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Abstract
In this contribution, polymer/clay (nano)composites, based on poly(acrylic acid) (PAA) and poly(acrylic acid-co-styrene) 
poly(AA-co-St), were synthesized by free radical polymerization, using 2,2′-azobis(isobutyronitrile) (AIBN), as initiator 
and organomodified clay (OMMT), as nanofillers. The structural and morphological characteristics of the obtained (nano)
composites, PAA/OMMT (1, 3, 5 wt%), poly(AA75-co-St25)/OMMT (3 wt%) and poly(AA25-co-St75)/OMMT (3 wt%), were 
examined by X-ray diffraction and scanning electron microscopy, indicating the successful intercalation of polymer chains 
into the clay nanoplatelets. Thermal properties of obtained (nano)composites were evaluated according to thermogravimetric 
analysis and differential scanning calorimetry. Based on morphological and thermal results, poly(AA25-co-St75)/OMMT 
(3 wt%) (nano)composite was selected as an efficient adsorbent matrix for methylene blue dye, with about 74% of elimina-
tion obtained after only 80 min of swelling, under soft conditions.
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Introduction

The incorporation of fillers in polymers is known as one 
of the techniques allowing to improve the properties of the 
materials and to expand their application fields. Moreover, it 
is an economic way to develop new materials with enhanced 
properties (mechanical proprieties, thermal stability, flame 
retardancy, optical properties and permeability) for different 
specific applications [1–7]. It is clear that different materials 
were employed as nanofillers in polymers matrix, such as 
clays, carbon nanotube, nanowires or colloidal silica [8–10]. 
However, lamellar clays are one of the most used, because 

of its existence as an abundant natural resource. However, it 
is the surface nanoplatelet must be organomodified in order 
to reduce the hydrophilic character of the clay and hence, 
improve their dispersion in hydrophobic polymer matrix 
[11–14]. So, depending on the clay class and chemical struc-
ture of the polymer, several methods have been employed 
leading to polymer/clay nanocomposites with improved 
physicochemical properties, especially, melt intercalation 
[15, 16], template synthesis [17], exfoliation adsorption 
[18], and in situ polymerization [19–22]. In the case of acid 
acrylic monomer, many studies were established regarding 
the preparation of nanocomposites with improved properties 
[1, 23–25]. Recently, Luecha and Magaraphan [1] reported 
the results regarding the enhancement of thermal and 
mechanical properties of poly(acrylic acid) gel reinforced 
polyethylene terephthalate/clay nanocomposite. On the other 
hand, Supri et al. [23] examined the poly(acrylic acid) effect 
on morphology and mechanical properties of LDPE/clay 
composites. Also, Bo et al. analyzed the structure and mor-
phology of poly(acrylic acid)-based kaolin (nano)compos-
ites prepared by in situ polymerization, and Liu et al. stud-
ied the adsorption proprieties of cross-linked poly(acrylic 
acid)/clay (nano)composites prepared using redox initiator 
[24, 25]. Similar studies were established regarding poly-
styrene (nano)composites for improving the thermal and 
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mechanical properties as well as the oxygen diffusion and 
flammability [26–29]. The combination of poly(acrylic acid) 
and polystyrene using different methods, such as: emulsion, 
radical polymerization, controlled polymerizations was also 
reported in the literature [30–33]. However, the use of the 
copolymer for the adsorption of some organic molecules 
proved to be one of the more important application ways 
which interests the researchers. Recently, El-Segeny et al. 
synthesized the hybrid styrene/acrylic acid/clay by irradia-
tion and tested the sorption of the acid green B and max-
ilon C.I. basic dyes molecules, respectively. The amount of 
adsorbed dyes achieved about 58 mg/g and 78 mg/g, after 
12 h for acid green B and maxilon C.I. basic, respectively 
[34]. Wang et  al. [35] and Bulut et  al. [36] studied the 
adsorption of methylene blue (MB) dye using the chitosan-
g-PAA/clay (nano)composites. It is known that methylene 
blue (MB) is one of the most commonly used materials for 
dying cotton and textiles. Consequently, it is largely present 
in water industrial rejects. Furthermore, it can cause perma-
nent injury for health. Combining the physicochemical prop-
erties of poly(acrylic acid) and polystyrene matrixes as well 
as that of natural Algerian clay for producing material (nano)
composites, to remove methylene blue (MB) dye is the aim 
of this contribution. However, remarkable increase in nano-
platelets distance accompanied with improved thermal and 
mechanical properties of poly(methyl methacrylate)/clay 
(nano)composites was noticed in presence of this clay, used 
as nanofiller [11, 20, 37]. Furthermore, many studies are 
discussed the application of this natural clay [38–40]. In 
this work, poly(acrylic acid-co-styrene)/clay (nano)com-
posites were synthesized by in situ radical polymerization. 
Clay (MMT) has been first organically modified with hexa-
decyl trimethyl ammonium bromide (HDTMA) to produce 
a modified nanoclay (OMMT). The morphology and ther-
mal properties of the resulting (nano)composites have been 
investigated by X-ray diffraction (XRD), scanning electron 
microscopy (SEM), thermogravimetric analysis (TGA) and 
differential scanning calorimetry (DSC). The efficiency of 
the material, as adsorbent matrix of the MB dye, was evalu-
ated under easy experimental conditions.

Experimental part

Materials

The monomers acrylic acid (AA) and styrene (St) (Aldrich 
Chemical, 98%) were distilled under reduced pressure prior 
to use. The free radical initiator, 2,2′-azobis(isobutyronitrile) 
(AIBN) (Aldrich, 98%) was purified by recrystallization 
in methanol. Hexadecyl trimethyl ammonium bromide 
(HDTMA) (Aldrich, 99%) was used without further puri-
fication. Toluene and heptane were provided from Aldrich 

Chemical and used after distillation. The Algerian clay 
(MMT) used in this study was natural montmorillonite 
from Mostaganem (Algeria), kindly supplied by Entreprise 
Nationale des Produits Miniers Non-Ferreux et des Sub-
stances Utiles (ENOF), Algeria. MMT chemical composi-
tion (Si4.24)IV(Al1.24 Mg0.2 Fe0.17 Ti0.01)VI O10 (OH)2, nH2O 
Na0.13, Ca0.01, K0.1 was determined by the supplier. The dye 
used in the experiments was methylene blue (MB) (Chemi-
nova International). It was used without further purification.

Organomodification of the clay (OMMT)

Firstly, the natural clay was dispersed in aqueous solution, 
and the organic impurities were eliminated by treatment 
with hydrogen peroxide. Then, montmorillonite (MMT) 
was converted into its sodic from by treatment with NaCl. 
Finally, the organophilic form of MMT was obtained by ion-
exchange reaction of the Na+ cations with HDTMA mol-
ecules, as reported elsewhere [11]. Briefly, to a suspension 
of sodic montmorillonite was added the ammonium bro-
mide freshly dispersed in distilled water. After one night at 
80 °C under mechanical stirring, the mixture was filtered off 
and the collected organomodified clay was washed with hot 
water to eliminate excess ammonium bromide (as checked 
by AgNO3 test) and sodium ions. The organomodified clay 
was then freeze-dried for about 12 h. The obtained organo-
philic montmorillonite is noted as OMMT.

Synthesis of poly(acrylic acid)/clay (nano)
composites (PAA/OMMT)

Different amounts of organomodified clay OMMT (1, 3, and 
5 wt%) were stirred for 24 h in toluene. Then, acrylic acid 
monomer, AIBN (0.1 wt%), were introduced under nitrogen 
flow in the reactor, and the polymerization was carried out 
at 70 °C for 1 h under nitrogen. Finally, the polymer was 
collected by precipitation in heptane dried at room tempera-
ture and then in vacuum oven. For the sake of comparison, 
unifilled polymer poly(acrylic acid) (PAA) was synthesized 
under the same conditions.

Synthesis of poly(acrylic acid‑co‑styrene) (nano)
composites (poly(AA‑co‑St)/OMMT)

Freshly distilled acrylic acid and styrene monomers, AIBN 
(0.1 wt%) as free radical initiator and organomodified clay 
OMMT (3 wt%), in toluene, were placed in the reactor and 
stirred at room temperature under nitrogen flow for few min-
utes for homogenization. The temperature was increased 
at 70 °C, and the polymerization was carried out for 8 h. 
The obtained (nano)composites noted poly(AA75-co-St25)/
OMMT and poly(AA25-co-St75)/OMMT was collected by 



112	 International Journal of Plastics Technology (June 2019) 23(1):110–121

1 3

precipitation in heptane, dried at room temperature and then 
in vacuum oven.

Determination of isoelectric point (PZC) 
of adsorbent

The isoelectric point (PZC) of an adsorbent is an impor-
tant parameter to characterize the solid–solution interface. 
It is defined as the point in which, adsorbent possess a null 
charge potential on its surface. In order to determine the PZC 
of poly(AA25-co-St75)/OMMT, used as adsorbent, different 
solutions with different initial pH values (pHi = [2–12]) were 
prepared by addition of 0.1 M aqueous solution of HCl or 
NaOH and then mixed at room temperature for few minutes. 
After 48 h, the pH of each solution was measured (noted 
pHf). The PZC is identified as the point at which the change 
of pH is equal to 0 [40].

Adsorption of MB dye on nanocomposite surface

The adsorption experiments were performed according to 
the following method: 50 mg of poly(AA25-co-St75)/OMMT, 
as adsorbent was added to a MB solution at a concentration 
of 50 mg/L and 100 mg/L, respectively. The solution was 
stirred at room temperature. The stirring time was selected 
in the interval [0–120 min]. Then, the poly(AA25-co-St75)/
OMMT was separated by filtration and the residual con-
centration of MB in solution was determined by UV–Vis 
spectrophotometry. The amount of adsorbed dye (mg/g) was 
calculated using the following equation (Eq. 1):

where qe is the amount of dyes adsorbed onto dry mass of 
the poly(AA25-co-St75)/OMMT (nano)composite (mg/g), Ci 
and Cf are the concentrations (mg/L) of the dye solution 
before and after adsorption, respectively. V is the volume of 
the aqueous phase (L), and m is the weight of dry adsorbent 
(g). The percent of adsorbed MB on the adsorbent matrix [R 
(%)] was calculated according to Eq. 2.

Instrumentation

Fourier transform infrared (FTIR) spectra of obtained (nano)
composites were recorded on the transmission mode using 
Fourier transform (ALPHA) of BRUKER spectrophotometer 
at 2 cm−1 resolution with 32 scans over the spectral range 
of 4000–400 cm−1. X-ray diffraction (XRD) patterns were 
performed using Siemens D5000 diffractometer, using mon-
ochromatic CuKα radiation (λ = 0.15406 nm) from 1.65° to 
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30° by step of 0.04° and scanning rate of 10°/min. Scan-
ning electron microscopy (SEM) images of the systems were 
obtained, using Quanta 250 instrument equipped with a field 
emission filament using an acceleration voltage of 5 kV and 
a working distance of 10 mm. Thermal properties of (nano)
composites were evaluated by using thermogravimetry 
analysis (TGA). Measurements were carried out by thermal 
analysis calorimeter SDT Q600, from ambient to 600 °C, 
at a heating rate of 10 K min−1, in a nitrogen atmosphere at 
flow rate of 20 ml min−1. The glass transition temperatures 
(Tg) of the synthesized materials were determined by differ-
ential scanning calorimetry (DSC) using a calorimeter SDT 
Q600. The adsorption of methylene blue was evaluated by 
ultraviolet (UV–visible) spectrophotometer Optizen 1420 V, 
using a Shimadzu UV-160. Quartz cell of 1 cm path length 
was used in the analysis.

Results and discussion

Structure and morphology

Figure 1 shows FTIR spectra of synthesized PAA/OMMT 
(nano)composites. The bands appeared in 1401–1438 cm−1 
region and at 1703 cm−1, result from the bending vibrations 
of –CH2 and –C=O groups of PAA polymer, respectively. 
Furthermore, additional peaks, assigned to the modified 
clay, were detected, which confirm the presence of nano-
filler in the polymer matrix. In particular, the peak around 
1021 cm−1 and 470 cm−1 resulted from the stretching and 
bending vibrations of Si–O, respectively [24]. The peak at 
458 cm−1 is assigned to Mg-O bond in OMMT. In the case 
of poly(AA-co-St), the characteristic bands of styrene were 
noticed (Fig. 2). The stretching vibrations of phenyl groups 
were detected at 702 cm−1, 751 cm−1 and 1447 cm−1. The 
characteristic stretching band of carbonyl groups is observed 
at 1708 cm−1. The evaluation of dispersion degree of the 
OMMT in the polymers-based (nano)composites was estab-
lished according to the X-ray diffraction (XRD), using the 
Bragg’s equation n λ = 2d sinθ (n is an integer determined 
by the order given, λ is the wavelength of X-rays, d is the 
spacing between the planes in the atomic lattice, and θ the 
angle between the incident ray and the scattering planes). As 
shown in Fig. 3a, defined diffraction peak of the modified 
clay (OMMT) is appeared at 2ϴ = 3.95°, with an interla-
mellar distance of 23.67 Å. As far as the nanocomposites 
PAA/OMMT (1, 3, 5 wt%) are concerned, the XRD patterns 
display large diffraction peaks ranging between 1.25 and 
2.5 Å. In this case, it is difficult to conclude the structure 
of the synthesized PAA-based (nano)composites, but it is 
clear to claim the absence of exfoliation structure [1]. Inter-
estingly, defined XRD peaks centered around 2ϴ = 1.98° 
were detected with poly(AA-co-St)/OMMT-based (nano)
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Fig. 1   FTIR spectra of PAA and 
PAA/OMMT (nano)composites
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Fig. 2   FTIR spectra of 
poly(AA75-co-St25) and 
poly(AA25-co-St75)/OMMT 
(nano)composites, at 3 wt% of 
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composites, whatever the co-monomer styrene content 
(Fig. 3c). This important shift of the 001 plane peak of clay 
in presence of polymer matrix attests for some level of clay 
delamination (2ϴ = 1.98°, d001 = 44.8 Å). Complementary 
information regarding the morphology of these systems 
is obtained by SEM. The images recorded over thin slides 
fully attest a difference in the surface by adding nanoclay. 
As shown in Fig. 4a, the PAA polymer presents a clear sur-
face. Rather, the organomodified clay enables some modi-
fication in the polymer matrix surface by the appearance 
of some imperfection, as observed from SEM images of 
Fig. 4b. Indeed, no trace of micrometer-sized clay agglom-
erates is detected. A different surface morphology can be 
clearly observed in the case of poly(AA-co-St)/OMMT 
(nano)composites. Some clay sheet superposition resulting 
from their dispersion in the polymer matrix is evidenced 
by the MEB images illustrated in Fig. 4c. Such difference 

might be explained by the presence of styrene co-monomer 
which improves the clay nanoplatelets disaggregation. This 
result agrees with the increase in the interlamellar distance, 
as obtained by DRX analysis. In conclusion, intercalated 
(nano)composites structure was obtained with poly(AA-co-
St) copolymer whatever the co-monomer fraction in the 
matrix. This result is more likely attributed to the shift of 
the interlayer spacing clay triggered by the ammoniums 
cations. This shift is furthermore accentuated in the pres-
ence of copolymer chains that significantly separate the clay 
nanoplatelets.   

Thermal properties

Figures 5 and 6 show the TGA and DTG curves of virgin 
poly(acylic acid), poly(acrylic acid-co-styrene) and their 
corresponding (nano)composites, as recorded under nitrogen 
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nomodified clay contents (b) and poly(acrylic acid-co-styrene)/OMMT-based (nano)composites containing 3 wt% of organomodified clay (c)



115International Journal of Plastics Technology (June 2019) 23(1):110–121	

1 3

flow. As shown in Fig. 5, poly(acrylic acid) displays three 
degradation steps with a maximum degradation at 132 °C, 
310 °C and 421 °C, respectively. The first peak of degrada-
tion becomes less apparent when the nanoclay was dispersed 
in the PAA matrix. On other words, the start degradation 
of the PAA/OMMT (nano)composites is shifted to higher 
temperature, where the DTG curve regroup the first and 
the second steps of degradation. Thermo-degradation of 
poly(AA25-co-St75)-based (nano)composites was also car-
ried out. TGA and DTG curves are demonstrated in Fig. 6. 
The shape of the DTG curves is clearly different from that 
of the PAA matrix, in which three degradation steps are 
noticed, with a first DTG peak around 132 °C. Interest-
ingly, the degradation behavior of poly(AA25-co-St75)/
OMMT and poly(AA75-co-St25)/OMMT (nano)composites 
is occurred in one step, with the absence of the first and 
second degradation steps. However, poly(AA25-co-St75)/
OMMT (nano)composite shows a remarkable thermal sta-
bility, with a maximum degradation temperature located at 

421 versus 403 °C for poly(AA75-co-St25)/OMMT(nano)
composite. Consequently, the homogenous dispersion of 
the nanofiller in the copolymer matrix shows a significant 
delay in weight loss. The organoclay nanoplatelets act as 
physical barriers that are able to refrain the diffusion of the 
heat flow to the polymer matrix. This effect is in agreement 
with the morphology of the poly(AA25-co-St75)/OMMT and 
poly(AA75-co-St25)/OMMT (nano)composites, in which the 
clay sheet are homogeneously dispersed, as evidenced by 
SEM analysis. The effect of OMMT on Tg of the synthesized 
polymers (nano)composites was also examined using DSC 
(Table 1). The Tg values of PAA remain not affected by the 
presence of the nanofiller. Any remarkable increase in the 
Tg value was noticed (Fig. 7a). However, the confinement 
of the polymer chains is affected by the presence of styrene 
co-monomer, to underline an increase in the Tg (Fig. 7b) [11, 
26]. It can be concluded that the poly(AA25-co-St75)/OMMT 
(nano)composite displays better structure than the other sys-
tems. It exhibits homogenous morphology accompanied by 

Fig. 4   SEM micrographs for a PAA, b PAA/OMMT and c poly(AA25-co-St75)/OMMT (nano)composites, at 3 wt% of clay
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remarkable thermal stability below 300 °C. For this, it was 
selected, in this study, as a material for adsorption of meth-
ylene blue (MB), considered as pollutant.

Isoelectric point (PZC) of poly(AA25‑co‑St75)/OMMT

According to the curve illustrated in Fig. 8, it is noticed 
that the zeta potential values are positives at pH < 3.6, and 

then the (nano)composite is positively charged. Although, 
at pH > 3.6, the (nano)composite is negatively charged. 
Hence, the isoelectric point (PZC) of poly(AA25-co-St75)/
OMMT is equal to 3.6.

Fig. 5   Thermogravimetric anal-
ysis curves of PAA and PAA/
OMMT with different percents 
of inorganics, at 20 °C/min
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Table 1   Thermogravimetric 
parameters of PAA, poly(AA-
co-St) and their (nano)
composites

System Nanofiller con-
tent (wt%)

T10 (°C) T50 (°C) Td max (°C) Tg (°C)

PAA/OMMT 0 148 324 416 92
1 229 305 418 128
3 234 308 412 134
5 230 305 409 132

P(AA-co-St) 0 233 406 412 155
Poly(AA25-co-St75)/OMMT 3 316 401 401 161
Poly(AA75-co-St25)/OMMT 3 316 413 409 162

Fig. 7   DSC scans (second 
run) for a PAA/OMMT-based 
(nano)composites with different 
percents of inorganics and b 
poly(AA-co-St)/OMMT-based 
(nano)composites with 3 wt% of 
inorganics
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Fig. 8   Isoelectric point of 
poly(AA25-co-St75)/OMMT 
3 wt%
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Adsorption of methylene blue (MB)

Figure 9 shows the dependence of MB adsorption on time, 
in which the MB adsorption increased by increasing the time 
contact whatever the initial concentration of dye. However, 
a remarkable adsorption percent was observed in the few 
minutes of stirring, due to the greater availability of vacant 
sites of adsorbent surface, with an adsorbed amount of 
about 26 mg/g and 40 mg/g for an initial concentration of 
50 mg/L and 100 mg/L, respectively, which correspond to 
about 52% and 40% of removal. After 30 min of stirring, a 
partial saturation of available sites was achieved. So, the 
remaining vacant external sites become difficult to occupy 

because of the formation of repulsive forces between the dye 
molecules existing on the adsorbent surface and those on the 
aqueous phase. Furthermore, there is such diffusion of MB 
molecules in the interlamellar spaces of nanofiller until they 
are saturated, which will reduce the mass transfer between 
the liquid phase and the solid phase with time, whereby the 
removal percentage became constant, reaching a maximum 
values of about 74% and 72% for an initial concentration of 
50 mg/L and 100 mg/L, respectively. Thus, a stirring time of 
75 min can be considered as the time where the balance of 
the adsorption of MB is achieved. Hence, it is concluded that 
the studied (nano)composite shows an important adsorp-
tion capacity toward MB. This may be assigned firstly to 
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hydrogen bonding formation between the hydroxyl group of 
the acrylic acid unit and the cationic form of the MB in solu-
tion (Scheme 1). Consequently, the dye molecule is diffused 
in the clay nanoplatelets and it’s efficiently removed from 
the solution. Interestingly, the uptake value of dye is sig-
nificantly increased by increasing the initial concentration 
of MB in the solution, achieving an optimal value of 98% 
for initial concentration of 300 mg g−1, after about 1 h of 
stirring (Fig. 10). This result confirms the importance of the 
proposed (nano)composite material for removing efficiently 
the MB dye from solution.   

Conclusion

PAA/OMMT and poly(AA-co-St)/OMMT (nano)com-
posites prepared via in situ polymerization, employing an 
organomodified natural clay, mostly display an intercalated 
structure. Based on morphological and thermal results, 
poly(AA-co-St)/OMMT (nano)composites was selected 
as an adsorbent matrix for MB dye. The removal percent 
of MB by poly(AA25-co-St75)/OMMT (nano)composite is 
about 74%. Such complementary study is under investigation 
regarding the regeneration of the adsorbent material.
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