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Existence for the Thermoviscoelastic
Thermistor Problem
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Abstract

The existence of a weak solution to a dynamic model for a
thermistor, which takes into account the thermoelastic properties
of the device, is established. The model consists of a coupled sys-
tem of the equations of dynamic thermoviscoelasticity, the heat
equation with the Joule heating term, and the quasistatic charge
conservation equation. The system is strongly nonlinear since the
electrical conductivity is assumed to be temperature dependent,
and the Joule heating term is quadratic in the gradient of the
electric potential. The existence of a solution is obtained by con-
sidering a sequence of approximate time-retarded problems. After
obtaining the necessary a priori estimates, a solution of the prob-
lem is found by passing to the approximation limit. The unique-
ness of the solution remains an open problem.

(©2008 Foundation for Scientific Research and Technolog-
ical Innovation(FSRTT). All rights reserved.

MSC: 74D05, 7T4F05, 74H20, 74H30

Keywords: Thermoviscoelastic thermistor; temperature depen-
dent electrical conductivity; existence; weak solution.

* Corresponding author
Received in final form on July 17, 2008.

International Journal for Theory, Real World Modelling and Simulations



310 K. L. KUTTLER, M. SHILLOR AND J. R. FERNANDEZ

1. Introduction

The “Thermistor Problem,” is a model for the combined effects of heat
and electric current conduction and Joule’s heat generation in a de-
vice, the thermistor, made of a material, often a ceramic, which has
temperature-dependent electrical conductivity. Such materials are being
used in switches and electric surge protecting devices, among other ap-
plications. It was brought to the Oxford Study Groups with Industry
in the mid 80’s and has received, as a result, considerable attention in
the mathematical literature, see, e.g., [1, 2, 3, 5, 7, 8, 9, 12, 15, 16, 19,
24, 25, 26, 28] and references therein. Related problems can be found in
[21] and [27, 14]. However, in all these references the thermomechanical
properties of the device were not taken into account.

A model, which includes the thermomechanical effects of the pro-
cesses, has been constructed in the companion paper [13]. There, in ad-
dition to the model, a numerical algorithm was developed and computer
simulations obtained and described. The model consists of a nonlinear
coupled system of partial differential equations which includes the heat
equation, the electric charge conservation equation and the equations of
motion of a thermoviscoelastic medium. From the mathematical point of
view the system is somewhat unusual since it consists of an elliptic equa-
tion, a parabolic equation and three hyperbolic equations. In this work
we establish the existence of a weak solution for the model with ther-
momechanical effects. Our interest lies in the general problem, and we
assume that the electrical conductivity of the material does not vanish,
and thus, the mathematical problem is nondegenerate. In the publica-
tions ([14, 24, 25, 26, 27]) the degenerate problem has been investigated,
which makes it necessary to use the so-called ‘capacity solutions’ that
take into account the vanishing of the electrical conductivity. This, in
turn, causes the degeneration of the elliptic equation.

The problem considered in this work is nonlinear, since the electrical
conductivity is assumed to depend on the temperature, and the electric
heating term, the so-called Joule heating, is quadratic in the electric
current.

The paper is organized as follows. The classical model, taken from
[13], is presented in Section 2. The weak formulation is derived in Section
3, the assumptions on the problem data specified and the existence result
stated in Theorem 3.3. The proof is provided in Section 4, and is based on



A THERMOVISCOELASTIC THERMISTOR PROBLEM 311

a sequence of regularized and time-retarded problems. The solutions of
the approximate problems follow from the recent results in the theory of
set-valued pseudo-monotone operators of [18] and a fixed point argument.

The steady states and the quasistatic problems are discussed shortly
in Section 5. Since the steady problem decouples, the existence of a
solution follows from known results in the literature. The quasistatic
problem is stated, too.

The uniqueness or stability of the solutions for the problem remain
unresolved problems. One also may consider the degenerate case when
the electrical conductivity vanishes above some prescribed temperature.
Finally, the piezoelectric effects may be important, and need to be taken
into account.

We note that after this work was submitted, Wu and Xu published
the paper [23], which deals with this problem. There, the existence of a
very weak solution, the so-called capacity solution, was established using
a different method of proof. Their main interest was in the case when
the electric conductivity vanishes at some high temperature.

2. Classical model

We begin with the description of the model, following [13], where more
details can be found. Let Q C R? (d > 2) be a bounded domain with a
smooth boundary I" = 0€), representing the isothermal reference configu-
ration of the thermistor. We assume that I' is divided into two relatively
open parts I'p and 'y such that I'p NT'y = 0, I'p has positive measure
and Ip UTy = I'. We denote by n = (ny,...,ny) the outward unit
normal to 2 on I'. The setting is depicted in Fig. 1.

The body is held fixed on I'p, while on 'y it is free. We could
have chosen, as in [16], three different ways to divide I' and then to
specify the boundary conditions for the temperature, electrical potential
and displacements on each division. However, for the sake of simplicity
we assume that the Dirichlet condition holds on I'p and the Neumann
condition on I'y.

We let 6 denote the temperature field, ¢ the electric potential and u =
(ug,...,uq) the displacements field. Let 7" > 0 and set Qr = Q x (0,7).
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'y T n
Q n
I'p thermistor I'p
I'n

Fig. 1. The setting

The behavior of the system is governed by the energy equation, the
equation of charge conservation and the equations of linear thermovis-
coelasticity. We may write the system (see, e.g., [4, 6, 11] where the
thermoviscoelastic system can be found and any of the references above
for a model of the thermistor) as:

00 0 00 0?u;
— — — ki (0)=— ) = 0 (O)|VO|* — my;Oper——r, 2.1
gy~ e (RO ) = 0a®IVOR ~ mu®nrge, (21
V- (0a(0)Ve) =0, (2.2)
821% 0
~ Z(oy) = f; 2.
8uk aQUk
Uij = ai‘jkla—ajl + bijkl% — mUG (24)
Here and below, 7, 5, k,l = 1,...,d and summation over repeated indices
is implied.

Equation (2.1) is the energy equation expressed in terms of the tem-
perature # which is measured with respect to a reference absolute tem-
perature ©,.f, given in degrees Kelvin. We assume that ©,.f is also the
ambient temperature. The material density p and the heat capacity ¢, are
assumed to be positive constants. K = K(0) = {k;;(0)} and M = {m;;}
are the heat conduction and thermal expansion tensors, respectively, and
for the sake of generality it is assumed that the thermal and mechanical
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properties of the material are anisotropic. The electrical conductivity
0o = 0¢(0) is assumed to depend strongly on the temperature, and will
be discussed below. However, we assume that the electrical properties of
the material are isotropic. All the results below hold for the case when
o = {0a,j(0)} is a tensor. Next, we recall that I = 0.,(0)V¢ is the
electric current density, and J = 0,4(0)|V¢|? is the Joule heating, the
power generated by the electric current.

We note that in [6] the nonlinear dissipation term &' Be’ has been
retained in (2.1), and ©,.; was replaced by 6. Such a system may be
investigated in the future. The problem above contains the main nonlin-
earity we are interested in.

Equation (2.2) represents the electric charge conservation, assuming
that the only relevant electromagnetic effect is the quasistatic evolution
of the electric potential.

Next, (2.3) are the equations of motion of a thermoviscoelastic ma-
terial, and (2.4) is the constitutive relation. Here, A = {a;ju} is the
elasticity tensor; B = {bj;j} is the tensor of viscosity coefficients; f =
(fi1,--., fa) represents the density of body forces, such as gravity. If we
let € be the linearized strain tensor, then we may write the constitutive
equation (2.4) as

o= Ae + B — M0,

where a prime above a symbol represents a time derivative. We note
that thermistors are usually made of ceramics which exhibit very little
viscosity. We use it here for mathematical reasons, and from the practical
point of view one may take the viscosity as small as one wishes.

Piezoelectric effects, i.e., effects related to the coupling between the
mechanical strain or stress fields and the electric field, are neglected in
this model.

Next, we discuss shortly the electrical conductivity o.;. We note that
the results in this article apply to any material with temperature de-
pendent electrical conductivity, and thermistors are devices of this type,
characterized by a sharp decrease in the electrical conductivity with rais-
ing temperature. In a thermistor, a typical dependence of the conduc-
tivity on the temperature is depicted in Fig. 2.

In some publications (see, e.g., [25, 26] and references therein) the
degenerate case was investigated, where o.; was assumed to vanish above
a critical temperature. This is an idealization of the material behavior
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which introduces considerable mathematical difficulties, and will not be
pursued in this work. Indeed, when o = 0 the heating term in (2.1) va-
nishes and the equation for ¢, (2.2), degenerates. This makes it necessary
to consider the so-called capacity solutions of the problem, and we refer
the reader to [25, 26] and references therein for further details.

y
Oel

Fig.2. 0. as a function of the temperature

The boundary conditions for the problem are,
u=0, 60=0,, o= ¢y onl'p, 0<t<T, (25)

since the body is held fixed on I'p, and the temperature and potential
given. The body exchanged heat with its surroundings, is stress free and
insulated on I'y, thus,

00 0¢

Here, the applied electric potential is ¢, and the temperature of the
environment is assumed 6, = 0. The initial conditions are,

u=uy, U =1vy, 0O=0 in €, t=0, (2.7)

where ug, vy are the initial displacements and velocities, respectively, and
6y = 0 is the initial temperature.

The classical formulation of the thermouviscoelastic thermistor problem
is:



A THERMOVISCOELASTIC THERMISTOR PROBLEM 315

Find a triplet {u, ¢, 0} such that (2.1) — (2.7) hold.

In the next section we investigate the weak formulation of the prob-
lem.

3. Weak formulation

We present the assumptions on the problem data, derive a weak formu-
lation for problem (2.1)—(2.7) and state our existence result.
We begin with the assumptions on the data.

Assumptions 3.1. We assume that:
(i) There exists ® € W14 (Q) such that v® = ¢y, on I'p.
(ii) The electrical conductivity o¢(-) is Lipschitz continuous and sa-
tisfies
0<o,<og() <M, (3.1)

for some constants o, and M.
(111) The coefficients of thermal conductivity k;; are bounded and Lip-
schitz continuous, satisfying

k&€, > 0 1€, (3.2)

for 0 < 4.
(iv) The elasticity and viscosity coefficients satisfy

@ijit, bijki € L>(Q),

Qijkl = ikl = QAklij, bijkl = bjikl = bklij,
and

aijrCiiC > 0|C|%, bijrCiiCu > 0|C|%,

for all symmetric matrices ¢;;.
(1)) ug €V, Voi,j € L? (Q) and 6y € V.
(vi) There exists © € H' (Q) such that v© = 6, on T'p.

Here, 7 is the trace operator, and | - | denotes the Frobenius norm of a
matrix.
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Next, we derive a weak formulation of (2.1)—(2.7). To that end we let
V={neH (Q):ym=00onTp}, (3.3)

which is the Hilbert space of test functions where we will seek the tem-
perature and the electric potential. By assumption, I'p has positive
measure and, therefore, we may use on V' the norm

1/2
elly = V9]l = ( / \vwdx) | (3.4)

We begin with equation (2.2) for the electric potential. We define ¢ € V
by
o+ d=09.

Then, letting n € V' and multiplying both sides of (2.2) by 1 and then
integrating by parts yields

/ oe (0) Vo - Vnde = — / 0 () VP - Vndz. (3.5)
Q Q

Thus, the variational form for (2.2) is to find ¢ € V such that (3.5) holds
for all n € V. We shall need the following lemma providing a bound on
the solutions to (3.5).

Lemma 3.1. Suppose ¢ is a solution to (3.5). Then, there exists a
constant C, depending only on o, and M in (3.1), such that

/Q 0 (0) $2|Vel* < C. (3.6)

Proof: Let ¥, be a strictly increasing, bounded, smooth function
satisfying W, (r) = r®/3 whenever |r| < n and W/ (r) 1 r*. We choose
n =Y, (¢) in (3.3). Thus,

/Q 0 (0) Ve Vo U (5) = — /Q 0u () V- Vo T, (i)

< ( / 5 (0) ', () |v<1>|2) "
<([oa@rw1ver) "
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1/2
and dividing both sides by ( / o (0) U () ywﬁ) yields
Q

/Q ou () (9) Vol < / o (6) W), () V[

(e ([
C (/Q <p4dx)

2
< Cllellp -

IN

IN

It follows from (3.1) and (3.5) that there exists a bound on ||¢|[5,: de-
pending only on o, and M. Therefore, by adjusting the constants, we
find that

[oa@rv, )19 <c.
Q
and by letting n — oo and using the monotone convergence theorem we
obtain (3.6).
Let
EE{uEHl(Q)d:u:OonFD}. (3.7)

As in the case of V', we choose the following norm on F,

1/2
] = (19l 2y = ( / uud) | (3.8)

We define the operators Ay, By : E — E’ by

(Ao} = [ apuE G e, (Bv) = X Ok 0% . (3.9)

Aijki ikl
q 7" Ox Ox; T 1 Oz

Next, let © € H' () be given by Assumption 3.1.(v), and let § = z + O,
thus z =0 on I'p. We define L, : V — E' by

(Lqz,m) / m;0n; jdz. (3.10)
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Then, the partial differential equation (2.3), along with its boundary
conditions, can be set in an abstract form as

pv' + Aqu + Bgv + Lqgf = f, (3.11)

v (0) = vy, (3.12)
t

u(t) = ug +/ v (s)ds. (3.13)
0

Consider now the second term on the left-hand side in (2.1), and let
n € V. Then, integrating by parts and the use of condition (2.6), yield

_/ (kijai),j ndl’ = —/ k:ijamnj dS—I—/kUH’ZT]Jdl'
Q 'y Q

I'n Q

= / hendS—k/k”@,chM-l-/kzgz,ﬂ?,ﬂm
'y Q Q2

To place it in an abstract setting we define the following operators.
For z,n eV let

(P(2),1) = /F s (3.14)
(A=) (2) ) = /Q by (= + ©) 21, d, (3.15)
Fom) = — /Q ki . (3.16)

LE @ = [ ou(:+0)Ve- Tnds, (317

(N (2) ) = / 0u (2 +0) |V (p+®)nds,  (3.18)

Q
=
S5
1

— / mij@refviyjndx. (319)
Q

In the last definition, we assume that v; ; € L* () for all i, j € {1,...,d}
is a given function. Then, in terms of these operators, the first two equa-
tions of (2.1) and (2.2) along with the initial and boundary conditions
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reduce to finding z and ¢ such that,

oppz + A(z) 2+ P (2) = fi+ N (2) () + G (v),

z (O) = 90 - @,

L(z)p=—L(2)9,
together with the balance of momentum which in abstract form is given
by (3.11)—(3.13).

Any solution of these abstract equations is a weak solution to problem
(2.1)-(2.7), upon taking measurable representatives.
We shall use the following notation.

V=L0,T;V), U=L"(0,T;VnW"(Q),
H=L1?(Q)), H=L?0,T;H), E=L*(0,T;E).

All these operators are also considered as acting on the various Lebesgue
spaces according to the following convention: Bu (t) = B (u (t)).
The dual spaces are,

V= L2(0,T; V'), U = L3 <0,T; (V At (Q))’) L& =20, T, E).

The main result in this work is the existence of weak solutions for the
problem.

Theorem 3.2. Under the Assumptions 3.1., there exists a solution
(z,0,u), with z,p €V and v € E, v' € E', to the problem

pep? + A(2)z+P(2)=fi+ N(2)(p)+G) n U, (3.20)
v+ Aqu+ Bgo+ Lgf =f in &', (3.21)
t
v(0) =wvg, u(t)=ug +/ v (s)ds, (3.22)
0
2(0)=20=6,— 0O in H, (3.23)
where
L(z)p=—-L(2)® inV (3.24)

The proof will be given in the next section.
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4. Approximate problems and existence

In this section we consider a sequence of approximations based on regu-
larization and time retardation of problem (3.20)—(3.24). After obtaining
the necessary a priori estimates, by passing to the limit a solution to the
full problem is found.

We begin with some preliminary results. We note that in some treat-
ments of the thermistor problem, see, e.g., [5], use is made of the ma-
ximum principle to help deal with the quadratic source term described
in N(z)(p). Since the boundary conditions here do not adapt to this
approach, we will use the following lemma instead.

Lemma 4.1. Forn e V N L>*(Q) there holds,

(N(2)(p),m) = — /Q 0e (0) pVO - Vndz — /Q oa (0) oV - Vndr

+/ 0 (0) VO - Vndr + / o (0) |V nda. (4.1)
0 Q

Moreover, for such n there exists a constant C (®), independent of ¢ and
n, but dependent on ®, such that

[N (2) (@) ;)| < C (@) [[nlly - (4.2)

Proof: For n € V we have,

(N (2) (p),m) = / o (0) Vo - Vndz + 2/ o (0) Vo - Vorda

0 0 (4.3)
+/ o (0) VO nda.
Q
We begin with the first term on the right-hand side when n € VNL> (Q).
For such an 7, pn € V, and (3.24) implies

/ oe (0) Vo - Vndz
Q

- /Q 0 (60) Vo -V (1)) dr — / 0 (6) Vo - V(n)pda

Q

= — / 0 () VP -V (¢n) dx — / o (0) Vo - Vnpdx
Q Q
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= —/ e () NV - Vipdx — / o (0) VO - Vndz
Q Q

— / o (0) Vo - Vnedz.
Q

Substituting this into (4.3) yields (4.1).
Now using (4.1) yields

(N (2)(¢),m)] < C </Q|V(I)|2|90l2d;p)l/2 ([2|vn|2dx)l/2
e (/g ou (0) ¢* !W@I%) v (/Q |V77|2da7) 1/2
e (/Q V| 772dx) v (/Q |V<P\2dx> 1/2

+C (@) [nl] - -

Also, it follows from (3.24) and Assumptions 3.1.(ii) that there exists a
constant C' (), which is independent of ¢,  and z, such that ||¢||,, < C.
Therefore, the above inequality yields (4.2).

We turn now to the regularized and time retarded approximations.
To that end, for a function g defined on [0,7] and for h € (0,7, we
denote by g, the function defined by

g({t—nh) if t>h,
Jo if tE[O,h],

gn (t) =

where gy will be described shortly. Also, define F' : V. N WhH(Q) —
(VN Wh () by

(Fu,n) E/ \Vul?> Vu - Vidz.
Q

Consider the following regularized and time retarded version of (3.20)-
(3.24).
Given a small h > 0, find 2" € L? (0,7;V N W1 (Q)) with (") €



322 K. L. KUTTLER, M. SHILLOR AND J. R. FERNANDEZ

U, oh eV, v" € £ with (v*) € &', such that

pep(2") + A (2p) 2" + P (2") + hF2"

=fi+N (=) () +G(vp), (44)
2"(0) =6, — O, (4.5)
L(z")¢"=—-L ("), (4.6)
p(") + A + Bp" + Lgzp =, (4.7)

in which 2! = 2"(t—h), and similarly ¢ = ¢©"(t—h), and also z, = 0y—O,
and g is the solution to

For later reference we set ' = 21 + ©.

First, we note that there exists a solution to (4.4)-(4.7) on the interval
[0, k). This follows from standard results for linear systems together with
the observation that N(z!')(¢f) and G(v}) are known. It is also an easy
consequence of the main existence theorem in [18]. In this way (" and
2" are determined on [0, h]. In fact ¢" is the solution to (4.6) where 2"
solves (4.4) while @' = g is defined in (4.8) on this time interval. Now,
on the next interval [k, 2h] we have that N (z]') (¢]!) is, again, known and
so there exists a solution on this interval having the appropriate initial
condition coming from the solution on [0, h]. Continuing in this way we
obtain a solution to (4.4)—(4.7) on [0,7].

To proceed, we need a priori estimates on these solutions.

We begin with an estimate on z" in the space X, given by

X={zeV: e}, |lzllx =+l (4.9)

which is a Banach space since V N W (Q) is dense in V.

To simplify the notation, we omit the superscript h, and will restore
it when needed. It follows from (4.4) and Lemma 4.1., that there exists
a constant C', which is independent of h and ¢ € [0, 77, such that

1 1 t

2 2 2
300 (00 = ool +5 [ 1z ) ds

0
1 ' t
§c+§5/ ||z(s)||2vds+o/ |z(s)|§{d8+0/ [fon ()17 ds.
0 0 0
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Therefore, by adjusting the constants, using the assumption that vy € E
and Gronwall’s inequality, we obtain

t t
ﬂ@+AHdM@%SC+CAHMﬂ@%. (4.10)

Now, it is straightforward to obtain from (4.7), by using the assumptions
on the data, the estimate

—mw>mw—pwmw+amurm+é/Ww i

<C’—|—C/|z )|3, ds + 5/||v )| ds.

An application of Gronwall’s inequality yields the following estimate,

!v(t)|?{d+|\U(t)H2E+/o HU(S)H2EdS§C+C/O [ ()l ds. (4.11)

It follows from (4.10) that

[0 ()7 + [lu )] +/0 [l ()1l ds

t s
SC—i—C/ (C’—i—C/ Hv(r)H%dr) ds
0 0
t s
§C+C// v (7)||% drds.
0 Jo

Now, another application of Gronwall’s inequality and (4.10) yield the
existence of a constant C', which is independent of h and ¢ € [0, 77, such
that

[o () 74 + IIU(t)H?;vL/O o ()1 ds + 1= (O

t
+/naw@@sa
0

Thus, (4.2), (4.10) and (4.12) imply that 2’ and v’ are also bounded in
U and &'. Tt follows from the result in Lions [20, p. 57| that there exists
a subsequence {h,}, which we still denote by h, such that as h — 0,

(4.12)

2" — 2 strongly in H. (4.13)

In fact, a stronger result is possible, but (4.13) is sufficient for our pur-
poses.
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Lemma 4.2. In addition to (4.13), there exists a further subsequence
and there exist p € V and v € £ such that

©" — o strongly in V, (4.14)

" — v strongly in E. (4.15)

Proof:  Consider (3.24) and let ¢ € V be the solution to
L(z)p=—L(2)®,
where z is given in (4.13). Then,

(L(2)(p)m) = /QUel(Z—i-@)ch‘Vnd:z:

= —/ael(z—l-@)VCD-Vndx,
Q

(L") (¢")m) = /Qaez (2" +0) V" - Vi da
= —/Qo—el (2" +0) Ve - Vnduz,
for all 7 € V. Subtracting the two equalities and rearranging yields,
/Q (0a(z+0) —0q (" +0)) Ve Vndz
+ /Q (0a (2" +©) Vo —0q (2" +0) V") - Vida
= /Q (0a (" +©) —0q (24 0)) VO - Vnda.

Therefore, by letting n = ¢ — " and 6" = 2" + O, while § = z + O, we
find
a*/ ‘Vgp — Vgph‘Qda:
Q

(4.16)
< /Q o (0) — 0 (6")| (V| + |[V]) [V — V" | da.

Now, (4.13) means that 0" — @ strongly in L? (0, T; H). Therefore, if we
first take measurable representatives and then a further subsequence, we
obtain

0" — 0 in L? (Q), 6" — 0 pointwise a.e. in Q. (4.17)
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It follows from (4.16) that

T
0*/ /‘V@—Vgphlz dzdt
0o Ja

<2 (/OT/Q |0 (0) — 0 (") IV + |VO[?) d:rdt)

T 1/2
x(//\w—whfdxdt)
0o Ja
T 1/2
<5(//}V<,0—Vg0h‘2dxdt) ,
0 Ja

whenever h is sufficiently small, due to the dominated convergence the-
orem, the boundedness of o, and (4.17). Since £ > 0 is arbitrary, this
proves the first part of the lemma, (4.14).

Now, we turn to the second part and define v to be the solution to

pv' + Aqu+ Bgv + Lg0 = f, in &', (4.18)
t

v (0) = vo,u (t) = ug —1—/ v (s) ds, (4.19)
0

where 6 = z 4+ © with z given in (4.13). Then, (4.12) yields
1
5 [V (1) =0 ()] + 8] [ (1) = w (1) [
t
+5/ [[v" (s) —U(S)HQEdS
0

g05/0 }9,’;-0}st+%6/0 [0 (s) — v ()|, s, (4.20)

where Cs depends on d but not on h. Now, we have

1/2

12 = =l < [z = 20l + llzn = 2l < []2" = 2|y, + llzn = 2l

The last term converges to 0 by the continuity of translations in L?, and
0 28 — z in H. Similar considerations apply to ¢! and v}, and then

0% — 0 in H. Now (4.20) implies the second conclusion of the lemma.
Lemma 4.2 and the estimates (4.12) providing bounds for v, u and z,
imply the following convergences for a suitably chosen subsequence:

2" — 2 strongly in H and pointwise; (4.21)
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¢" — ¢ strongly in V and pointwise; (4.22)
V" — Vo strongly in H and pointwise; (4.23)
2" — z strongly in H and pointwise; (4.24)
2" — 2 weakly in V; (4.25)

M — 2 weakly in U'; (4.26)

v" — v weakly in £ (4.27)

" — vin €. (4.28)

Next, we pass to the limit h — 0 in (4.4)—(4.7) using the above subse-
quence.

Lemma 4.3. For the subsequence described in (4.21)—(4.28), the fol-
lowing hold true:

A(zp) 2" — A(z)z weakly in L* (0, T; V'), (4.29)
hFz" — 0 strongly in U, (4.30)
N (z1) (¢r) — N(2)(p) weakly inU', (4.31)
L (zh) ©" — L(2) o weakly inV', (4.32)
La(2)") — La(z) strongly in &' (4.33)
and
—L (") ® — —L(z) @ weakly in V', (4.34)

Proof: First, we note that where appropriate, we use measurable repre-
sentatives. We begin with (4.29). Letting 67 = 2! + © and 6" = 2" + ©,
as above and let n € U be a given function, then

T
(A (22) A (2) z,m)yry = / / ki («92) (z}; - zz) n; dxdt
0o Jo

T
+ / / (Kij () — kij (0)) zm ; dadt. (4.35)
0o Jo
From the assumption that the k;; are Lipschitz continuous, it follows

kij (0F) — kij (0) pointwise,
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and (4.25) implies that z" — z; weakly in L? (Q7). Then, the bounded-
ness of the k;; yields

kij ((92) 777]' — kij (9) 77,j StI‘Ol’lgly n L2 (QT> .

T
0 Q

Now, the integrand in the last term in (4.35) converges to zero pointwise,
and the boundedness of the k;; implies that we can use the dominated
convergence theorem and conclude that this term converges to zero, as
well. This proves (4.29).

We note that (4.30) follows from the observation that h fOT<F 2 M dt
is bounded and from the inequality,

Therefore,

T T
/ WE gyt < h1/4/ (h(EZ", )19 g
0 0

T 3/4 T
B4 (/0 h(th,zh)dt> (/0 ||Vn||§4(mdt)

Ch'/* 7] ’L4(0,T;VQW1’4(Q)) :

1/4

IA

<
We turn to consider (4.31),

(N (=) (¢

/ / oo (0}) "V - Vida — / / o (0}) "V - Vnda
/ /o—el )V - Ve ndx+/ /ad (07) |VO|* ndz. (4.36)

It is straightforward to pass to the limit in each of the terms, except for
the second one on the right-hand side. However, thanks to (4.21)-(4.28)
the integrand converges to o (f) ¢V - Vi pointwise. Therefore, the
result will follow from the Vitali convergence theorem once we show that
the integrands are uniformly integrable. To that end let r = 12/11, then

|0 (6") "V - Vn|" < C " |V V",
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and choosing p = 11/6 leads to

/ /’(M Oh OVt Vn‘ dzxdt
T ) 1/p'
C / /W}”\v e da:dt) (/ /|vn|’“p d:pdt)
0 Q

<<
6/11 T 5/11
:C’( /|g0h|2‘Vg0h|2d:vdt> (/ /|V77|12/5d1:dt)
Q 0 Q
T
gC( /|¢h}2\wh|2dxdt+/ /|Vn\12/5dxdt)
<C (/ /|¢h} V| dxdt+/ /|vn| dxdt)
<D

Y

where D < oo is a constant independent of h thanks to (3.6) and the
assumptions made on o, (3.1). Thus, the integrands in the second term
on the right-hand side of (4.36) form a uniformly integrable set and so
we can pass to the limit in this term as well as the others.

Formulas (4.32) and (4.34) follow easily from (4.21)—(4.28), especially
the strong convergence of ¢". Finally consider (4.33). Letting v € £ and
using the definition of Ly given in (3.10) we obtain

’(LdZZ - LdZ,V>s’ < CHHZ - QHH Ivllg

which establishes the desired conclusion because of (4.21). This proves
the lemma.

We now use the results of the preceding lemma to pass to the limit
h — 0in (4.4)-(4.7), thus proving Theorem 3.2..

5. Quasistatic and steady problems

In this short section we present the quasistatic and the steady or static
versions of the problem.

The quasistatic problem is obtained by neglecting the inertial terms
in the equations of motion (2.3). Thus, the problem is to find a triplet
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{u, ¢, 0} such that

00 0 00 9 0,
Pre ~ B, (’%‘(9)6—%) oa(0)|Vl m”@“faté (5.1)
V(c0a(0)Ve) =0, (5.2)
0 ouy, 0%uy,
_3:15] (a2jl<:l 8.’13' + bzgkl (9258 mzye) - fi7 (53)
along with the boundary conditions,
U = O, 0= 9{,, gb = qbb on FD, (54)
00 0¢
k”@ =hb, o;n; =0, e 0 onIy, (5.5)
and the initial conditions at ¢ = 0,
u=uy, 6=0 in €. (5.6)

An initial condition for u is needed because of the viscosity term in (5.3).
We note that the system is fully coupled.

This problem is new, is elliptic-parabolic, and remains an open prob-
lem, to be investigated in the future.

The steady or static problem is obtained by neglecting any time de-
pendence. It consists of the following system of elliptic equations, Find
a triplet {u, ¢, 0} such that

0 00 9

o (RO ) = 2a®Iver, 5:7)
V- (0a(0)Ve) =0, (5.8)

8 8uk
_a_;cj(a”’“’a_xl —mi;0) = fi, (5.9)

along with the boundary conditions,
u:(), (9:(91,, ¢:¢b on FD, (510)

ol 0¢

k:l]a =hl, o;in; =0, I 0 on I'y. (5.11)

We note that the steady problem decouples. Equations (5.7) and
(5.8), together with the relevant boundary conditions form the classical
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steady thermistor problem (see, e. g., [16]). Once the temperature and
the electric potential have been found, the displacements and the thermal
stresses can be found from (5.9) and the boundary conditions (5.10) and
(5.11).
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ported by the Ministerio de Educaciéon y Ciencia (Project MTM2006-
13981).
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