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Abstract This paper deals with ratio-dependent predator-prey systems with delay.

We will investigate under what conditions delay cannot cause instability in higher

dimensions. We give an example when delay causes instability.
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1. Introduction

Let us consider the following ratio-dependent ecological system, in which n differ-

ent predator species (the i-th predator quantities at time t are denoted by yi(t),

i = 1, 2, . . . , n respectively) are competing for a single prey species (the quantity of

prey at time t is denoted by x(t)):

ẋ = rxg(x,K) −
n�

i=1

yipi

�yi

x

�

ẏi = yipi

�yi

x

�
− diyi, i = 1, 2, . . . , n

����
��� . (1.1)

where dot means differentiation with respect to time t. We assume that the per capita

growth rate of prey in absence of predators is rg(x,K) where r is a positive constant
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(in fact the maximal growth rate of prey), K > 0 is the carrying capacity of environment

with respect to the prey, the function g satisfies some natural conditions, see the details

in [6]. For example one of these conditions is the following:

(K − x)g(x,K) > 0, x ≥ 0, x �= K. (1.2)

Such a function g is the so called logistic growth rate of prey

g(x,K) = 1 − x

K
. (1.3)

We assume further that the death rate di > 0 of predator i is constant and the per

capita birth rate of the same predator is pi

�yi

x

	
, where the function pi also satisfies

some natural conditions, see also in [6].

In that paper we have already investigated the system with the Michaelis–Menten

or Holling type functional response in case of ratio-dependence:

pi

�yi

x
, ai

�
= mi

x

aiyi + x
(1.4)

and with the ratio-dependent Ivlev functional response:

pi

�yi

x
, ai

�
= mi

�
1 − e

− x
aiyi

�
, (1.5)

where parameter ai is the so called “half-saturation constant”, namely in the case where

pi is a bounded function for fixed ai > 0, mi = sup
x,yi>0

pi(x, yi, ai) is the “maximal birth

rate” of the i-th predator. That means, if the functional response is a Holling-type one

without ratio-dependence then ai means the quantity of prey at which the birth rate

of predator i is half of its supremum. In case of a ratio-dependent Holling model ai

means a proportion of prey to predator at which the birth rate is half of its supremum.

In case of an Ivlev model the meaning of ai is similar to the earlier, see the details in

[6]. (To save space we did not write out the dependence on ai in (1.1).) For the survival

of predator i it is, clearly, necessary that the maximal birth rate be larger than the

death rate:

mi > di. (1.6)

This will be assumed in the sequel. Finally, we assume that the presence of predators

decreases the growth rate of prey by the amount equal to the birth rate of the respective

predator.

2. Model with delay

We get a more realistic model if we take into account that the predators’ growth

rate at present depends on past quantities of prey and therefore a continuous weight

(or density) function f is introduced whose role is to weight moments of the past.

Function f satisfies the following requirements:

f(s) ≥ 0, s ∈ (0,∞);


 ∞

0
f(s)ds = 1, (2.7)

and x(t) is replaced in the growth rate of predator i by its weighted average over the

past:

q(t) :=


 t

−∞
x(τ )f(t − τ )dτ. (2.8)
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This means that the time average of prey quantity over the past has the same fading

influence on the present growth rates of different predators. The simplest choice is

f(s) = αe−αs, with α > 0. This function satisfies the condition (2.7) and now

q(t) =


 t

−∞
x(τ )αe−α(t−τ)dτ. (2.9)

We call this choice of f exponentially fading memory, see in [2], [7]; later in [4]. (Since

f is the probability density of an exponentially distributed random variable, the prob-

abilistic interpretation is obvious.) The smaller α > 0 is the longer is the time interval

in the past in which the values of x are taken into account, i.e. 1
α is the “measure of

the influence of the past”. It is easy to see that with this special delay, system (1.1) is

equivalent to the following system of ordinary differential equations:

ẋ = rxg(x,K) −
n�

i=1

yipi

�yi

x

�

ẏi = yipi

�
yi

q

�
− diyi, i = 1, 2, . . . , n

q̇ = α(x − q)

��������
�������

, (2.10)

where function pi(
yi

q ) can be (1.4),(1.5) or any kind of general ratio-dependent func-

tional response if we replace x(t) by the time average q(t) of prey quantity over the

past. Similar systems have been studied by many authors in the two-dimensional case,

specially in [1], and also with diffusion in [8]. In [1] the functional response was of the

simplest Holling-type one without ratio-dependence and in [8] the functional response

was of the Michaelis–Menten-type with ratio-dependence and also with diffusion. Our

aim in this paper is to study the effect of exponentially fading memory in case of a

general ratio-dependent functional response with more than one different predators.

The qualitative behaviour of (1.1) was studied in [6], where it has been supposed

that there exists an equilibrium point E∗(x∗, y∗1 , . . . , y∗n) in the positive orthant, where

x∗, and y∗i are the solutions of the following equations:

rxg(x,K) =
n�

i=1

diyi, pi

�yi

x

�
= di, i = 1, . . . , n. (2.11)

Note that x∗ > 0 if and only if K > x∗ because of (1.2).

The coefficient matrix of the system (1.1) linearized at E∗ is:

A=



���������������

a11 −d1 − y∗1p′∗1 1
x∗ −d1 − y∗2p′∗2 1

x∗ . . . . . . −dn − y∗np′∗n 1
x∗

y∗1p′∗1 (− y∗
1

x∗2 ) y∗1p′∗1 1
x∗ 0 . . . . . . 0

y∗2p′∗2 (− y∗
2

x∗2 ) 0 y∗2p′∗2 1
x∗ . . . . . . 0

...
...

...
...

...
...

y∗n−1p′∗n−1(−
y∗

n−1
x∗2 ) 0 0 . . . y∗n−1p′∗n−1

1
x∗ 0

y∗np′∗n (− y∗
n

x∗2 ) 0 0 . . . 0 y∗np′∗n 1
x∗

�
���������������

(2.12)



20 Krisztina Kiss and János Tóth

where

a11 = rg(x∗, K) + rx∗g′x(x∗, K) −
n�

i=1

y∗i p′∗i
�
− y∗i

x∗2

�
, (2.13)

p′∗i = p′i
�

yi
∗

x∗

�
; p′i

�yi

x

�
=

dpi

�yi

x

	
d
�yi

x

	 . (2.14)

An n × n matrix A = [aij ] is said to be stable if each of its eigenvalues has a negative

real part. The following definition can be found in [5]:

Definition 2.1 An n×n matrix A = [aij ] is called sign-stable if each matrix Ã of the

same sign-pattern as A (sign ãij = sign aij for all i, j) is stable.

It was proven in [6] the following:

Theorem 2.2 If

a11 ≤ 0, (2.15)

p′i
∗

= p′i
�

yi
∗

x∗

�
< 0, i = 1, . . . , n, (2.16)

and

−di − yi
∗p′i

∗ 1

x∗ = −di − yi
∗p′i

�
yi

∗

x∗

�
1

x∗ < 0, i = 1, . . . , n (2.17)

then matrix (2.12) is sign-stable, thus, E∗ is an asymptotically stable equilibrium point

of system (1.1).

Now, let us suppose that there exists a positive equilibrium point E∗(x∗, y∗1 , . . . , y∗n)

of system (1.1), then with the definition q∗ := x∗ and E∗
d(x∗, y∗1 , . . . , y∗n, q∗) we get an

equilibrium point of (2.10) in the positive orthant. And again x∗ > 0 if and only if

K > x∗.
The coefficient matrix of system (2.10) linearized at E∗

d is:

Ad =



�������������

a11 −d1 − y∗1p′∗1 1
x∗ −d2 − y∗2p′∗2 1

x∗ . . . . . . −dn − y∗np′∗n 1
x∗ 0

0 y∗1p′∗1 1
x∗ 0 . . . 0 y∗1p′∗1 (− y∗

1
x∗2 )

0 0 y∗2p′∗2 1
x∗ . . . 0 y∗2p′∗2 (− y∗

2
x∗2 )

...
...

...
...

...
...

0 . . . . . . 0 y∗np′∗n 1
x∗ y∗np′∗n (− y∗

n

x∗2 )

α 0 . . . . . . 0 −α

�
�������������

(2.18)

where a11 is given by (2.13) and again p′i
∗

= p′i
�yi

∗
x∗
	
; p′i

�yi

x

	
=

dpi

�
yi
x

	
d
�

yi
x

	 .

We note that (2.18) can not be sign-stable because its graph has cycles. (See in [5].)

Let us restrict the number of predators to two.
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2.1. One prey two predators with delay

Let us consider system (2.10) in case of n = 2. We suppose that (2.15),(2.16), (2.17)

hold for i = 1, 2. In this special case the entries of matrix Ad are a11 ≤ 0, a22, a33 < 0,

a12, a13 < 0, a24, a34 > 0, a41 = α > 0, a44 = −α < 0. This means that Ad has the

following sign pattern:

Ad =



���
−/0 − − 0

0 − 0 +

0 0 − +

α 0 0 −α

�
��� . (2.19)

The characteristic polynomial of a matrix with the same sign pattern as (2.19) is:

D(λ) = λ4 + a3λ3 + a2λ2 + a1λ + a0 (2.20)

with

a3 = −a11 − a22 − a33 + α,

a2 = a11a22 + a11a33 + a22a33 − α(a11 + a22 + a33),

a1 = −a11a22a33 + α(a11a22 + a11a33 + a22a33) − α(a12a24 + a13a34),

a0 = detAd = α(−a11a22a33 + a22a13a34 + a33a12a24).

It is known that the necessary condition of stability of the polynomial D(λ) is

ai > 0, i = 0, 1, 2, 3.

Lemma 2.1 If Ad has the same sign pattern as (2.19) then the above necessary con-

ditions of stability are satisfied for all α > 0.

Proof It is an elementary calculation to prove ai > 0, i = 0, 1, 2, 3, for all α > 0.

Sufficient condition of stability of matrix Ad in this case is:

a3(a1a2 − a0a3) − a2
1 > 0 (2.21)

See for example Theorem 1.4.8 in [3]. It leads to a very complicated formula. In order

to check this we used Wolfram Mathematica 6.0. http://www.wolfram.com. We got

the following:

H(α) = a3(a1a2 − a0a3) − a2
1

= (−a22a2
11 − a33a2

11 − a2
22a11 − a2

33a11 + a12a24a11 − 2a22a33a11 + a13a34a11

− a22a2
33 + a12a22a24 − a2

22a33 + a13a33a34) α3

+ (a22a3
11 + a33a3

11 + 2a2
22a2

11 + 2a2
33a2

11 − a12a24a2
11 + 4a22a33a2

11

− a13a34a2
11 + a3

22a11 + a3
33a11 + 4a22a2

33a11 − a12a22a24a11 + 4a2
22a33a11

+ a12a24a33a11 + a13a22a34a11 − a13a33a34a11 + a22a3
33 − a2

12a2
24

+ 2a2
22a2

33 + a12a24a2
33 − a2

13a2
34 − a12a2

22a24 + a3
22a33 + a12a22a24a33

+ a13a2
22a34 − a13a2

33a34 − 2a12a13a24a34 + a13a22a33a34) α2

+ (−a2
22a3

11 − a2
33a3

11 − 2a22a33a3
11 − a3

22a2
11 − a3

33a2
11 − 4a22a2

33a2
11

+ a12a22a24a2
11 − 4a2

22a33a2
11 + a13a33a34a2

11 − 2a22a3
33a11 − 4a2

22a2
33a11

− a12a24a2
33a11 + a12a2

22a24a11 − 2a3
22a33a11 − a12a22a24a33a11
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− a13a2
22a34a11 + a13a2

33a34a11 − a13a22a33a34a11 − a2
22a3

33 − a12a24a3
33

− a3
22a2

33 − a12a22a24a2
33 − a13a3

22a34 − a13a2
22a33a34) α

+ a11a2
22a3

33 + a2
11a22a3

33 + a11a3
22a2

33 + 2a2
11a2

22a2
33 + a3

11a22a2
33

+ a2
11a3

22a33 + a3
11a2

22a33.

Lemma 2.2 If matrix (2.18) in case of n = 2 has a pure imaginary eigenvalue then

in (2.21) the expression at left hand side is equal to zero.

Proof If we substitute jω, j2 = −1, ω �= 0 into (2.20) we get ω2 = a1
a3

and a3(a1a2 −
a0a3)−a2

1 = 0. As we can see by result of Wolfram Mathematica 6.0 the left hand side

of condition (2.21) has the following form depending on α:

H(α) = Ã3α3 + Ã2α2 + Ã1α + Ã0 (2.22)

Lemma 2.3 If Ad has the same sign pattern as (2.19) and a11 < 0 then Ã3, Ã0 > 0.

Proof The proof is complete by elementary calculations. Lemma 2.3 means that the

function H(α) given by (2.22) is positive, and monotone increasing or decreasing de-

pending on Ã1 > 0 or Ã1 < 0, respectively; and has a convex or concave down shape

if Ã2 > 0 or Ã2 < 0, respectively; at α = 0.

Figures 1, 2, 3, 4 show that there are several cases when delay does not destabilize

the system for any α, for example if Ã2 > 0, Ã1 > 0, and the cases when H(α) has

a single real root only. Furthermore, if α increases through a limit, namely if 1
α is

small, “measure of the influence of the past” is small then the system (2.10) has a

locally asymptotically stable equilibrium point E∗
d . This situation corresponds to our

expectation and it is similar as it was in the 2-dimensional case, see in [1].

Now we can formulate our main result. We will give appropriate conditions that

can easily be checked in order to satisfy Ã2 > 0, Ã1 > 0.

Theorem 2.3 If matrix Ad given by (2.18) in case of n = 2 satisfies conditions

(2.15),(2.16),(2.17) for i = 1, 2 (it has the same sign pattern as (2.19)) and the fol-

lowing two conditions also hold

a2
11 > a2

33 > −a13a34, (2.23)

a2
11 > a2

22 > −a12a24 (2.24)

Fig. 1. The value of Ã1 and of Ã2 is positive
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Fig. 2. The value of Ã1 is positive and of Ã2 is negative

Fig. 3. The value of Ã1 is negative and of Ã2 is positive

Fig. 4. The value of Ã1 is negative and of Ã2 is negative

then Ad is stable and E∗
d is an asymptotically stable equilibrium point of the delayed

system (2.10) in case of n = 2 for any α > 0.

Proof Under the conditions of the theorem we can decompose the expression of Ã1

into the following positive terms:
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Ã1 = (a2
22 + a12a24)(−a3

33 − a11a2
33 − a11a22a33)

+ (a2
33 + a13a34)(−a3

22 − a11a2
22 − a11a22a33)

+ (a2
11 − a2

33)(a22a12a24) + (a2
11 − a2

22)(a33a13a34)

+ (−a3
11a

2
22 − a2

11a3
22 + a11a2

22a12a24 − 2a3
11a22a33

− 4a2
11a2

22a33 − a11a3
22a33 − a3

11a2
33 − 4a2

11a22a2
33

− 2a11a2
22a2

33 − a2
11a3

33 − a11a22a3
33 + a11a2

33a13a34)

> 0

and similarly for the expression of Ã2 :

Ã2 = (a2
22 + a12a24)(a11a33 + a22a33 + a2

33 − a12a24)

+ (a2
33 + a13a34)(a11a22 + a22a33 + a2

22 − a13a34)

+ (−a2
11a12a24 − a2

11a13a34 − 2a12a24a13a34)

+ (a3
11a22 + 2a2

11a2
22 + a11a3

22 − a11a22a12a24 + a3
11a33 + 4a2

11a22a33

+ 3a11a2
22a33 + 2a2

11a2
33 + 3a11a22a2

33 + a11a3
33 − a11a33a13a34)

> (a2
22 + a12a24)(a11a33 + a22a33 + a2

33 − a12a24)

+ (a2
33 + a13a34)(a11a22 + a22a33 + a2

22 − a13a34)

+ (−a2
33a12a24 − a2

22a13a34 − 2a12a24a13a34)

+ (a3
11a22 + 2a2

11a2
22 + a11a3

22 − a11a22a12a24 + a3
11a33 + 4a2

11a22a33

+ 3a11a2
22a33 + 2a2

11a2
33 + 3a11a22a2

33 + a11a3
33 − a11a33a13a34)

= (a2
22 + a12a24)(a11a33 + a22a33 + a2

33 − a12a24)

+ (a2
33 + a13a34)(a11a22 + a22a33 + a2

22 − a13a34)

+ (−a12a24(a
2
33 + a13a34) − a13a34(a

2
22 + a12a24))

+ (a3
11a22 + 2a2

11a2
22 + a11a3

22 − a11a22a12a24 + a3
11a33 + 4a2

11a22a33

+ 3a11a2
22a33 + 2a2

11a2
33 + 3a11a22a2

33 + a11a3
33 − a11a33a13a34)

> 0.

This theorem means that in case of a sign-stable interaction matrix (2.12) there

are many cases when delay does not destabilize the system. By Theorem 2.1, if a11 ≤ 0

(given by (2.13)) and if conditions (2.16), (2.17) are also satisfied then (2.12) is sign-

stable. This is the two-dimensional situation modelled by Farkas and Cavani in [1]

when the equilibrium point lies on the descending branch of the prey nullcline. That

is the case when E∗ lies outside the Allée-effect zone – here the effect of overcrowding

is already felt. Any further increase in prey quantity must be counterbalanced by a

decrease in predator quantity, see in [4]. On the other hand, in the Allée-effect zone

prey is scarce and an increase in prey quantity is beneficial for the growth rate of prey,

see in [4]. Let us introduce the vector
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Fig. 5. Typical nullclines of prey in 2–dimensional case

F (x, y1, y2, . . . , yn) =



����������

rxg(x,K) −
n�

i=1

yipi

�yi

x

�

y1p1

�y1

x

�
− d1y1

...

ynpn

�yn

x

�
− dnyn

�
����������

. (2.25)

Vector (2.25) has two rows F1 and F2 in the two-dimensional case. Suppose that any

predator quantity growth will decrease the growth rate of prey, namely F ′
1y1

< 0. Some

typical reasonable forms of the zero isoclines F1(x, y1) = 0, that are applicable to most

species in case of ratio-dependence are shown in Figure 5. We can see that F ′
1x

> 0,

thus a11 > 0 in the Allée-effect zone modelled by the increasing branch of the function

in the third graph.

In case of our model we keep this meaning of the Allée-effect zone, and we say we are

outside of Allée-effect zone if—in order to keep the prey growth rate zero—the increase

of prey can be counterbalanced by the decrease of the whole quantities of the different

predators. Let us consider the higher dimensional cases. Now the function F given by

(2.25) has n+1 rows Fi, i = 1, 2, . . . , n+1. Suppose that any predator quantity growth

will decrease the growth rate of prey, namely F ′
1yi

< 0, i = 1, 2, . . . , n. In the three

dimensional case a typical onion-like prey zero isocline surface of F1(x, y1, y2) = 0 is

shown in Figure 2.4.2 in [4] on page 44 without ratio-dependence. Inside the onion-like

surface F1 > 0 while outside F1 < 0. Function F is increasing as we cross the surface

inwards and therefore its gradient points inwards. Therefore if the equilibrium point is

on the eastern hemisphere of this onion then F ′
1x

< 0, thus, a11 < 0 and on the western

hemisphere of the onion F ′
1x

> 0, thus, a11 > 0 and we can see that F ′
1x

> 0, thus

a11 > 0 in the Allée-effect zone. The onion is similar to this in case of ratio-dependence

shown in Figures 6, 7, 8.

If F ′
1yi

< 0 (namely yi is predator of x) then a11 > 0 holds also in higher dimension

in the Allée-effect zone. To see this, let us consider F1(x, y1, . . . , yn) = rxg(x,K) −�n
i=1 yipi

�yi

x

	
and F1(x, y1, . . . , yn) = 0, which is the prey zero isocline surface. Let

E1 = (x1, y1
1 , . . . , y1

n), E2 = (x2, y2
1 , . . . , y2

n) be two different points in the Allée-effect

zone on the prey isocline surface, where x1 < x2, y1
i < y2

i , , i = 1, . . . , n.

0=F1(x
2, y2

1 , . . . , y2
n)−F1(x

1, y1
1 , . . . , y1

n)={F1(x
2, y2

1 , . . . , y2
n)−F1(x2, y1

1 , y2
2 . . . , y2

n)}
+ {F1(x2, y1

1, y2
2 . . . , y2

n) − F1(x2, y1
1 , y1

2 , y2
3 , y2

4 , . . . , y2
n)}
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+ {F1(x2, y1
1, y1

2 , y2
3 , y2

4 , . . . , y2
n) − F1(x2, y1

1 , y1
2 , y1

3 , y2
4 , . . . , y2

n)} + . . .

+ {F1(x2, y1
1, y1

2 , y1
3 , . . . , y1

n−1, y2
n) − F1(x

2, y1
1, y1

2, y1
3 , . . . , y1

n−1, y1
n)}

+ {F1(x2, y1
1, y1

2 , y1
3 , . . . , y1

n) − F1(x1, y1
1, . . . , y1

n)}.

Fig. 6. Typical zero-cline of prey in case of r = 3 in 3–dimensions (r = 3, K = 0.1, m1 = 16,
a1 = 4, m2 = 18, a2 = 2)

Fig. 7. Typical zero-cline of prey in case of r = 7 in 3–dimensions (r = 7, K = 0.1, m1 = 16,
a1 = 4, m2 = 18, a2 = 2)
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Fig. 8. Typical zero-cline of prey in case of r = 10 in 3–dimensions (r = 10, K = 0.1,
m1 = 16, a1 = 4, m2 = 18, a2 = 2)

Expressions in the brackets are negative except the last bracket because of F ′
yi

< 0,

thus Fx > 0 must hold.

It is reasonable to say that E∗ lies outside the Allée-effect zone if a11 < 0 and E∗

lies in the Allée-effect zone if a11 > 0.

Remark 2.1 Theorem 2.3 means that if E∗ lies outside the Allée-effect zone then delay

does not change the stability behaviour of the system in this special case.

This remark is a direct generalization of Case 1 of [1] on page 226.

The meaning of conditions (2.23), (2.24) is the following:

Conditions a2
11 > a2

33, a2
11 > a2

22 mean that intraspecific competition in prey species

is greater than intraspecific competition in predators species.

The meaning of conditions a2
33 > −a13a34, a2

22 > −a12a24 is in connection with the

phenomenon of their consume strategy, namely do they try to ensure their survival by

having a relatively high or low growth rate and are able or not to raise their offspring

on a scarce supply of food. We will discuss this very interesting meaning of conditions

(2.23), (2.24) in case of (1.3) and (1.4) or (1.5) in the following section.

2.2. Strategies

The condition a11 ≤ 0 can be ensured by a relative high intrinsic growth rate r of

prey. This means that there is enough food for predators in order to reproduce well.

If this statement is valid in a long term, then we expect even more, that a preda-

tor species has an advantage that need more food and has a high growth rate. The

parameter ai > 0 is the half saturation constant of predator i. This means that when
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the quantity of prey reaches value ai then the per capita birth rate of predator i

reaches half of the maximal birth rate, as one can see in case of a simple Holling model

where pi(x, ai) = mi
x

ai+x , mi is “the maximal birth rate” of the i-th predator, and

pi(ai, ai) = mi
2 . In case of ratio-dependent models parameter ai has a similar mean-

ing, namely the greater ai is the more food is needed for predator i. To see this let us

consider the ratio-dependent Holling function, given by (1.4). In this case at a fixed

value of yi, pi(x, yi, ai) = mi
2 if x = aiyi. Similarly in case of the ratio-dependent Ivlev

function, given by (1.5) at a fixed value of yi, pi(x, yi, ai) = mi
2 if x = aiyi ln 2. Thus,

a predator with a big half saturation constant can be considered as an r-strategist

and with a lower one as a K-strategist (Cf. [6], [4]). Thus, we expect that the para-

meters ai cannot be arbitrary small, because the mentioned effect is stronger in that

case when the time average of prey quantity over the past has the same influence on

the present growth rates of different predators. The following theorems express this

situation.

Theorem 2.4 Let matrix Ad be given by (2.18) in case of n = 2 satisfying conditions

(2.15),(2.16),(2.17) for i = 1, 2 (i.e. Ad has the same sign pattern as (2.19)) and

the function g, pi are given by (1.3), (1.4), respectively. If ai > 1 for i = 1, 2 then

conditions (2.23), (2.24) are satisfied.

Proof Calculate a2
33 > −a13a34, a2

22 > −a12a24 by substituting (1.3), (1.4) and the

statement follows.

Theorem 2.5 Let matrix Ad be given by (2.18) in case of n = 2 satisfying condi-

tions (2.15),(2.16),(2.17) for i = 1, 2 (i.e. Ad has the same sign pattern as (2.19)) and

the function g, pi are given by (1.3), (1.5), respectively. If ai > 1
2 for i = 1, 2 then

conditions (2.23), (2.24) are satisfied.

Proof Calculate a2
33 > −a13a34, a2

22 > −a12a24 by substituting (1.3), (1.5), then we

get:

ai >

di
mi

− mi−di
mi

ln mi
mi−di

(ln mi
mi−di

)2
. (2.26)

Let us denote x = mi
mi−di

, x > 1. Thus,

ai(x) =
1 − 1

x − 1
x lnx

(ln x)2
,

where limx→1+0 ai(x) = 1
2 and ai(x) is monotone decreasing for x > 1 because its

derivative is: ai(x)′ =
1

x2 ((ln x)2−2x+2+2 ln x)

(ln x)3
and the numerator is negative because it

is zero if x = 1 and the derivative of ((ln x)2 − 2x + 2 + 2 ln x) is negative for x < 1.

Thus, the maximum of the righthand side of (2.26) is equal to 1
2 and theorem holds.

The meaning of Theorems 2.4, 2.5 corresponds to our expectation, namely in case of

delayed models the advantage of the r-strategist can be seen over the K-strategist.

This advantage is greater in case of a ratio-dependent Holling model than in case of a

ratio-dependent Ivlev model.
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2.3. One prey, n predators with delay

Now let the number of predators n be an arbitrary positive integer and let us consider

system (1.1) with its coefficient matrix given by (2.12). Let us denote the entries of

(2.12) by aij , thus

A =



�����������

a11 a12 . . . . . . . . . a1n

a21 a22 0 . . . . . . 0

a31 0 a33 . . . . . . 0

...
...

...
...

... 0

an−1,1 0 0 . . . an−1,n−1 0

an1 0 0 . . . 0 ann

�
�����������

. (2.27)

If we modify system (1.1) with delay we get system (2.10), which after linearization

has the coefficient matrix given by (2.18). We have seen that (2.18) can be obtained

from the entries of A as follows:

Ad =



�����������

a11 a12 a13 . . . a1n 0

0 a22 0 . . . 0 a21

0 0 a33 . . . 0 a31

...
...

...
...

...
...

0 0 0 . . . ann an1

α 0 0 . . . 0 −α

�
�����������

. (2.28)

Theorem 2.6 Let matrix Ad be given by (2.18) for arbitrary positive integer n, and

suppose it satisfies conditions (2.16) and (2.17) for all i = 1, 2, . . . , n; and let a11 < 0.

If α is small enough or large enough then Ad is stable, and E∗
d is an asymptotically

stable equilibrium state of the delayed system (2.10).

Proof Let us consider the characteristic polynomial D(λ) := det(Ad − λE) of (2.28).

Let us denote column i of matrix Ad − λE by ci, (i = 1, 2, . . . , n) and let us make the

following column operations: first c1 =⇒ c1 + cn+1, then cn+1 =⇒ cn+1 − c1. Now

we get

det(Ad − λE) = det



�����������

a11 − λ a12 . . . a1n −(a11 − λ)

a21 a22 − λ . . . 0 0

a31 0 a33 − λ 0

. . . . . .
. . . . . . . . .

an1 . . . . . . ann − λ 0

−λ 0 . . . 0 −α

�
�����������

. (2.29)

Let us make the following partition of this determinant:

det(Ad − λE) = det



���������

A − λE |



����
−(a11 − λ)

0
...

0

�
����

− − − − − | −− −
−λ 0 . . . . . . 0 | −α

�
���������

= det

�
A − λE B

C D

�
.
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Applying the Schur theorem [9, Theorem 3.1.1] we get:

det(Ad − λE) = det(A − λE) det(Ad − λE|A − λE),

where (Ad − λE|A − λE) is the Schur-complement of A − λE in Ad − λE, namely

(Ad − λE|A − λE) = D − C(A − λE)−1B and suppose that λ is not an eigenvalue

of A.

(Ad − λE|A − λE) = D − C(A − λE)−1B

= −α − �−λ 0 . . . 0
�
(A − λE)−1



����
−(a11 − λ)

0
...

0

�
����

= −α − λ(a11 − λ)A−1
11 ,

where A−1
11 := 1

det(A−λE)
(a22 − λ) · · · · · (ann − λ), thus,

det(Ad − λE|A − λE) = −α − λ
(a11 − λ) · · · · · (ann − λ)

det(A − λE)
.

We get the following relation (true for all λ ∈ C)

det(Ad − λE) = −α det(A − λE) − λ(a11 − λ) · · · · · (ann − λ)

= (−1)

�
α det(A − λE) + λ

n�
i=1

(aii − λ)

�
. (2.30)

Now we prove that the coefficients of this polynomial have the same sign, using the

fact that A being sign stable, hence the coefficients of det(A−λE) have the same sign.

Let us denote the coefficients of det(A − λE) by ai, namely:

det(A − λE) = (−λ)n + an−1(−λ)n−1 + · · · + a0.

Thus,

det(Ad − λE) = (−1){α(−λ)n + αan−1(−λ)n−1 + · · · + αa0

+ λ((−λ)n + (a11 + · · · + ann)(−λ)n−1

+ (a11a22 + · · · + an−1n−1ann)(−λ)n−2

+ · · · + (a11a22 · · · · · ann))}
= (−λ)n+1 + (a11 + · · · + ann − α)(−λ)n

+ (a11a22 + · · · + an−1n−1ann − αan−1)(−λ)n−1

+ · · · + (a11a22 · · · · · ann − αa1)(−λ) − αa0.

Since det(A−λE) is a stable polynomial, hence if n is even, then a(2k) is positive, and

a(2k+1) is negative for all k. Thus, the coefficients with even indices of det(Ad−λE) are

negative, and those with odd indices are positive, and all the coefficients of (λ)j (j =

0, 1, . . . , n + 1) in det(Ad − λE) are negative.

For the case of n odd we can repeat the above proof. Thus the necessary condition

of stability of the polynomial det(Ad − λE) holds.
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This means that if det(Ad − λE) is not a stable polynomial then it has to have a

pair of complex conjugate roots with nonnegative real part.

Now let us consider the case when α is very large. Then the eigenvalues of det(Ad−
λE) are close to the eigenvalues of A and there is a remaining root with an unknown

sign. But this root should also be a negative real number, because it has no pair to be a

member of a complex conjugate pair, and because the coefficients of the characteristic

polynomial are positive. Thus, for sufficiently large α 	 0 the matrix Ad is stable.

If α is very small then the eigenvalues of det(Ad − λE) are close to the roots of

λ
�n

i=1(aii − λ) = 0. It has n negative real roots and one more root left with an

unknown sign. And again, this should be a negative real number, because it has no

pair to be a member of a complex conjugate pair, and because the coefficients of the

characteristic polynomial are positive. Thus, for sufficiently small α �= 0 the matrix Ad

is stable. This completes the proof of the theorem.

The meaning of this theorem is the following. If α is small then the measure of

the influence of the past is large. In this case the equilibrium point E∗
d is locally

asymptotically stable.

If α is large then the measure of the influence of the past is small, the system’s

behaviour is close to the behaviour of the system without delay, of which the equilibrium

E∗ was stable. Thus, the results correspond to our expectations. But all these are true

outside the Alle-effect zone, where the stability is stronger than inside.

2.4. Numerical examples

Example 2.7 Let us consider a three dimensional Holling type ratio-dependent model

with delay, namely g is given by (1.3) and pi is given by (1.4). Let the constants be

given as follows: m1 = 16, m2 = 18, d1 = 8, d2 = 12, a1 = 4, a2 = 2, K = 0.1.

The equilibrium point of the system depending on r is E∗ =
�
0.1
�
1 − 5

r

	
, 1

40

�
1 − 5

r

	
,

1
40

�
1− 5

r

		
. In this case the interaction matrix of the system without delay is given by:

A =



�8 − r −4 −8

1 −4 0

1 0 −4

�
� . (2.31)

The characteristic polynomial of A is:

D(λ) = (−4 − λ)(λ2 + (r − 4)λ + 4(r − 5)).

This is a stable polynomial for r > 5 and A is sign stable for r ≥ 8.

The equilibrium point of the delayed system depending on r is

Ed
∗ =

�
0.1

�
1 − 5

r

�
,

1

40

�
1 − 5

r

�
,

1

40

�
1 − 5

r

�
, 0.1

�
1 − 1

r

��
.

The coefficient matrix of the delayed system linearized at Ed
∗ is

A =



���
8 − r −4 −8 0

0 −4 0 1

0 0 −4 1

α 0 0 −α

�
��� . (2.32)
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Fig. 9. Left: Time evolution of the species in case of r = 13, α = 1. Right: The trajectory
tends to the asymptotically stable equilibrium point. (x is red, q is green, y1 is dashed blue,
y2 is yellow.)

Fig. 10. The function (2.22) with r = 13

The characteristic polynomial of Ad is:

Dd(λ) = (−4 − λ) ((8 − r − λ)(−4− λ)(−α − λ) − 12α) .

Let us check conditions (2.23), (2.24). It is easy to see that in case of r > 12 these

are satisfied. The conditions of Theorem 2.3 hold, Ed
∗ is asymptotically stable. Time

evolution of the species is shown on the left side of Fig. 9, whereas the right side shows

the corresponding trajectory together with the equilibrium point. The form of (2.22)

with r = 13 is shown in Fig. 10. This corresponds to Fig. 1, case 1c. It is easy to see

that the equilibrium point of the delay system remains asymptotically stable for any

α > 0. We note that in this case the equilibrium point is outside the Allée-effect zone,

see Fig. 8.

If 12 ≥ r > 5 then conditions (2.23), (2.24) are not valid, and there are such cases

when Ed
∗ is stable and there are cases when it is unstable. Time evolution of the species

is shown on the left side of Fig. 11, whereas the right side shows the corresponding

trajectory together with the equilibrium point. The form of (2.22) with r = 7 is shown

in Fig. 12. It is easy to see that there are values of α for which H(α) < 0, thus, the

equilibrium point of the delay system is unstable, and also values for which H(α) > 0,
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Fig. 11. Left: Time evolution of the species in case of r = 7, α = 1. Right: The trajectory
leaves the neighborhood of the unstable equilibrium point. (x is red, q is green, y1 is dashed
blue, y2 is yellow.)

Fig. 12. The function (2.22) with r = 7

Fig. 13. Left: Time evolution of the species in case of r = 7, α = 1. The solution seems
to be periodic at first sight. (The reason of this phenomenon may also be numerical errors.)
Right: The corresponding trajectory. (x is red, q is green, y1 is dashed blue, y2 is yellow.)

thus, the equilibrium point of the delay system is asymptotically stable. We note that

in this case the equilibrium point is inside the Allée-effect zone, see Fig. 7.

Of course this study is not complete. There are many interesting trajectories, pe-

riodic orbits, see e.g., Fig. 13, 14.
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Fig. 14. Left: Seemingly time periodic evolution of the species in case of r = 8, α = 0.2.
Right: The corresponding periodic orbit. (x is red, q is green, y1 is dashed blue, y2 is yellow.)

Fig. 15. Snapshot of manipulation. r = 8 and α = 0.25.
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The interested reader can experiment with the parameters and initial conditions of

the model using the Mathematica program on the page

http://www.math.bme.hu/∼kk/KKTJ.nb. E.g. it is also interesting how the trajecto-

ries change if we reduce ai. In case of r ≤ 5 there is no positive equilibrium point E∗
d .

The mentioned program produces figures like Fig. 15. In case of an Ivlev model

similar situations may occur.
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