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Abstract
Surface damage in machining of fiber-reinforced polymer-based composites is almost unavoidable during manufacturing. 
Most often, machining operation—drilling causes delamination of composite surface that leads to the loss of quality of 
product. As a consequence, reasonably accurate prediction of delamination factor (Fd) of drilled hole emerges as a prereq-
uisite during the product development stage and freezing the design before final production. However, stochastic nature of 
the response and heterogeneous material properties make the modeling difficult. In this article, one of the most advanced 
generalized learning-based technologies, support vector machine (SVM) which could read the underlying unseen effect of 
input factors on response, is applied for regression model developing of drilling response—Fd on glass fiber-reinforced 
polyester composite. Gaussian radial basis function and ε-insensitive loss function are used as kernel functions and loss 
function, respectively. Particle swarm optimization (PSO) is modified, and modified PSO is employed to search the optimal 
combination of internal parameters of SVM for modeling of Fd. Model, thus developed, is validated with follow-up testing 
data sets. Based on estimated model, optimum input parameters for minimum Fd is further investigated using the procedure 
of modified particle swarm optimization.
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List of symbols
acc	� Accuracy level
b	� Bias
C	� Regularization parameter
coginitial, cogfinal	� Limits of cognitive acceleration 

coefficient
CV	� Coefficient of variation
dd	� Drill diameter (mm)
Dmax	� Maximum diameter of damaged zone
Do	� Nominal diameter of hole
f(x)	� Target function
Fd	� Delamination factor
fr	� Feed rate (mm/rev)
gbest	� Global best position of swarm

itermax	� Maximum iteration
K (xi, x)	� Kernel function
MAPE	� Mean absolute percentage error
mt	� Material thickness (mm)
n	� Number of particles in swarm
N	� Number of training data
pi

best	� Best position of ith particle
rand	� Random number within range (0,1)
socinitial, socfinal	� Limits of social acceleration coefficient
ss	� Spindle speed (rpm)
vk

iter	� Velocity of kth particle in iter-th 
iteration

w	� Weight vector
x	� Training input vector
xk

iter	� Velocity corrected position of kth parti-
cle in iter-th iteration

y	� Training output vector
ȳ	� Mean of training output set
z	� Number of attributes
ε	� Radius of loss insensitive hyper-tube
ηi, ηi*, αi, αi*	� Lagrange multipliers
ξi, ξi*	� Slack variables
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σ	� Standard deviation of radial basis func-
tion (kernel function)

σt	� Standard deviation of training output set
Φ(x)	� Feature space
Ψinitial, Ψfinal	� Limits of constriction factor
ωinitial, ωfinal	� Limits of inertial factor

Introduction

In today’s competitive market, composites have become one 
of the mostly used materials in manufacturing industries due 
to their certain unique advantageous structural and thermal 
properties. They provide high strength and specific stiff-
ness, high damping, good resistance against corrosion, high 
fatigue strength, high volume-to-weight ratio, resistance to 
chemical and microbiological attacks, low thermal conduc-
tivity, low thermal expansion, etc. [1]. A wide variety of 
composites are used for specific purposes in automotive and 
aviation industries, marine bodies, storage containers, pipes 
and industrial floorings. In aerospace industries, glass fiber-
reinforced plastics are used in fairings, landing gear doors, 
storage room doors and passenger compartments. Machin-
ing processes are used generally to cut, drill and contour 
composite for building products. Hole making operations 
are essential for final assembly. It was reported that over 
10,000 holes are made in small single engine aircraft while 
in large transport aircraft, millions of holes are made, most 
for fasteners—rivets, bolts and nuts which consume almost 
50% of total airframe production cost in airframe assembly 
[2]. Therefore, precise machining needs to be performed to 
ensure dimensional and functional stability and to obtain a 
better productivity.

Composites are constituted of matrix and disperse phase. 
Based on different combination of phase materials, a wide 
variety of composites with various properties are developed 
to meet the different needs of customers. To get both elas-
tic behavior and rigid structure of product, fiber-reinforced 
plastic composites are often preferred. Glass may be used 
as fiber component due to its high-temperature corrosion 
resistance, inertness to chemical and environmental attacks. 
Besides, extremely fine fibers of glass show high strength 
and stiffness compared to its own normal brittle behavior. 
Similarly, thermosetting plastics are preferable for matrix 
phase due to their exclusive thermal properties (permanently 
hard during their formation and do not soften even at high 
temperature opposed to thermoplastics) and high volume to 
weight ratio. Covalent cross-links anchor the network chains 
of thermosetting polymers together to resist vibrational and 
rotational chain motion at high temperatures which gives 
harder, stronger and dimensional stability than thermoplas-
tics [3]. Epoxy and polyester are two commonly used ther-
mosetting plastics. Less expensive polyester is chosen from 

economic point of view, and glass fiber-reinforced polyes-
ter (GFRP) becomes a widely used material in engineering 
application.

Though GFRP composites have a lot of advantageous 
material properties, it leads to too much extent of manufac-
turing difficulties. Chips formed during machining of GFRP 
causes a severe irritation to human skin. Drilling of GFRP 
is substantially different from that of metal and results in 
many undesirable effects such as rapid tool wear, rough sur-
face finish and defective subsurface layers caused by cracks 
and delaminations. Thus, improper choice of cutting param-
eter combination may lead to deleterious effect on product 
performance.

Delamination is an inter-ply phenomenon associated with 
drilling operation causing reduction in structural integrity 
and poor assembly tolerance [4]. Induced delamination 
occurs both at the entrance and exit surface of workpiece 
rendering it to be less strong. Cutting force acting in the 
peripheral direction is the main cause of the peeled-up 
delamination (entrance surface), while the thrust force is 
the main source of the push out delamination (exit surface) 
[5]. At the beginning of drilling operation, thickness of the 
laminated composite material is stable to withstand the 
thrust force and as the tool approaches the exit plane, stiff-
ness provided by the remaining plies may not be enough to 
bear the thrust force, causing the lamina to separate resulting 
in delamination. However, such delamination at exit side 
may be minimized by using back-up plates.

The delamination that occurs during drilling severely 
influences the mechanical characteristics of the material 
around the hole. A common measure of delamination factor 
(Fd) at the entrance of drilled hole is considered as

where Dmax and Do indicate maximum diameter of damaged 
zone (Fig. 1) and nominal diameter of the hole, respectively. 
It is obvious that for better performance of product delami-
nation factor should be minimized.

There have been significant contributions in experimental 
study on drilling characteristics of composites [6]. Khashaba 
[7] studied the influence of drilling and material variables 
on thrust force, torque and delamination of five different 
types E-glass fiber-reinforced thermosetting composites 
such as continuous winding with filler/polyester, cross wind-
ing/polyester, chopped/polyester, woven/polyester, woven/
epoxy. Effect of tool geometry and tool material on thrust 
force and delamination in drilling of glass fiber-reinforced 
epoxy composites was investigated by Abrao et al. [8]. Influ-
ence of tool point geometry on thrust force and delamina-
tion in drilling of glass/phenolic-woven fabric composite 
using cemented carbide drills was studied by Velayudham 

(1)Fd =
Dmax

Do
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and Krishnamurthy [9]. EI-Sonbaty et al. [2] suggested that 
higher cutting speed and fiber volume fraction improve sur-
face roughness of drilled-hole wall of glass fiber-reinforced 
epoxy composites by conventional high-speed twist drill. 
Delamination also reduces with increase in cutting speed 
[10]. Davim et al. [11] used different matrix materials to 
investigate the cutting characteristics of fiber-reinforced 
plastic composite materials using cemented carbide drills 
(K10) with appropriate geometry. Behavior of different drill 
geometries during machining glass fiber-reinforced plastics 
was also investigated by Davim et al. [12]. Hocheng and 
Tsao [13] presented a comprehensive analysis of delamina-
tion employing various drill bits such as saw drill, candle 
stick drill, core drill and step drill.

Various techniques have been applied for modeling and 
optimization of process parameters to yield lower delamina-
tion. Mohan et al. [14] conducted delamination analysis in 
drilling process of glass fiber-reinforced plastic composite 
materials using Taguchi’s methodology. Palanikumar et al. 
[15] performed a study on drilling glass fiber-reinforced 
epoxy composites with two types of cutting tools namely 
a twist drill and a four flute cutter of high-speed steel using 
Taguchi’s experimental design method as well as response 
surface methodology. Multivariable linear regression anal-
ysis was applied to investigate the effect of the drilling 
parameters such as speed and feed on cutting forces, thrust 
and delamination in drilling chopped glass fiber-reinforced 
epoxy composites with different fiber volume fraction by 
Khashaba et al. [16]. Multi-layer feed forward ANN archi-
tecture trained using error-back propagation training algo-
rithm was used for modeling of delamination in high-speed 

drilling of carbon fiber-reinforced composite material by 
Karnik et al. [17]. Stone and Krishnamurty [5] developed 
a thrust force controller to minimize delamination, and a 
relationship between feed rate and desired thrust force was 
modeled by ANN. Multilayered neural network with Leven-
berg–Marquardt learning algorithm was also employed for 
the purpose of modeling of drilling responses [18].

Taguchi method and Grey relation analysis were used for 
optimization of thrust force, surface roughness and delami-
nation factor for GFRP composite by Palanikumar [19] and 
for carbon fiber-reinforced plastic by Hsu and Tsao [20]. 
Gaitonde and Karnik [21] developed ANN model for pre-
diction of burr height and burr thickness during drilling of 
25-mm-thick AISI 316L stainless steel. They considered 
multi-response S/N ratio as fitness function for optimiza-
tion of the two burr size parameters at different drill diam-
eters by PSO. Though their predictive models were tested 
with small error, the parameters of PSO should be set more 
accurately to ensure global optimum. Fixed value of cogni-
tive and social acceleration coefficients, termination criteria 
set by maximum number of iteration value may not guaran-
tee the simulation to reach global optimum. Combining two 
responses into a single fitness function with equal weight 
factors may destroy the individual nature of each response. 
With suitable parameter settings, PSO also requires less time 
and memory space (small number of function evaluation) to 
terminate the simulation process. As such, burr formation at 
the exit side in drilling can be minimized by using back-up 
materials.

Multivariable regression analysis, response surface meth-
odology and artificial neural network are thus the three main 
data-based procedures applied for modeling mechanical 
drilling process of composites. Compared to artificial neural 
network, support vector machine (a powerful learning sys-
tem) is devoid of the four problems of efficiency of training, 
efficiency of testing, over-fitting and algorithm parameter 
tuning [22]. Besides, the insensitive zone of SVM captures 
the small-scale random fluctuations appeared in stochastic-
type responses which is beneficial for other researchers to 
apply the models on different products obtained in different 
batches. An analytic fuzzy logic classification (AFC)-SVM 
model for tool wear estimation with high accuracy was built 
by Brezak et al. [23], and Benkedjouh et al. [24] estimated a 
SVM learned model for remaining useful life (RUL) of cut-
ting tool. Though the models agree with experimental results 
with less error, no such clear description of the procedure 
to choose the internal parameters of SVM was reported. Li 
et al. [25] used WEKA software for prediction of cell vernier 
through SVM in manufacturing of TFT-LCD. Their devel-
oped model gives better prediction than multiple-regression 
model, but neither the steps of model building nor the simu-
lation procedure for optimal internal parameter settings was 

Fig. 1   Scheme of measuring delamination factor
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stated. Surface roughness in CNC turning of AISI 304 aus-
tenitic stainless steel was modeled with correlation coeffi-
cient through three SVM learning systems (LS-SVM, Spider 
SVM and SVM-KM) and ANN [26]. Parameters of SVM (C 
and σ) were set by grid search method. Though it is reported 
that for model development SVM learning systems consume 
less time than ANN, no such clear explanation about those 
specific choices of searching region of SVM parameters was 
stated. Also, the values of SVM internal parameters obtained 
through grid search method depend on the choice of jump-
ing interval. However, such predictive model of delamina-
tion factor (Fd) in drilling of glass fiber-reinforced polyes-
ter composite (GFRP) in particular is not found yet in the 
literature. Therefore, modeling of response through SVM 
and optimization of the representative model by PSO are 
proposed in the present work.

In the present study, experimental results on drilling of 
glass fiber-reinforced polyester composite with different 
combinations of input parameters, namely material thickness 
(workpiece property), drill diameter (cutting tool parameter), 
spindle speed and feed rate, are taken from thesis work sub-
mitted by Behra [27]. Model is developed for delamination 
factor using structural risk minimization principle-based 
support vector machine (SVM) learning system. For the pur-
pose of model development, optimum combination of three 
internal factors in SVM, namely regularization parameter 
(C), radius of loss insensitive hyper-tube (ε) and standard 
deviation of kernel function (σ), is searched by modified 
particle swarm optimization technique. Fitted model is 
tested through follow-up experiments. The representative 
model is further used for searching optimal setting of input 
parameters (material thickness, drill diameter, spindle speed 
and feed rate) for minimum delamination factor in drilling 
operation.

Support vector machine (SVM) [28]

Support vector machine, a supervised batch learning system, 
is firmly grounded in the framework of statistical learning 
theory. Vapnik [29] introduced structural risk minimization 
(SRM) principle instead of empirical risk minimization 
(ERM), implemented by most of the traditional artificial 
intelligence-based modeling technologies. Neural network 
approaches may have suffered with generalization, produc-
ing over fitted models but SRM minimizes upper bound on 
the expected risk, as opposed to ERM, that minimizes error 
on the training data. This difference equips SVM with a 
greater ability to generalize [30].

Ultimate goal in modeling of empirical data is to choose a 
model from hypothesis space, which is closest to the under-
lying target function. Suppose, a set of training data {(x1, 
y1), (x2, y2), …. (xN, yN)} is used for model developing in 

d-dimensional input space (i.e., x Є Rd). Key assumption 
in model developing is that training and testing data set are 
disjoint, independent and identically distributed according 
to the unseen but fixed underlying function [22]. The linear 
target function may be represented in the form [31].

where < , > indicates dot product in vector space. If the 
input pattern does not hold any linear relation to output, 
(nonlinear SVM regression model is shown in Fig. 2), then 
they are mapped to feature space Φ(x) from high-dimen-
sional input space via kernel functions. So, optimal choice 
of weight factor w and threshold b (bias term) is prerequisite 
of accurate modeling. Flatness of the model is controlled by 
minimizing Euclidean norm ||w||. Besides, empirical risk of 
training error should also be minimized [32]. So, regular-
ized risk minimization problem for model developing can 
be written as follows

Weight vector w and the bias term b can be estimated by 
optimizing this function (Eq. (3)), which minimizes not 
only empirical risks but also reduces generalization error, 
i.e., over-fitting of model simultaneously. Here, L(y), a loss 
function is introduced to penalize over-fitting of model 
with training points. A number of loss functions are already 
developed for handling different types of problems [30]. 
ε-insensitive loss function (Fig. 3) is mostly used for process 
modeling problems. This function may be defined as

(2)f(x) = ⟨w, x⟩ + b

(3)Rreg(f ) =
‖‖w2‖‖
2

+ C

N∑

i=1

L
(
yi, f

(
xi
))
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L
(
yi, f

(
xi
))

=
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(
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(
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Fig. 2   Nonlinear SVM regression model
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Here, points inside the ε-tube are considered as zero loss; 
otherwise, a penalization is calculated by introducing C, 
which is a trade-off between flatness and complexity of the 
model. Practical significance of this insensitive zone is that 
the points inside the hyper-tube, i.e., close enough to esti-
mated model are deemed to be well estimated and those out-
side the tube contribute training error loss. The outsiders of 
the insensitive zone belong to support vector group. So, size 
of ε-insensitive zone controls number of support vectors. As 
radius of insensitive hyper-tube increases, number of sup-
port vector reduces and flexibility of the model diminishes. 
This behavior may be advantageous for eliminating the effect 
of small random noise in output, but larger value of ε will 
not completely extract the unseen target function. Besides, 
higher value of C makes the model more complex with the 
chance of over-fitting, but too small value may increase 
training errors. So, optimum choice of this regularization 
parameter is necessary for better modeling. Two positive 
slack variables ξi and ξi* are introduced [29, 31] to cope with 
infeasible constraints of the optimization problem. Hence, 
the constrained problem can be reformulated as

This problem can be efficiently solved by standard dualiza-
tion principle utilizing Lagrange multiplier. A dual set of 
variables are introduced for developing Lagrange function. 
It is found that this function has a saddle point with respect 
to both primal and dual variables at the solution. Lagrange 
function can be stated as

(5)

minimize∶
‖w‖2

2
+ C

N�

i=1

�
�i + �∗

i

�

subject to∶ yi,exp − ⟨w, x⟩i − b ≤ � + �i

⟨w, x⟩i + b− yi,exp ≤ � + �∗
i

�i, �
∗
i
≥ 0, i = 1(1)N

where L is the Lagrangian and ηi, ηi*, αi, αi* are Lagrange 
multipliers satisfying ηi, ηi*, αi, αi* ≥ 0. So, partial deriva-
tives of L with respect to w, b, ξi, ξi* will give the estimates 
of w and b. The present problem is solved by using LibSVM 
MATLAB Toolbox.

Support vectors can be easily identified from the value 
of difference between Lagrange multipliers (αi, αi*). Very 
small values (close to zero) indicate the points inside the 
insensitive hyper-tube, but nonzero values belong to sup-
port vector group [33]. The w can be calculated by [31]

The idea of kernel function K(xi, x) gives a way of 
addressing the curse of dimensionality [30]. It helps to 
enable the operations to be performed in the feature space 
rather than potentially high-dimensional input space. A 
number of kernel functions satisfying Mercer’s condi-
tion were suggested by researchers [33, 34]. Each of the 
functions has its own specialized applicability. Gaussian 
radial basis function with σ standard deviation [given in 
Eq. (8)] is commonly used for its better potentiality to 
handle higher-dimensional input space.

Thus, the final model with optimum choice of C, ε and σ 
may be presented as [31]

Particle swarm optimization (PSO) [28]

Particle swarm optimization (PSO) technique is one of the 
most advanced evolutionary computational intelligence-
based optimization methodologies for optimizing real-
world multimodal problems. PSO mimics natural behavior 
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Fig. 3   ε-Insensitive loss function
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found in flock of birds or school of fish seeking their best 
food sources [35]. In this population based swarm intel-
ligence technique, a set of randomly initialized particles 
(swarm) are always updated in position and velocity by 
gathering information from themselves. Effect of each 
particle as well as the whole swarm’s experience modifies 
position of the population forwarding to optimum zone. 
Rate of convergence is purposefully controlled by different 
factors. Position of global optimum is not affected by the 
choice of the factors, but convergence is delayed due to 
improper choice or may lead to entrapping in local optima. 
For multivariable problem in high-dimensional space, time 
and memory space needed for reaching optimum solution 
by PSO are very important.

Number of particles (n) in swarm should be within the 
range (10, 40) [36]. Lower choice may not gather informa-
tion from whole space, but higher value of n will take longer 
time to converge in optimum zone.

Inertia factor (ω) controls the effect of previous veloc-
ity of individual particle on current velocity. To modify 
the rate of convergence another control on simulation was 
done by introducing constriction factor (Ψ) [37]. This term 
bounds the velocity effect of particles on their position 
avoiding clamping of particles to one end of search space 
[38]. So, higher values of inertia and constriction factor 
ensure wide searching which is necessary at initial stage 
but gradual convergence is enhanced at moderately lower 
value.

Another two important factors are cognitive acceleration 
coefficient (cog) and social acceleration coefficient (soc) 
which greatly control the influence of individual’s and whole 
swarm’s experience, respectively, on particle’s new velocity. 
Individual best (pi

best) experience of each particle favors good 
exploration in the search space but the best position (gbest) 
of swarm always guides to converge near optimum zone. So, 
choice of the factors becomes important for converging to 
global optimum zone quickly avoiding premature entrapping 
in local optima.

Several researchers use different values of the control fac-
tors for their different type of problem definitions. However, 
in general, for most of the cases, nearly a same range is sug-
gested irrespective of the nature of problem [39]. Shi and 
Eberhart [40] suggested linearly decreasing inertia factor 
from 0.9 to 0.4. Cognitive acceleration coefficient should 
vary linearly with iterations from 2.5 to 0.5 while the vari-
ation of social acceleration coefficient would occur just in 
reverse order [41]. Since constriction factor directly controls 
the optimization time, it may be considered as linearly time 
varying from 0.9 to 0.4.

Further, maximum number of iterations is to be set prop-
erly. A large value is necessary for adequate convergence. In 
other words, simulation will be terminated before reaching 
this limiting value.

Experiment [27]

Experiment was conducted on a radial drilling machine 
(Make: The American Tool Works Co., USA) [27]. The 
machine is equipped with a maximum spindle speed of 
1500 rpm and variable feed from 0.1 to 0.625 mm/rev with 
a 5.5 kW drive motor. Maximum radial dimension of work-
piece is 1475 mm.

In the present study, material thickness (mt), drill diam-
eter (dd), spindle speed (ss) and feed rate (fr) are considered 
as input parameters and delamination factor (Fd) measured 
on entrance surface as response parameter for drilling pro-
cess. Based on the availability of the machine setting, levels 
of the input parameters are selected and presented in Table 1.

GFRP composite used in the experiment was supplied by 
VMT Glass Fiber Roofing Industries. Hand lay-up technique 
is used for producing the composite. Chopped strand mat 
E-glass fiber is used as reinforcement in polyester resin to 
prepare the laminate. Mechanical and physical properties of 
this composite are shown in Table 2. Experiments are car-
ried out on GFRP samples of size 150 mm × 150 mm using 
wood as backing material.

HSS taper shank twist drills (Make: Addison & Co. Ltd., 
India) confirming to IS: 5103-1969/ISO: 235-1980/DIN: 
345-1978/BS: 328: Part: 1-1986 specifications were utilized 
for the drilling experiments. Chemical composition of HSS 
tool material is listed in Table 3. Three different diameter 
twist drills (shown in Table 4) of grade M2 were employed.

Table 1   Parameters and their levels

Level 1 Level 2 Level 3

Material thickness (mm) 8 12 16
Drill diameter (mm) 10 12 14
Spindle speed (rpm) 400 800 1100
Feed rate (mm/rev) 0.100 0.175 0.275

Table 2   Properties of GFRP composite

Tensile strength 700 kg/cm2

Hardness Barcol 40.5
Matrix Polyester
Reinforcing E-glass, chopped strand mat 

(450 g/m2)
Volume fraction of glass fiber 0.33
Hardener Methyl ethyl ketone peroxide

Table 3   Chemical composition 
of HSS tool material (wt%)

C Cr Mo W V

0.9 4.2 5.0 6.4 1.8
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Damage around the holes at the entrance was measured 
with a toolmakers’ microscope with 30× magnification 
(Make: Carl Zeiss Ltd.). Delamination factor (Fd) is calcu-
lated using Eq. (1).

Among 81 unique combinations of the levels of different 
input parameters, randomly 11 sets are kept aside for test-
ing purposes and rest 70 data sets are used for training the 
learning process.

Analysis and discussion

Model for delamination factor (Fd) is fitted through learning 
process of SVM based on training data sets. Fitted model 
is tested through another 11 sets of data. Then the repre-
sentative model is used for searching optimal combination of 
input parameters (material thickness, drill diameter, spindle 
speed and feed rate) for minimum delamination factor (Fd).

Model development

Significance of parameter selection in SVM for model devel-
opment and thereby for good prediction is evident. Particle 
swarm optimization (PSO) could be used effectively for this 
purpose. The most influencing parameters in SVM learning 
process are C, ε and σ. With optimum choice of C, ε and σ, 
a set of Lagrange multipliers (αi, αi*) could be found and the 
model can be estimated using Eq. (9).

At first, search spaces for each of the parameters (C, ε 
and σ) are to be determined. A wide range of each parameter 
may be a good search space, but this will take large compu-
tation time. Estimation of C based on experimental outputs 
(target values) was suggested by Levis and Papageorgiou 
[34], Cherkassky and Ma [42].

where ȳ and σt represent mean and standard deviation of 
target values. However, this exact value may lead to errone-
ous modeling due to the presence of random noises. So, it 
is better to choose a range for C and searching operation is 
to be performed within the limits. At first, using Eq. (10) C 
value is calculated for Fd as CFd = 1.4160. Then, considering 

(10)C = max
(||ȳ + 3𝜎t

||, ||ȳ − 3𝜎t
||
)

normal distribution with mean at this calculated C value and 
50% of mean value as standard deviation, two points are 
chosen at both sides of estimated C value. Thus, range of C 
for Fd is determined (Table 5).

Based on experiments, suitable range of ε and that of σ 
are also suggested in [34, 42]. Inside the bounds of σ, gen-
eralization performance is found as stable. Those limits can 
be calculated from

Here, z indicates number of most influencing attributes in the 
process. In this study of drilling process, it is four namely 
material thickness, drill diameter, spindle speed and feed 
rate. Using Eq. (11), ε and σ values for Fd are calculated 
(Table 5).

For better implementation of this estimated search range, 
it was suggested [34, 42] to normalize the training inputs 
within the range (0, 1). So, the input parameters of drilling 
process, i.e., material thickness (mt), drill diameter (dd), 
spindle speed (ss) and feed rate (fr) are normalized using 
the following formulae.

As SVM reduces the chance of generalization error; in the 
present study, parameters of SVM are selected through mini-
mization of mean absolute percentage error (MAPE) in esti-
mation of training outputs. For the purpose of optimization, 
MAPE being a function of C, ε and σ, is considered as the 
objective function. At every step during marching procedure, 
different combinations of C, ε and σ will develop differ-
ent regression models. For each of the models developed 
through the change of C, ε and σ values, MAPE [Eq. (13)] 
is calculated and searching of minimum MAPE is done 
among the models using the procedure of particle swarm 
optimization.

In most of the papers, termination criterion is set by a 
predefined maximum number of iterations. This may not 

(11)𝜀 =

[
ȳ

30
,
ȳ

10

]
, 𝜎 =

[
0.1

(
1

z

)

, 0.5

(
1

z

)]
,

(12)

x1,norm =
mt − 8

16 − 8
, x2,norm =

dd − 10

14 − 10
,

x3,norm =
ss − 400

1100 − 400
, x4,norm =

fr − 0.100

0.275 − 0.100

(13)MAPE(%) =
100

N

N∑

i=1

|||||

yi,experimental − yi,estimated

yi,experimental

|||||

Table 4   Specifications of twist drills

Drill diameter 
(mm)

Flute length (mm) Overall length 
(mm)

10 87 168
12 101 182
14 108 189

Table 5   Searching range of SVM parameters

SVM parameter C ε σ

Searching 
range

[0.2043, 
2.7143]

[0.0409, 
0.1226]

[0.5623, 0.8409]
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ensure global optima. Rather, a statistical measure of rela-
tive dispersion, coefficient of variation (CV) of the position 
of particles in search space, is expected to help avoiding the 
premature stopping of simulation procedure. Coefficient of 
variation is calculated as a ratio of standard deviation to 
mean and expressed in percentage.

A very small value of this criterion indicates a set of 
densely compact particles in the swarm, irrespective of 
their search range in different dimensions. Small coeffi-
cient of variation in conjunction with negligible change in 
the values of MAPE will ensure global optimum. Besides, 
nature of change of different components of CV values in 
different dimensions may give a preliminary idea about the 
underlying relationship among output and inputs. There-
fore, above proposed modification is introduced and modi-
fied PSO algorithm for searching optimum combination of 
C, ε and σ for minimum MAPE is described as follows.

Step 1 Choose number of particles in swarm (n), maxi-
mum number of iterations iter max, accuracy level (acc). 
Set, inertia factor range (ω initial, ω final), cognitive accel-
eration coefficient range (cog initial, cog final), social 
acceleration coefficient range (soc initial, soc final) and 
constriction factor range (Ψ initial, Ψ final).
Step 2 Set iter = 1. Randomly initialize the position of 
n particles in swarm that is n set of initial combination 
of C, ε and σ. Also randomly set initial velocity of each 
particle using following relation.

where “range(i)” and “rand” indicate range of C, ε and 
σ (shown in Table 5) and a random number within the 
range (0,1), respectively. So, n set of velocity vectors with 
components along C, ε and σ coordinates are initialized.
Step 3 Set t = 1 and pt

best and gbest as current position 
vector.
Step 4 Check whether t = n or not. If yes go to step 8, 
otherwise set t = t + 1 and go to step 5.
Step 5 Calculate MAPE (objective function value) at 
tth particle position in swarm using Eq. (13). If iter = 1, 
then set pt

best as current position vector and go to step 7. 
Otherwise, go to step 6.
Step 6 If this MAPE value is smaller (better) than 
MAPE at already set pt

best, then update pt
best vector. Oth-

erwise, pt
best is kept unaltered.

Step 7 Check whether this current MAPE value is lesser 
(better) than MAPE at already set gbest. If yes, update 

(14)

Coefficient of variation(CV)(%)

= 100 ×
standard deviation of current position vector

mean of current position vector

(15)v
(i)

iter
= range(i) × rand, i = 1(1)3

gbest vector to current position vector and go to step 4. 
Otherwise, gbest vector is kept unaltered and go to step 4.
Step 8 Calculate coefficient of variation of particles’ 
position in current swarm using Eq. (14). Each position 
vector has three components along C, ε and σ. So, three 
values of coefficient of variation will be found.
Step 9 If all the three coefficient of variation values 
simultaneously become less than accuracy level, then 
terminate the simulation process and go to step 14, oth-
erwise set k = 1 and go to step 10.
Step 10 Considering linear gradient of ω, cog, soc and 
Ψ, set the value of the control factors for this iteration 
(iter) using the following relations.

Step 11 Update kth particle’s velocity vector and its 
velocity corrected position vector using the following 
formulae. 

Step 12 If new positions of particles (C, ε and σ) go 
outside the specified search range (shown in Table 2), 
then reset its current position to the violating limit. If 
k = n, then go to step 13. Otherwise set k = k + 1 and go 
to step 11.
Step 13 If iter = itermax, then go to step 1 and restart 
the simulation with larger itermax, such that termination 
criterion will be satisfied before reaching that new limit. 
Otherwise set iter = iter + 1 and t = 1, go to step 5.
Step 14 Set current gbest of the swarm as optimum point, 
i.e., components of latest gbest vector become the opti-
mum combination of C, ε and σ for minimum MAPE in 
fitting the regression model on training data.

Therefore, final gbest vector satisfying the termination 
criterion becomes global optimum in that specified search 
space. The flow chart for searching optimum parameter 
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�iter = �initial +

(
�final − �initial

)
(
itermax − 1

) (iter − 1)

cogiter = coginitial +

(
cogfinal − coginitial

)
(
itermax − 1

) (iter − 1)

sociter = socinitial +

(
socfinal − socinitial

)
(
itermax − 1

) (iter − 1)

�iter = �initial +

(
�final − �initial

)
(
itermax − 1

) (iter − 1)

(17)

vk
(m)iter+1

= �iter

(
vk
(m)iter

)
+ c1,iter(rand)

(
pk
(m)best

−xk
(m)iter

)

+ c2,iter(rand)

(
g(m)best− xk

(m)iter

)

xk
(m)iter+1

= xk
(m)iter

+ �

(
vk
(m)iter+1

)
, m = 1(1)3



85International Journal of Plastics Technology (June 2019) 23(1):77–91	

1 3

combination (C, ε and σ) of SVM through modified PSO by 
minimizing MAPE of training data is also shown in Fig. 4.

In the present work, different control factors of modi-
fied PSO are set as, number of particles in swarm (n) = 20, 
ωinitial = 0.9, ωfinal = 0.4, coginitial = 2.5, cogfinal = 0.5, 
socinitial = 0.5, socfinal = 2.5, Ψinitial = 0.9, Ψfinal = 0.4, 
itermax = 250, accuracy level (acc) = 1.0 (i.e., simulation 

will stop when each component of coefficient of variance of 
particles’ position goes down below 1%).

As PSO is a population-based searching technique; a proper 
choice of initial positions vectors of the particles within speci-
fied search space and their corresponding velocities are to be 
set randomly. But wide spreading of initial position vectors 
must be assured by the operator for better searching. The set 

Yes                            Yes

No                                 No

Yes                                                                                   Yes

No No

No

Yes

No

No                                                           Yes

Yes

Choose n, iter max, acc, ω initial, ω final, cog initial, 
cog final, soc initial, soc final, Ψ initial, Ψ final and 
search space (range) for C, ε, σ. Consider 
MAPE as objective function. Set iter = 1

START

Set t = 1 and randomly initialize a position vector within search space and set it as 
current position vector. Initial velocity vector is calculated using equation (15)

Calculate current MAPE at current position vector

t = t+1

If
iter = 1

If
t = 1 p t best = current position vector

g best = current position vector

If 
current MAPE 

< MAPE at 
current p t best

p t best = current position vector

If 
current MAPE 

< MAPE at 
current g best

If 
t = n

g best = current 
position vector

t = t+1

Calculate ω iter, cog iter, soc iter, Ψ iter using 
equation (16). Update each particle’s velocity 
vector and calculate corresponding velocity 

corrected position vector within search space
using equation (17). Set iter = iter +1 and t = 1

Calculate coefficient of variation (CV) 
of each component of current swarm 
position vector using equation (14)

If     
CV < acc

If
iter = iter max

Restart the simulation 
with higher iter max

STOP
Save current g best as 

optimum solution vector

Fig. 4   Flow chart for searching optimum combination of C, ε and σ through modified PSO by minimizing MAPE of training data
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of values should be memorized by the computing machine for 
exact repetitiveness of the simulation process.

Different combinations of C, ε and σ change the shape 
of model, and best fitted model will have minimum fitting 
error that is minimum MAPE. As such the MAPE of the fitted 
model should be minimized. In this study, best fitted model 
with minimum MAPE is constructed on optimum combina-
tion of C, ε and σ that is the best position of the particles in 
swarm.

Thus optimizing MAPE by modified PSO with the initial 
position and velocity vectors, a set of C, ε and σ for Fd is found 
(shown in Table 6). Marching steps of the simulation process 
for minimizing MAPE are shown in Fig. 5. Though MAPE 
values remain unchanged after some iteration, yet the simula-
tion is continued further. In this work, termination criterion is 
set by CV of position vectors’ components along each dimen-
sion (C, ε and σ), as this will ensure proper convergence of the 
searching operation to optimum zone. So, iteration process is 
continued until coefficient of variation of position vector com-
ponents in each dimension (C, ε and σ) goes down below 1% 
(refer Fig. 6) although MAPE remains unchanged. Coefficient 
of variation (expressed in %) of position vectors in different 
dimensions is calculated by taking the ratio of standard devia-
tion to mean of position vector component along respective 
dimensions.

Figure 6 indicates that effect of C is lower than ε and σ as 
CV for C dies out at a slower rate. This may conclude that 
model of Fd is not too much sensitive to the value of C. But 
rapid die down nature of ε and σ gives a strong evidence in 
favor of the presence of random noises in the responses.

Optimum C and ε values are found near the upper and lower 
bound of search space, respectively. Higher value of C (with 
respect to specified search space) signifies that the model of 
Fd is highly complex in nature with large random noises. This 
gives a good indication in favor of the stochastic nature of 
drilling composite material. The random noises in the output 
of this stochastic process are fairly controlled in developing a 
model by SVM with proper choice of ε. Process outputs within 
ε-tube do not greatly affect the complexity of model. Here 
lower value of ε for indicates that the estimated model capture 
small-scale randomness adequately. Besides, higher value of 
σ captures the oscillatory nature of training data which are not 
penalized by ε-insensitive zone. In the present study, optimum 
σ shifts toward upper end that is there is an oscillatory pattern 
outside the insensitive tube.

With the estimated optimum combination of C, ε and 
σ, Lagrange multipliers (αi, αi*) are calculated (shown in 
Table 9) and the developed model for Fd can be represented 
as

To depict the effect of different input parameters (material 
thickness, drill diameter, spindle speed and feed rate) on 
delamination factor, surface plots are generated using the 
above estimated model. The representative surface plots are 
shown in Figs. 7, 8, 9, 10, 11 and 12. Feed rate is observed 
a significant factor.

Fd: f (x) =

N∑

i=1

(
�i − �∗

i

)
K
(
xi, x

)
+ b|||||||||

C = 2.1569

� = 0.0409

� = 0.8409

with K
(
xi, x

)
= e

−
xi−x

2

2�2
||||� = 0.8409

Table 6   Optimum SVM parameters and training error measurement

C ε σ MAPE

2.1569 0.0409 0.8409 2.1405

Fig. 5   Marching steps for optimization of MAPE for modeling of Fd

Fig. 6   Change of CV with iterations for optimization of MAPE for 
modeling of Fd
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Fig. 7   Effect of material thickness & drill diameter on Fd at 
ss = 750 rpm & fr = 0.1875 mm/rev

Fig. 8   Effect of material thickness & spindle speed on Fd at 
dd = 12 mm and fr = 0.1875 mm/rev

Fig. 9   Effect of material thickness & feed rate on Fd at dd = 12 mm 
and ss = 750 rpm

Fig. 10   Effect of drill diameter & spindle speed on Fd at mt = 12 mm 
and fr = 0.1875 mm/rev

Fig. 11   Effect of drill diameter & feed rate on Fd at mt = 12 mm and 
ss = 750 rpm

Fig. 12   Effect of spindle speed & feed rate on Fd at mt = 12 mm & 
dd = 12 mm
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Testing of estimated model

Testing of the estimated model is performed with 11 disjoint 
data sets obtained from 11 separate follow up experimental 
runs conducted at the mid-level of feed rate. Testing results 
are shown in Table 7. The values of mean absolute percent-
age error (3.1356%) suggest the adequacy of the estimated 
model for application in practical field of work

Optimization of Fd

Delamination of work surface always has a deleterious effect 
on quality of product performance. Thus, lower value of 
Fd is appreciable to the process engineers. Hence, optimum 
combination of input parameters (material thickness, drill 
diameter, spindle speed and feed rate) in drilling process to 
get minimum Fd in a certain working range is prerequisite 
in practical field of work. Here, modified PSO (as proposed 
in subsection 5.1) is applied on the developed SVM learned 
regression model [Eq. (18)] for searching optimum working 
condition satisfying minimum Fd within the pre-specified 
range (shown in Table 1). Control factors for modified PSO 
(n, ω, cog, soc, Ψ, iter max, acc) are kept same as before. Ini-
tial position vectors and corresponding velocity vectors are 
randomly chosen within the specified search range.

Marching steps of the simulation process for minimization of 
Fd are shown in Fig. 13. Optimum results are shown in Table 8.

Coefficient of variation specifically signifies the rela-
tive measurement of spreading of the particles in swarm. 
Though CV value is dependent on random numbers, but 
the nature of change of this value somehow reflects the 
physical relationship among parameters and responses. 
Figure 14 indicates that components of position vector 
along feed rate, material thickness and spindle speed die 
down rapidly (that is CV decreases at faster rate), but 

there is a gradual decaying nature in drill diameter com-
ponent. Higher spindle speed and feed rate increase thrust 
force, which weakens the interplay bonding; as a result, 
separations of laminates occur. Also, thin material causes 
more push out delamination. So, change of drill diameter 
does not have too much influence on delamination, but 

Table 7   Testing for Fd

Sl. No. Material thick-
ness (mm)

Drill diameter 
(mm)

Spindle speed 
(rpm)

Feed rate 
(mm/rev)

Fd (experimental) Fd (estimated) Absolute % error

1 8 10 800 0.175 1.2622 1.3294 5.3230
2 8 12 800 0.175 1.2844 1.3438 4.6225
3 8 14 400 0.175 1.2692 1.2867 1.3802
4 8 14 800 0.175 1.2762 1.3335 4.4921
5 12 10 800 0.175 1.2058 1.2724 5.5204
6 12 12 400 0.175 1.1945 1.2566 5.1951
7 12 12 1100 0.175 1.2197 1.2346 1.2199
8 16 10 400 0.175 1.1893 1.1993 0.8448
9 16 10 1100 0.175 1.1743 1.1655 0.7480
10 16 12 800 0.175 1.1841 1.2136 2.4929
11 16 14 800 0.175 1.1867 1.2182 2.6532
Mean absolute percentage error (Testing) 3.1356

Fig. 13   Marching steps for minimization of Fd

Table 8   Optimum result and validation

Material 
thickness 
(mm)

Drill 
diameter 
(mm)

Spindle 
speed 
(rpm)

Feed rate 
(mm/rev)

Fd

Optimum 16 14 1100 0.100 1.0949
Experimental 16 14 1100 0.100 1.1358
Absolute  % 

error
– – – – 3.6010
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other three parameters—material thickness, spindle speed 
and feed rate effectively control quality of drilled product.

Conclusions

Prediction of delamination factor of worksurface is very 
essential to fully diminish or decrease long-term product 
performance deterioration of glass fiber-reinforced polyes-
ter composites. Predictive model of the attribute is, there-
fore, prerequisite during the product development stage 
and freezing the design before final production. The glass 
fiber-reinforced polyester composite being an inhomoge-
neous and anisotropic material, small-scale variation in 
response is inevitable during drilling of this material. The 
developed SVM-based regression model with optimum 
parameter settings (C, ε and σ) can efficiently capture the 
small-scale random fluctuations and can predict delamina-
tion factor of work surface for the material in a robust way. 
Validation result of estimated model favors the practical 
use of the model in the chosen range. Optimum combina-
tion of input parameters in drilling for minimum delamina-
tion factor is further found by applying modified particle 
swarm optimization technique on the developed model. 
Thus, a procedure is proposed that may be used effectively 
to develop model for this type of materials and determine 
optimal setting of input parameters.

Appendix

See Table 9.

Fig. 14   Change of CV along different dimensions with iteration for 
minimization of Fd

Table 9   Difference of Lagrange multipliers (αi, αi*) for Fd model 
(Training input vectors corresponding to # are the support vectors)

Sl no. Training input vector 
(mt, dd, ss, fr)

Difference of Lagrange mul-
tipliers for Fd model (b = 0) 
(C = 2.1569, ε = 0.0409, 
σ = 0.8409)

1 (8, 10, 400, 0.100) 0.525195230090877#

2 (8, 10, 400, 0.175) − 0.000000002681717
3 (8, 10, 400, 0.275) 0.628536252568837#

4 (8, 10, 800, 0.100) − 0.000000001105429
5 (8, 10, 800, 0.275) − 0.000000002767856
6 (8, 10, 1100, 0.100) 0.488347780417287#

7 (8, 10, 1100, 0.175) − 0.000000000923326
8 (8, 10, 1100, 0.275) 0.869153096157191#

9 (8, 12, 400, 0.100) 0.000000000667942
10 (8, 12, 400, 0.175) − 0.000000008090438
11 (8, 12, 400, 0.275) 0.000000003014198
12 (8, 12, 800, 0.100) 0.000000002772582
13 (8, 12, 800, 0.275) − 0.000000002994774
14 (8, 12, 1100, 0.100) − 0.000000000745200
15 (8, 12, 1100, 0.175) − 0.191996378980079#

16 (8, 12, 1100, 0.275) − 0.000000000138956
17 (8, 14, 400, 0.100) 0.420717084163701#

18 (8, 14, 400, 0.275) 0.753300692327161#

19 (8, 14, 800, 0.100) − 0.000000001120708
20 (8, 14, 800, 0.275) − 0.000000002649887
21 (8, 14, 1100, 0.100) 0.955271411093371#

22 (8, 14, 1100, 0.175) − 0.341787963624719#

23 (8, 14, 1100, 0.275) 0.728390996794064#

24 (12, 10, 400, 0.100) 0.000000001589205
25 (12, 10, 400, 0.175) − 0.035229314672588#

26 (12, 10, 400, 0.275) 0.000000000549479
27 (12, 10, 800, 0.100) − 0.000000014639496
28 (12, 10, 800, 0.275) − 0.336788113630661#

29 (12, 10, 1100, 0.100) 0.000000001427493
30 (12, 10, 1100, 0.175) − 0.000000000880487
31 (12, 10, 1100, 0.275) 0.000000002899240
32 (12, 12, 400, 0.100) − 0.000000005274340
33 (12, 12, 400, 0.275) − 0.612166601421159#

34 (12, 12, 800, 0.100) − 0.262557292904846#

35 (12, 12, 800, 0.175) − 1.812426631063476#

36 (12, 12, 800, 0.275) − 0.003089092009327#

37 (12, 12, 1100, 0.100) − 0.000000001676854
38 (12, 12, 1100, 0.275) − 0.349950619262231#

39 (12, 14, 400, 0.100) − 0.000000000377224
40 (12, 14, 400, 0.175) − 0.000000005059569
41 (12, 14, 400, 0.275) 0.000000004844352
42 (12, 14, 800, 0.100) − 0.000000000796432
43 (12, 14, 800, 0.175) − 0.207664997506429#

44 (12, 14, 800, 0.275) − 0.014993484255197#

45 (12, 14, 1100, 0.100) 0.000000005620053
46 (12, 14, 1100, 0.175) − 0.000000000604029
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