
∣∣ dσ

⎫
⎬

⎭ ds

≤ max
1≤i≤n

sup
t∈R

t∫

−∞
e
−

t∫
s

di (ξ)dξ

⎧
⎨

⎩

n∑

j=1

∣∣ai j (s)
∣∣ L f j

∣∣ϕ j (s)− ψ j (s)
∣∣

+
n∑

j=1

∣∣bi j (s)
∣∣ Lg j

∣∣ϕ j
(
s − τ j (s)

)− ψ j
(
s − τ j (s)

)∣∣

+
n∑

j=1

∣∣ci j (s)
∣∣

t∫

−∞
Ki j (t − σ) Lh j

∣∣ϕ j (σ )− ψ j (σ )
∣∣ dσ

⎫
⎬

⎭ ds

≤ max
1≤i≤n

sup
s∈R

(∑n
j=1 L f j

∣∣ai j (s)
∣∣+ ∣∣bi j (s)

∣∣ Lg j + M
w

∣∣ci j (s)
∣∣ Lh j

d̃

)

×‖ϕ − ψ‖ .
Then from (H3) it follows that Γ is contracting operator in B. So there exists a unique almost
automorphic solution x∗ ∈ B of (1) that is Γ (x∗) = x∗. ��

Global Exponential Stability of Almost Automorphic Solution

In this section, we shall discuss the global exponential stability of the almost automorphic
solution of system (1). For any solution

x (t) = (x1 (t) , . . . , xn (t))

and almost automorphic solution

x∗ (t) = (x∗
1 (t) , . . . , x∗

n (t)
)
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of system (1) with the initial condition

xi (t) = x̂i (t), −∞ < t ≤ 0, 1 ≤ i ≤ n,

set

z(t) = x (t)− x∗ (t) = (x1 (t)− x∗
1 (t) , . . . , xn (t)− x∗

n (t)
)
.

Definition 3 The almost automorphic solution x∗ (·) = (x∗
1 (·) , . . . , x∗

n (·)
)

of RNNs is said
to be globally exponentially stable, if, for any solution x (·) = (x1 (·) , . . . , xn (·)) there exist
constants M > 0 and μ > 0 such that for all t ∈ R

∥∥x∗ (t)− x (t)
∥∥ ≤ Me−μt .

Definition 4 [12] (The upper-right Dini derivative)

Let f : R −→ R be a continuous function, then the upper-right Dini derivative D+ f (t)
dt is

defined by

D+ f (t)

dt
= lim

h→0+
f (t + h)− f (t)

h
.

Remark 2 The upper-right Dini derivative D+V | f (t)|
dt of | f (t)| is given by

D+V | f (t)|
dt

= sign ( f (t))
d f (t)

dt

where sign(·) is the signum function.

Remark 3 It is well known that global exponential stability is a strong form of stability since
it implies uniform, asymptotic stability. Furthermore, exponential stability is important in
applications since it is robust to various types of perturbations.

Theorem 3 Suppose that assumptions (H1)− (H4) hold. Let x∗ (t) = (
x∗

1 (t) , . . . , x∗
n (t)

)

is the unique almost automorphic solution of Eq. (1) in B. If for every sufficiently small t > 0

(H5)d̃ −
⎛

⎝
n∑

j=1

L f j ai j + eτ t bi j Lg j + ci j Lh j

+∞∫

0

Ki j (ρ) etρdρ

⎞

⎠ > 0,

where

ai j = sup
t∈R

∣∣ai j (t)
∣∣ , bi j = sup

t∈R

∣∣bi j (t)
∣∣ , ci j = sup

t∈R

∣∣ci j (t)
∣∣ .

Then x∗ (·) is globally exponentially stable.

Proof For 1 ≤ i ≤ n, set

ψi (t) = t − di +
n∑

j=1

⎛

⎝L f j ai j + eτ t bi j Lg j + ci j Lh j

+∞∫

0

Ki j (ρ) etρdρ

⎞

⎠.

It is clear that the functions t 
−→ ψi (t), 1 ≤ i ≤ n, are continuous on R
+ and by hypothesis

(H5), ψi (0) < 0. Thus, there exists a sufficiently small constant μ such that

ψi (μ) < 0, 1 ≤ i ≤ n.
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Take an arbitrary ε > 0. Set, for all 1 ≤ j ≤ n,

z j (t) =
∣∣∣x∗

j (t)− x j (t)
∣∣∣ eμt .

Then for all 1 ≤ j ≤ n, and for all −τ ≤ t ≤ 0, one has

z j (t) ≤ M < M + ε. (2)

In the following, we shall prove that for all t > 0,

z j (t) ≤ M + ε.

Suppose the contrary. Let us denote Ai = {
t > 0, z j (t) > M + ε

}
. It follows that there

exists 1 ≤ j0 ≤ n such that A j0 �= ∅. Let

t j =
{

inf
(

A j
) {

t > 0, z j (t) > M + ε
} �= ∅,

+∞ {
t > 0, z j (t) > M + ε

} = ∅.
Clearly t j > 0 and for all −τ ≤ t < t j . Further, one has

z j (t) ≤ M + ε.

Let us denote ts = min1≤ j≤n t j . It follows that 0 < ts < +∞ and for all −τ ≤ t ≤ ts . Note
that

zs (ts) = M + ε, D+zs (ts) ≥ 0.

Now since x j (·) and x∗
j (·) are solutions of (1) , we get

0 ≤ D+zs (ts) = D+ [
∣∣∣x∗

j (t)− x j (t)
∣∣∣ eμt

]

|t=ts

= eμts

⎡

⎣μ
∣∣∣x∗

j (t)− x j (t)
∣∣∣+

D+
∣∣∣x∗

j (t)− x j (t)
∣∣∣

dt
|t=ts

⎤

⎦

= ∣∣x∗
s (ts)− xs (ts)

∣∣μeμts + eμts sgn
(
x∗

s (ts)− xs (ts)
)

×
⎧
⎨

⎩−ds (ts)
(
x∗

s (ts)− xs (ts)
)+

n∑

j=1

as j (ts) f j (x
∗
j (ts))− f j (x j (ts))

+ eμτ
n∑

j=1

bs j (ts)

[
g j

(
x∗

j

(
ts − τ j (ts)

) )− g j
(
x j
(
ts − τ j (ts)

))]

+
n∑

j=1

ci j (ts)

⎡

⎣
ts∫

−∞
Ki j (ts − ρ)

(
h j

(
x∗

j (ρ)
)

− h j
(
x j (ρ)

))
dρ

⎤

⎦

⎫
⎬

⎭

<
∣∣x∗

s (ts)− xs (ts)
∣∣μeμts + eμts

(
− ds (ts)

∣∣x∗
s (ts)− xs (ts)

∣∣

+
n∑

j=1

∣∣ai j (ts)
∣∣ L f j

∣∣∣x∗
j (ts)− x j (ts)

∣∣∣

+ eμτ
n∑

j=1

∣∣bi j (ts)
∣∣ Lg j

∣∣∣x∗
j

(
ts − τ j (ts)

)− x j
(
ts − τ j (ts)

)∣∣∣
)
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+ eμts
n∑

j=1

∣∣ci j (ts)
∣∣ Lh j

⎡

⎣
+∞∫

0

Ki j (u) eμu
∣∣∣x∗

j (ts − u)− x j (ts − u)
∣∣∣ du

⎤

⎦

≤ (M+ε) (μ−ds (ts))+
n∑

j=1

∣∣ai j (ts)
∣∣ L f j z j (ts)+ eμτ

n∑

j=1

∣∣bi j (ts)
∣∣ Lg j

z j
(
ts − τ j (ts)

)

+
n∑

j=1

∣∣ci j (ts)
∣∣ Lh j

+∞∫

0

ki j (u) eμu z j (ts − u)du

≤ (M + ε)

⎛

⎝μ− d̃s +
n∑

j=1

ai j L f j + eμτbi j Lg j + ci j Lh j

+∞∫

0

ki j (u) eμudu

⎞

⎠.

It follows that

μ− d̃s +
n∑

j=1

ai j L f j + eμτbi j Lg j + ci j Lh j

+∞∫

0

ki j (u) eμudu ≥ 0,

that is ψi (μ) ≥ 0 which contradicts the fact that ψi (μ) < 0. Thus we obtain that for all
t > 0,

z j (t) = ∣∣x j (t)− ϕ j (t)
∣∣ ≤ (M + ε) e−μt.

Note that ‖x (t)− x∗
j (t) ‖ = max1≤ j≤n |x j (t)− x∗

j (t) |, then passing to limit when ε → 0+
we obtain for all t > 0

‖x (t)− x∗
j (t) ‖ ≤ Me−μt .

The proof of this theorem is now completed. ��
Remark 4 If should be noted that, if we let f j = g j and pi j = 0, the model (1) is the one
investigated in [5]. Besides, in [10] and [20] , Gopalsamy et al. analyzed the global stability
of the following system:

ẋi (t) = −ai xi (t)+
n∑

j=1

pi j (t)

t∫

−∞
Ki j (t − s) h j (x j (s))ds + Ji , 1 ≤ i ≤ n,

as a model for neural networks involving distributed time delays arising from signal prop-
agation. Due to the difference in the methods discussed, the results in this paper and those
in the above references are different. Therefore, our results are novel and have some signifi-
cance in theories as well as in applications of almost periodic oscillatory neural networks. On
the other hand, different approach is used in [14] to obtain several sufficient conditions for
the existence and attractivity of almost periodic solution for a new class of recurrent neural
networks similar than (1). Note that in this study the kernel ki j is a piecewise continuous
integrable function, and it satisfies that

+∞∫

0

Ki j (s) ds = 1,

+∞∫

0

sKi j (s) ds = 1, ∀1 ≤ i ≤ n.

Let us notice that the last hypothesis was omitted in this paper.
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Remark 5 In [1] similar techniques are used in order to study the pseudo almost periodic
solutions with di (t) = di . Recently, Quin et al. [18] investigated the existence, uniqueness
and stability of almost periodic solution for the class of delayed neural networks. First, our
results can be seen as a generalization and improvement of [18] since in the models (1) and
(3) of [18] authors considered the almost periodic case without distributed delays term

t∫

−∞
Ki j (t − s) h j (x j (s))ds

Second, in our study we deal with the space of almost automorphic functions which
contains the set of almost periodic functions. Further the methods are quite different. Con-
sequently, Theorems 2 and 3 generalise and improve Theorem (3.1) in [18].

Illustrative Examples

The sufficient condition for existence and stability of a class of delayed RNNs presented in
this paper is demonstrated by a couple of examples and numerical simulations.

Example 1 First, let us apply our main results to some special three-dimensional systems

ẋi (t) = −di (t) xi (t)+
3∑

j=1

ai j (t) f j (x j (t))+
3∑

j=1

bi j (t) g j (x j (t − τ))

+
3∑

j=1

ci j (t)

t∫

−∞
Ki j (t − s) h j (x j (s))ds + Ji (t) ,

where

⎛

⎜⎝

d1 (t)

d2 (t)

d3 (t)

⎞

⎟⎠ =

⎛

⎜⎜⎜⎝

3 + cos
(

1
2+sin t+sin

√
2t

)

7 + 3 cos
(

1
2+sin t+sin

√
2t

)

5 + 2 sin
(

1
2+cos t+sin

√
2t

)

⎞

⎟⎟⎟⎠

for all t ∈ R,

f j (t) = g j (t) = h j (t) = |t + 1| − |t − 1|
2

and

Ki j (t) = cos

(
1

2 + sin t + sin
√

2t

)
− 1 �⇒ Ki j (t) ≤ e−t ,

(
ai j
) =

⎛

⎜⎜⎜⎜⎜⎝

2 cos t+cos
√

2t
10

cos
(

1
2+sin t+sin

√
2t

)

10

sin
(

1
1+sin t+sin

√
5t

)

10

2 cos t+0,1 cos
√

3t
10

cos
(

1
2+sin t+sin

√
3t

)

10

cos
(

1
2+sin t+sin

√
2t

)

10

2 sin t+sin
√

2t
10

sin
(

1
2+sin t+sin

√
2t

)

5

sin
(

1
2+sin t+sin

√
3t

)

5

⎞

⎟⎟⎟⎟⎟⎠
,
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(
bi j
) =

⎛

⎜⎜⎜⎜⎜⎝

2 sin
√

2t+sin
√

3t
10

cos
(

1
2+sin t+sin

√
2t

)

5

sin
(

1
1+sin t+sin

√
5t

)

10

2 cos
√

5t+cos
√

3t
10

cos
(

1
2+sin t+sin

√
3t

)

10

cos
(

1
2+sin t+sin

√
2t

)

5

2 sin
√

3t+cos
√

2t
10

sin
(

1
2+sin t+sin

√
2t

)

10

sin
(

1
2+sin t+sin

√
3t

)

5

⎞

⎟⎟⎟⎟⎟⎠
,

(
ci j
) =

⎛

⎜⎜⎜⎜⎜⎝

2 cos t+3 cos
√

2t
10

cos
(

1
2+sin t+sin

√
2t

)

10

sin
(

1
1+sin t+sin

√
5t

)

5

2 cos t+cos
√

3t
10

cos
(

1
2+sin t+sin

√
3t

)

10

3 cos
(

1
2+sin t+sin

√
2t

)

10

sin t+sin
√

2t
10

sin
(

1
2+sin t+sin

√
2t

)

5

sin
(

1
2+sin t+sin

√
3t

)

5

⎞

⎟⎟⎟⎟⎟⎠
,

and

Ji (t) =

⎛

⎜⎜⎜⎜⎜⎝

cos
(

1
2+sin t+sin

√
2t

)

5

cos
(

1
2+sin t+sin

√
2t

)

2

3 cos
(

1
2+sin t+sin

√
2t

)

10

⎞

⎟⎟⎟⎟⎟⎠
.

It follows that

r = max
1≤i≤3

sup
s∈R

(∑3
j=1

∣∣ai j (s)
∣∣ L f j +∑3

j=1

∣∣bi j (s)
∣∣ Lg j + M

w

∑3
j=1

∣∣ci j (s)
∣∣ Lh j

d̃

)

= max
1≤i≤3

sup
s∈R

(∑3
j=1

∣∣ai j (s)
∣∣+∑3

j=1

∣∣bi j (s)
∣∣+∑3

j=1

∣∣ci j (s)
∣∣

d̃

)

< max

(
0.5 + 0.6 + 0.8

2
,

0.5 + 0.6 + 0.7

2
,

0.7 + 0.5 + 0.6

2

)

< 1.

Further the condition (H5) is also satisfied, therefore, all conditions of Theorem 3 are satisfied,
then the delayed recurrent neural networks have a unique almost automorphic solution in the
convex set

B = B(ϕ0, r) = {ϕ ∈ AA(R,R3), ‖ϕ − ϕ0‖ ≤ 4.75
}
.

Moreover, the solution is exponential stable (see Fig. 1).

Example 2 Now let us consider the following recurrent neural network (n = 2)

ẋi (t) = −di (t) xi (t)+
2∑

j=1

ai j f j (x j (t))+
2∑

j=1

bi j g j (x j (t − τ))

+
2∑

j=1

ci j

t∫

−∞
Ki j (t − s) h j (x j (s))ds + Ji (t) , (1.2) ,

where
(

d1 (t)
d2 (t)

)
=
(

3 + cos
√

5t
5 + sin

√
3t

)
�⇒ d̃ = 2
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Fig. 1 Behavior of AA solution with the initial condition (0.5, 0.2, 0.3)

for all t ∈ R and for all 1 ≤ j ≤ 2

f j (t) = g j (t) = h j (t) = |t + 1| − |t − 1|
2

.

Pose for all 1 ≤ i, j ≤ 2

Ki j (t) = cos

(
1

2 + sin t + sin
√

2t

)
− 1 �⇒ Ki j (t) ≤ e−t

(
ai j
) =

(
1
5

−1
5

3
10

1
5

)
,
(
bi j
) =

(
1
5

1
2

4
5

−1
10

)
,
(
ci j
) =

(
1
5

1
5

1
10

−3
10

)

and

Ji (t) =
⎛

⎜⎝
cos

√
3t+cos

(
1

2+sin t+sin
√

2t

)

5

sin
√

5t+3 cos
(

1
2+sin t+sin

√
2t

)

10

⎞

⎟⎠.

It follows that

r = max
1≤i≤2

(∑2
j=1 L f j

∣∣ai j
∣∣+∑2

j=1

∣∣bi j
∣∣ Lg j + M

w

∑2
j=1

∣∣ci j
∣∣ Lh j

d̃

)
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Fig. 2 Behavior of AA solution with the initial condition (0.4, 0.3)

= max
1≤i≤2

(∑2
j=1

∣∣ai j
∣∣+∑2

j=1

∣∣bi j
∣∣+∑2

j=1

∣∣ci j
∣∣

d̃

)

< max

(
1.5

2
,

1.9

2

)

< 1.

Further the condition (H5) is also satisfied, therefore, all conditions of Theorem 3 are satisfied,
then the delayed recurrent neural networks above have a unique almost automorphic solution
which is exponential stable (see Fig. 2).

Conclusion

As is well konwn, time delays are likely to be present in the implementing of neural networks
due to the finite switching speed of amplifiers. The time delays in the response can influence
the stability of a network by causing oscillatory and unstable characteristics. In this paper, the
existence and uniqueness of almost automorphic solution for the recurrent neural networks
with variable coefficients and time-varying delay have been studied. Furthermore, several
sufficient conditions have also been proposed to guarantee the global exponential stability
of the almost automorphic solution. Hence, we improve the results of ([4,14,16] and [19])
since these papers considered the periodic and the almost periodic situations. Moreover, our
criteria are easy to check and apply in practice and are of prime importance and great interest
in many application fields and the designs of networks. Finally, two illustrative examples are
given to demonstrate the effectiveness of the obtained results. In a future study, we will also
make an attempt to extend the results of this paper to the space of pseudo almost automor-
phic functions without difficulty. Recall that the new concept of pseudo almost automorphy
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generalizes the one of pseudo almost periodicity, in fact, a pseudo almost automorphic func-
tion is the sum of an almost automorphic function and of an ergodic perturbation. Besides,
another important task will be to consider the exponential sinchronization of this class of
RNNs with mixed delays.

Acknowledgements The author wish to thank the anonymous reviewers for their insightful and constructive
comments, which help to enrich the content and improve the presentation of this paper.
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