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Abstract Delamination in the drilling of polyester composite reinforced with

chopped fiberglass is a problematic phenomenon. The material’s structural integrity

is reduced by delamination, which results in poor tolerance during assembly and is a

primary reason for decreased performance. Surface roughness is another important

factor to consider when drilling fiber-reinforced plastics, as surface roughness

causes failures by inducing high stresses in rivets and screws. Due to the random

orientation of fiberglass and the non-homogenous, anisotropic properties of this

material, an exact mathematical model has not been developed yet. Instead, mod-

elling by artificial neural networks (ANNs) is adopted. In the present work, a

multilayer perception ANN architecture has been developed with a feed-forward

back-propagation algorithm. The algorithm uses material thickness, drill diameter,

spindle speed, and feed rate as input parameters and delamination factor (Fd) at the
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entrance of the drilled hole, average surface roughness (Ra), and root mean square

surface roughness (Rq) as the output parameters. The ANN model is then used to

develop response surfaces to examine the influence of various input parameters on

different response parameters. The developed model predicts that surface roughness

increases with increases in feed rate and that a smaller-diameter drill will be

advantageous in reducing surface roughness. A reduced feed rate will minimize

delamination as well.

Keywords Delamination � Glass fibre reinforced polyester � GFRP � Surface
roughness � Artificial neural network � ANN

Introduction

Fiber reinforced plastic (FRP) composites are widespreadly used in structural

applications where weight is a prime concern. FRP composites are often preferred

over other materials for buildings, rocket exhausts, in aerospace and automobile

applications due to their high specific strength. FRP composites are lightweight yet

very strong and have high fatigue limit, excellent damping, low thermal expansion

and are resistant against corrosion [1]. Composite materials consist of two distinct

phases- a continuous the matrix which surrounds the reinforcement or the dispersed

phase. Epoxy resins and polyesters resins are extensively used as a matrix in

composites due to their unique balance of chemical and mechanical properties as

well as wide versatility of treatment. Glass fibres have high specific strength and

hence are among the most preferred structural materials.

Owing to their anisotropic and non-homogeneous properties, composite materials

show very unique mechanics during cutting [2]. Drilling is a frequently used process

during assembly of structures and as much as 100,000 holes are drilled in a small

aeroplane to accommodate fasteners. Surface roughness is a significant trait related

with drilling of FRP. Surface roughness can give rise to high stresses on fasteners

and may lead to failure [3]. Delamination is a commonly encountered problem

while drilling FRP composites. Delamination leads to poor assembly tolerance, and

is a prime reason in reducing the overall long term performance of composite

laminates [4]. As much as 60 % of the totals rejections during the final assembly of

the aircraft in an aeroplane industry is due to delamination [5].

According to [3] while using traditional high speed twist drills on GFR epoxy

composite the surface roughness can be improved by employing higher cutting

speed and high fiber volume fraction. The effect of several drilling and material

parameters on delamination, torque and thrust force has been studied by [5]. The

influence of geometry and material of tool on thrust force and delamination while

drilling a glass fibre reinforced epoxy composites was investigated by Abrao et al.

[6]. Velayudham and Krishnamurthy [7] have investigated the influence of point

geometry on delamination and thrust force while drilling glass/phenolic-woven

fabric composite using cemented carbide drills of different geometries such as

normal point geometry tipped carbide drill, web thinned tipped carbide drill and

tripod geometry solid carbide drill. Rubio et al. [8] used high-speed machining to
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achieve high performance drilling of glass fibre reinforced composites. A complete

analysis on delamination of glass fibre reinforced composites for various drills has

been reported by Hocheng and Tsao [9].

So far several techniques have been used to study delamination and surface

roughness. Palanikumar et al. [10] studied the problem of delamination in drilling

glass fibre reinforced epoxy composites with two types of cutting tools: a twist drill

and a four flute cutter made of high speed steel using Taguchi’s experimental design

method as well as response surface regression method. Mohan et al. [11] and Babu

et al. [12] used the Taguchi methodology to investigate the delamination in the

drilling process of fiber glass reinforced polyester composites. Davim et al. [13]

used orthogonal array and analysis of variance to study the cutting characteristics of

cemented carbide drills on FRP composite materials. They [14] also studied the

behaviour of two separate drill geometries when machining a glass fiber reinforced

plastic.

Khashaba et al. [15] examined the effect of speed of drilling and feed rate on the

forces and torques required to cut and delamination in drilling chopped GFR

composites with different volume fractions of fiber using multi variable linear

regression analysis.

Artificial neural network (ANN) is an approach in which a mathematical model is

used to mimic the biological neurons. ANN paradigm offers a fast, efficient, reliable

and cost-effective process modelling. Neural networks can learn the mathematical

mapping between input and output parameters even for nonlinear problems and hence

are very flexible and reliable [16, 17]. In addition, it has been reported that the ANN

models can provide improvement of 40–70 % on experimental error compared to

RSM methods [18]. Bezerra et al. [19] carried out an investigation on carbon fibre/

epoxy and glass fibre/epoxy composites for the prediction of shear stress–strain

behaviour using a multi-layered neural network which uses Levenberg–Marquardt

learning algorithm. Hayajneh et al. [20] used a feed forward back propagation ANN

model to study the effect of certain variables on the cutting torque and thrust force in

the drilling of self-lubricated alumina/aluminium/graphite hybrid composites.

Kadi [21] has presented an extensive review on mechanical modelling of FRP

composites using artificial neural network. Karnik et al. [22] developed an ANN

model for the analysis of delamination in high speed drilling of CFRP composite

materials. A multi-layer feed forward artificial neural network architecture, trained

using EBPTA was used for the prediction of delamination factor at the drill

entrance. Tsao and Hocheng [23] used Taguchi method and ANN to predict and

evaluate thrust force and roughness of surface in drilling CFRP laminates. Hansda

and Banerjee [24] performed a Grey relational analysis on glass fibre reinforced

polyester composite to study the effect of several process parameters on

Delamination factor and average surface roughness. They [25] have also performed

a similar analysis using utility concept with Taguchi’s Approach. Soren et al. [26]

used the Taguchi Loss Function to analyze the process parameters involved in

drilling of GFRP Composites. Rajamurugan et al. [27] developed some empirical

relationships between the drilling parameters and delamination for GFR–polyester

composites. Mishra et al. [28] estimated the residual tensile strength in uni-

directional glass fiber reinforced plastic laminates using an ANN scheme.
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Tsao [29] compared response surface method and radial basis function network in

drilling CFR laminates. A comprehensive survey of published works on machining of

composite laminates with special focus on drilling of GFRP and CFRPwas carried out

by Abrao et al. [30]. The effect of tool material, geometry and machining parameters

on thrust force, torque and delaminating has been studied. It has been reported that out

of the total literature on polymeric composites glass fibre reinforced epoxy composites

accounts for 50 %. CFR epoxy composites and GFR polyester composites are the next

most studied topics. If the published literature is classified as per fibre shape, woven

composites features in about 60 % of the works followed by unidirectional fibres and

chopped fibres with 20 % each. Another such recent review on delamination in

composites provides useful insight on the topic [31]. Apart from this specific

application in delamination, ANN has been used by researchers to predict material

properties in composites [32–34] and other biomaterials [35–38].

Although there has been a number of notable contributions in the field of drilling

in FRP composites, there is still some lacuna which present a good scope for study.

One of the areas where there is still much scope of work to be done is the drilling of

chopped GFRP laminates as very little work has been done on this material amongst

all the FRP laminates. Also application of neural network for simultaneous

prediction of delamination and surface roughness during drilling of this material has

not been done in any literature. In the present investigation, therefore back

propagation neural network is applied for simultaneous prediction of delamination

factor at the entry side of hole and surface roughness during drilling of chopped

GFRP laminates.

Methodology of artificial neural network (ANN) modelling

In the present study, delamination factor and surface roughness in drilling is

predicted by using a multi-layer feed forward Artificial Neural Network. The error

back propagation training algorithm (EBPTA) was used to train the ANN. Training

patterns i.e. a set of input parameters and output responses are used in the EBPTA,

which is a supervised learning based on the generalized delta rule [39, 40]. The

connection weights are determined during the ANN training phase. Proper

connection weights are extremely important to get high accuracy.

Initially an input–output database is built to train the ANN model based on the data

from the drilling experiments. In order to reduce the cost associated and time consumed

in experimentation, it is quintessential to plan the experiments such that the trainedANN

model would have a comprehensive knowledge of drilling process over the selected

range of parameters. Therefore, an experiment scheme based on full factorial design

(FFD) was selected using MINITAB software. The developed experimental database

was then utilized to train multi-layer neural network using EBPTA.

Experimental details

In the current study, each of the identified factors are assigned three levels as

illustrated in Table 1. The experiment scheme based on FFD contains 81 sets of
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drilling process parameter combinations. All the experiments based on full factorial

design (FFD) were carried out on a on a The American Tool Works Co., USA make

radial drilling machine. The radial drilling machine powered by a 5.5 kW drive

motor has a maximum speed of 1500 rpm with variable feed 0.1–0.625 mm/rev.

The maximum radial dimension of the work piece is 1475 mm.

The GFRP composite used in the experiment was procured from VMT Glass

Fibre Roofing Industries. The composite laminate of the composition as shown in

Table 2 was prepared by using the hand layup technique to reinforce chopped strand

mat E-glass fibre in polyester resin. The tensile strength of the composite GFRP

with glass fiber volume fraction of 0.33 is 700 kg/cm2. The Barcol hardness of the

composite laminate is 40.5. The experiments were performed on 150 mm

9 150 mm GFRP samples with wood as the backing material.

Addison & Co. Ltd., India make High Speed Steel taper shank twist drills were

used in the drilling operations. This was in accordance with IS: 5103-1969/ISO:

235-1980/DIN: 345-1978/BS: 328: Part 1-1986 specifications. Table 3 lists the

chemical composition of the High Speed Steel tool material. The twist drills of

10 mm (flute length: 87 mm: overall length: 168 mm), 12 mm (flute length:

101 mm: overall length: 182 mm) and 14 mm (flute length: 108 mm: overall

length: 189 mm) diameters of Grade M2 were used.

In order to avoid any vibrations or displacements occurring during the drilling

operation a clamping system was used to fix the composites at the machine centre.

A Carl Zeiss Ltd. make toolmakers’ microscope with 309 magnification was also

used to measure the damage around the holes at the entrance. The delamination

factor is determined, and is given as

Table 1 Factors and levels

selected for drilling GFRP

composites

Factors Levels

1 2 2

Material thickness, t (mm) 8 12 16

Drill diameter, D (mm) 10 12 14

Spindle speed, N (rpm) 400 800 1100

Feed rate, f (mm/rev) 0.1 0.175 0.275

Table 2 Composition of GFRP laminate

Matrix Polyester

Hardener Methylethyl ketone peroxide

Reinforcing E-glass, chopped strand mat (450 g/m2)

Table 3 Composition of HSS tool material (wt%)

C Cr Mo W V

0.9 4.2 5.0 6.4 1.8
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Fd ¼
Dmax

D0

ð1Þ

where Dmax is the maximum diameter of the damaged zone, and D0 is the diameter

of the hole. To reduce any experimental or human errors, three readings for each test

were made and the average of delamination factor was considered to be the process

response. Figure 1 illustrates the scheme of measuring the delamination factor.

A Taylor Hobson Precision Surtronic 3? Roughness checker was used to

measure the surface roughness parameters over the drilled surfaces. The average

surface roughness (Ra) and root mean square surface roughness (Rq) are the

considered surface roughness parameters. The surface finish of the work material

was measured with 0.8 mm cut-off length. The value of surface roughness

parameter Ra and Rq for each experiment were obtained directly from the Taly-

profile software integrated with the machine. The average of three readings was

taken as the process response. Out of 81 experimental data 72 data were used for the

training the network and rest 9 data were used for testing the network. Tables 4 and

5 show the training and testing data for the artificial neural network, respectively.

Artificial neural network

The neurons in the multi-layer feed forward artificial neural network are divided as

input layer, output layer and hidden layers. The information regarding the input–

output relationship are stored in the links connecting the layers, which stores the

knowledge regarding the input–output relationship.

Figure 2 depicts the architecture of the multi-layer feed forward ANN, which

consists of four neurons in the input layer (corresponding to 4 process inputs, t, D, N

and f), three neurons in the output layer (corresponding to three outputs, Fd, Ra and

Rq) and two hidden layers. The net activation input for ith neuron in the hidden and

output layer is calculated by

Fig. 1 Scheme for the delamination factor (Fd)
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Table 4 Training data for ANN

Experiment

number

Material

thickness

(mm)

Drill

diameter

(mm)

Spindle

Speed

(rpm)

Feed rate

(mm/rev)

Delamination

factor (Fd)

Ra

(lm)

Rq

(lm)

1 16 10 400 0.275 1.2547 4.747 5.857

2 16 10 400 0.100 1.1402 4.103 5.263

3 8 12 1100 0.175 1.2536 4.083 5.343

4 8 10 1100 0.100 1.2073 3.473 4.562

5 16 14 1100 0.275 1.2539 5.450 6.687

6 12 12 800 0.175 1.2099 4.171 5.297

7 8 14 800 0.175 1.2762 4.253 5.493

8 12 14 800 0.100 1.1956 3.673 4.762

9 8 10 400 0.100 1.2239 3.497 4.602

10 16 12 400 0.100 1.1001 4.043 5.203

11 8 12 1100 0.100 1.2051 3.883 5.217

12 12 10 400 0.100 1.1862 3.332 4.277

13 16 12 800 0.175 1.1841 4.513 5.507

14 16 12 800 0.100 1.1324 3.553 4.631

15 12 10 1100 0.175 1.2202 3.753 4.703

16 12 14 800 0.275 1.2908 4.204 5.583

17 12 10 1100 0.100 1.1735 3.160 4.247

18 8 14 800 0.275 1.3373 4.937 6.230

19 12 12 1100 0.100 1.1643 3.980 4.927

20 16 10 1100 0.175 1.1743 4.171 5.307

21 8 10 1100 0.275 1.3183 4.623 5.902

22 8 14 400 0.100 1.2210 3.130 4.207

23 16 14 1100 0.100 1.1358 4.273 5.523

24 16 10 1100 0.100 1.1387 3.513 4.403

25 16 12 1100 0.100 1.1409 4.273 5.467

26 16 14 1100 0.175 1.1864 4.957 6.513

27 16 14 800 0.100 1.1404 4.340 5.841

28 8 14 1100 0.100 1.2339 4.037 5.157

29 8 10 400 0.275 1.3283 3.733 4.803

30 8 14 400 0.275 1.3336 5.277 6.873

31 8 12 1100 0.275 1.3183 4.450 5.593

32 16 10 400 0.175 1.1893 4.423 5.692

33 16 12 1100 0.275 1.1994 5.173 6.701

34 8 10 800 0.275 1.3259 4.223 5.442

35 16 14 400 0.100 1.1251 3.803 4.893

36 12 14 400 0.275 1.2924 4.777 5.817

37 16 12 400 0.275 1.2218 5.073 6.28

38 16 10 800 0.100 1.1225 3.871 4.997

39 12 12 800 0.100 1.1557 3.845 5.105

40 8 10 800 0.175 1.2622 3.947 4.943
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neti ¼
X

j

wijoj ð2Þ

where wij is the weight of link connecting neuron j to i and Oj is the output of jth

neuron in the previous layer.

The output of ith neuron for a unipolar sigmoid activation function, is given as

Table 4 continued

Experiment

number

Material

thickness

(mm)

Drill

diameter

(mm)

Spindle

Speed

(rpm)

Feed rate

(mm/rev)

Delamination

factor (Fd)

Ra

(lm)

Rq

(lm)

41 8 12 400 0.175 1.2868 3.653 4.507

42 12 12 400 0.275 1.2503 4.353 5.457

43 16 14 400 0.275 1.2116 5.317 6.937

44 16 14 400 0.175 1.1622 4.697 6.037

45 12 14 800 0.175 1.2364 3.957 4.983

46 16 12 1100 0.175 1.1660 4.457 5.860

47 12 10 800 0.100 1.1617 3.437 4.403

48 8 14 1100 0.275 1.3257 4.633 5.743

49 12 12 1100 0.175 1.2197 4.317 5.083

50 8 14 400 0.175 1.2692 4.421 5.742

51 12 12 1100 0.275 1.2934 4.563 5.703

52 16 10 800 0.175 1.1768 4.227 5.467

53 8 12 800 0.275 1.3643 4.297 5.553

54 16 10 800 0.275 1.2493 4.527 5.627

55 8 10 400 0.175 1.2687 3.583 4.682

56 8 10 1100 0.175 1.2549 4.127 5.347

57 12 10 800 0.175 1.2058 3.953 5.007

58 8 12 400 0.100 1.2287 3.412 4.197

59 16 14 800 0.275 1.2486 5.813 7.243

60 16 12 800 0.275 1.2530 4.817 5.983

61 12 14 400 0.175 1.2157 4.513 5.683

62 12 10 400 0.275 1.2849 4.213 5.272

63 12 14 1100 0.275 1.2898 5.504 6.833

64 12 14 400 0.100 1.1582 3.883 4.873

65 8 10 800 0.100 1.2145 3.707 4.420

66 12 14 1100 0.175 1.2406 5.023 6.393

67 12 14 1100 0.100 1.2037 4.283 5.233

68 12 12 800 0.275 1.2819 4.393 5.457

69 12 10 400 0.175 1.2264 3.907 4.787

70 12 12 400 0.100 1.1527 3.567 4.290

71 8 12 400 0.275 1.3583 4.672 5.697

72 8 14 800 0.100 1.2304 3.863 4.950
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oi ¼
1

1þ e�kneti
ð3Þ

where k is the scaling factor.

To minimize the sum of squared error for k-number of output neurons the

EBPTA uses weight updates and is given by

E ¼ 1

2

Xk

k¼1

ðdk;p � ok;pÞ2 ð4Þ

Table 5 Testing data for ANN

Experiment

number

Material

thickness

(mm)

Drill

diameter

(mm)

Spindle

speed

(rpm)

Feed rate

(mm/rev)

Delamination

Factor (Fd)

Ra

(lm)

Rq

(lm)

1 12 10 800 0.275 1.2647 4.280 5.450

2 12 12 400 0.175 1.1945 4.083 5.193

3 12 10 1100 0.275 1.2623 4.127 5.177

4 8 12 800 0.100 1.2789 3.703 4.657

5 16 10 1100 0.275 1.1917 4.507 5.587

6 8 12 800 0.175 1.2844 3.961 5.053

7 16 14 800 0.175 1.1867 5.173 6.663

8 8 14 1100 0.175 1.2332 4.327 5.307

9 16 12 400 0.175 1.1523 4.561 5.713

Fig. 2 Architecture of the neural network model for double hidden layer
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where dk,p = desired output for the pth pattern. The weights of the links are updated

as

wjiðnþ1Þ ¼ wjiðnÞ þ gdpjopi þ aDwjiðnÞ ð5Þ

where n is the learning step, g is the learning rate and a is the momentum constant.

In Eq. (5), dpj is the error term, which is given as follows:

For output layer : dpk ¼ ðdkp � okpÞð1� okpÞ; k ¼ 1; . . .;K ð6Þ

For hidden layer : dpj ¼ opjð1� opjÞ
X

dpkwkj; j ¼ 1; . . .; J ð7Þ

where J is the number of the neurons in the hidden layer.

Small random weight values are assigned to all the links during the initialization

of the training process. The input–output patterns are presented at a time. The mean

square error due to all patterns is computed as

MSE ¼ 1

NP

XNP

p¼1

XK

k¼1

ðdkp � okpÞ2 ð8Þ

where NP = number of training patterns.

The training process is terminated when the predefined MSE or maximum

number of epochs is realised.

Artificial neural network training

The neural network toolbox available in MATLAB was used to train the ANN for 72

input–output patterns. The simulated multi-layer feed forward ANN architecture

Fig. 3 A typical training progress of the ANN model
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consists of 4 neurons in the input layer and 3 neurons in the output layer.Normalization

of all the inputs and desired outputs are carried out using the expression

Xnorm ¼ 0:1þ 0:8
X � Xmin

Xmax � Xmin

� �
ð9Þ

where Xnorm = normalized data.

This normalized maps all inputs and desired outputs in the range [0.1:0.9]. The

ANN training simulation was carried out using batch gradient descent with

momentum training procedure ‘‘traingdm’’ of MATLAB NN toolbox.

The number of neurons used in the hidden layer during training of artificial

neural network is extremly important as it has been seen that using fewer neurons

leads to substandard approximation and exceesive neurons in the hidden layer cause

over-approximation. Trial and error method is used to determine the ‘appropriate

number’ of neurons in the hidden layer so that the problem of under fitting or

overfitting can be avoided. However the ‘appropriate number’ of neurons needed for

accurate prediction of output response is problem specific. It has also been reported

that if the artificial neural network is trained beyond a certain number of epochs, the

neural network has a tendancy to store the input–output models, which lead to poor

generalization ability. So in this study 0.0001 MSE and 5000 epochs were defined as

objective of the ANN training [22].

In the present investigation, both single and double hidden layer were considered

for the ANN model. Batch mode of training was used for the training the network.

Tan-sigmoid activation function and log-sigmoid activation function was used for

hidden layer and output layer, respectively. The learning rate and momentum

Fig. 4 Number of hidden neurons in 1st and 2nd layer = 13 & 13
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coefficient were changed between 0.5 and 0.9. Large numbers of neural network

architecture were tried with different combination of number of neurons in the

hidden layers, learning rate and momentum coefficient. For each architecture 25

combinations of learning rate and momentum coefficient was evaluated. A typical

training progress is shown in Fig. 3. The MSE for different combination of learning

rate and momentum coefficient of 4-13-13-3 are shown in Fig. 4. The comparison

Fig. 5 Comparison of single layer architecture’s means square error

Fig. 6 Comparison of double layer architecture’s means square error
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Fig. 7 Comparison of the minimum value of the single and double layer architecture’s mean square error

Table 6 Comparison of optimum architectures for different hidden layers

Serial no. Network

architecture

Learning

rate

Momentum

coefficient

Mean square error after

5000 iterations

1 4-8-3 0.9 0.5 0.006533

2 4-9-3 0.9 0.5 0.004988

3 4-10-3 0.9 0.5 0.004958

4 4-11-3 0.9 0.5 0.004969

5 4-12-3 0.9 0.9 0.005317

6 4-13-3 0.9 0.8 0.005029

7 4-14-3 0.9 0.7 0.004626

8 4-15-3 0.9 0.5 0.003916

9 4-16-3 0.9 0.5 0.003351

10 4-17-3 0.9 0.5 0.002991

11 4-18-3 0.9 0.5 0.002856

12 4-19-3 0.9 0.5 0.002966

13 4-20-3 0.9 0.5 0.003725

14 4-8-8-3 0.9 0.5 0.004418

15 4-9-9-3 0.9 0.8 0.002730

16 4-10-10-3 0.9 0.9 0.002206

17 4-11-11-3 0.9 0.9 0.001759

18 4-12-12-3 0.9 0.5 0.001187

19 4-13-13-3 0.9 0.5 0.000872
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Fig. 8 a Correlation of training
patterns for Fd. b Correlation of
training patterns for Ra

Table 6 continued

Serial no. Network

architecture

Learning

rate

Momentum

coefficient

Mean square error after

5000 iterations

20 4-14-14-3 0.9 0.9 0.000879

21 4-15-15-3 0.9 0.9 0.001160

Bold values has the least mean square error, it is used for making all the current predictions reported in

the paper
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between different single and double layer architecture’s minimum mean square

errors are shown in Figs. 5 and 6 respectively. Figure 7 shows the comparison of the

minimum value of the single layer and double layer architecture’s mean square

error. Table 6 shows the comparison of different architectures. It was found that

4-13-13-3 architecture has the least mean square error of 0.000872504 with learning

rate of 0.9 and momentum coefficient of 0.5.

Artificial neural network testing

72 input patterns used during the training were used as the inputs for testing the

trained artificial neural network. The predicted values (of the Fd, Ra and Rq) by the

trained ANN was compared with the experimental results and absolute prediction

error was calculated as,

(a)

(b)

De
la

m
in

a�
on

 fa
ct

or
 (F

d)

Test pa�ern

Experimental value
ANN value

Su
rf

ac
e 

ro
ug

hn
es

s (
Ra

)

Test pa�ern

Experimental value
ANN value

Fig. 9 a Comparison between actual and predicted Fd (original value). b Comparison between actual and
predicted Ra (original value)
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% Absolute prediction error ¼ Actual value� predicted value

Actual value

����

����� 100 ð10Þ

The mean absolute prediction error was found to be around 0.63, 1.56 and 1.93 %

for Fd, Ra and Rq, respectively for training patterns.

A scatter plot is presented in Fig. 8 which shows a linear the correlation between

the experimental and the ANN predicated values. The correlation coefficient

(R) between the experimental and the predicted value is an indication of how well

the variations in the predicted response values are explained by the targets. It is

found that the R values are 0.987, 0.988 and 0.985 for Fd, Ra and Rq, respectively

indicating excellent goodness of fit for the training data.

For the validation purpose, testing data were used which do not belong to the

training data set. With these input data, the output values were predicted using the

ANN model thus developed. The comparison of the predicted and the experimental

values of different responses for the testing data are exhibited in Fig. 9 and it can be

observed that the predicted response values follow almost the same trend as that of

the actual response values. The mean absolute prediction error was found to be

around 1.27, 2.68 and 3.07 % for Fd, Ra and Rq, respectively, for the testing data as

shown in Table 7. Figure 10 exhibits a linear correlation plot between the

experimental and the ANN predicted output values for the testing patterns. It is

found that the R values are 0.912, 0.944 and 0.933 for Fd, Ra and Rq, respectively

indicating excellent goodness of fit for the testing data.

Results and discussion

The current Artificial Neural Network model can be used for analysing the influence

of the selected drilling parameters on response. To understand the combined

influence of various drilling parameters on delamination factor (Fd), average surface

Table 7 Comparison between experimental and ANN predicted result for testing dataset

Serial

no.

Fd
actual

Fd
predicted

by ANN

%

Error

Ra

actual

Ra

predicted

by ANN

%

Error

Rq

actual

Rq

predicted

by ANN

%

Error

1 1.2647 1.2670 0.1836 4.280 4.1609 2.7839 5.450 5.2144 4.3223

2 1.1945 1.1759 1.5589 4.083 4.1355 1.2852 5.193 5.2619 1.3272

3 1.2623 1.2164 3.6323 4.127 4.0524 1.8083 5.177 5.2415 1.2450

4 1.2789 1.2547 1.8920 3.703 3.6469 1.5145 4.657 4.6187 0.8215

5 1.1917 1.2000 0.6932 4.507 4.1547 7.8171 5.587 5.4064 3.2319

6 1.2844 1.2903 0.4592 3.961 3.8797 2.0521 5.053 4.8465 4.0858

7 1.1867 1.1687 1.5154 5.173 4.9417 4.4704 6.663 6.2753 5.8183

8 1.2332 1.2358 0.2078 4.327 4.3421 0.3500 5.307 5.5140 3.9007

9 1.1523 1.1669 1.2666 4.561 4.6543 2.0455 5.713 5.8757 2.8484

Average prediction error of

Fd = 1.27 %

Average prediction error of

Ra = 2.68 %

Average prediction error of

Rq = 3.07 %

Overall average prediction error = 2.34 %
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roughness (Ra) and root mean square surface roughness (Rq), three-dimensional

surface plots were generated by taking any two parameters at a time, while keeping

the third and fourth parameters at level 2. The effect of such interactions are

presented in Figs. 11, 12, 13, 14, 15, 16.

Figure 11a shows that the when feed rate is increased, the delamination factor

(Fd) sharply irrespective of spindle speed. This is in direct agreement with the

experimental findings reported by Rubio et al. [8]. This is due to the fact that higher

thrust forces are developed at higher feed rates which in turn causes more

Fig. 10 a Correlation of testing
patterns for Fd. b Correlation of
testing patterns for Ra
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delamination. Though not as sharp as the increase in delamination with respect to

feed rate the spindle speed too has an enhancing effect on delamination. At a

combined high feed rate and high spindle speed, large amount of delamination is

seen. Thus it is seen that feed rate and spindle speed are the most influencing

parameters while drilling composites. Vankanti and Ganta [41] had also arrived at

the same conclusion using ANOVA. Hansda and Banerjee [24] had also reported

that delamination is augmented by increased feed rate. It is observed from Fig. 11b

that with increase in feed rates the surface roughness increases monotonically. Also

at low feed rates spindle speed has significant influence. It is seen that at low feed

Fig. 11 Effect of f and N on the response parameters at D = 12 mm and t = 12 mm. a For delamination
factor (Fd). b For surface roughness (Ra)
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rates the increase in surface roughness with increase in spindle speed is almost

linear. However at higher feed rates the effect is as prominent.

Figure 12a shows that the minimum delamination occurs at the lower level of

feed rate irrespective of drill diameter. For any drill size feed rate is a significant

parameter as delamination in the FRP increases with feed rate. In Fig. 12b it is

observed that when the drill diameter is at centre level, the surface roughness is very

sensitive to feed rate. The surface roughness increases monotonically as feed rate is

increased. However this rate of increment in surface roughness with respect to feed

rate is much higher at low level of drill diameter.

Figure 13a demonstrates that at the higher level of material thickness, the

delamination factor is small and sharply decreases from lower level to centre level

Fig. 12 Effect of D & f on the response parameters at N = 800 rpm and t = 12 mm. a For delamination
factor (Fd). b For surface roughness (Ra)
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of material thickness. Delamination is most prominent when material thickness is

very low. Also it is observed that higher feed rates are responsible for more

delamination. When the material thickness is high, the surface roughness is

extremely sensitive to feed rate, as shown in Fig. 13b; it is also seen that, surface

roughness varies very little with the change in material thickness at lower feed rate.

The delamination decreases with the increase in material thickness irrespective of

spindle speed as shown in Fig. 14a; whereas, the surface roughness increases with

increasing material thickness as seen from Fig. 14b.

The delamination factor drops with rise in material thickness with the variations

in drill diameter as seen in Fig. 15a. From Fig. 15b, it is obvious that a lesser drill

diameter is essential with the changes in material thickness in order to reduce the

surface roughness.

Fig. 13 Effect of t & f on the response parameters at N = 800 rpm and D = 12 mm. a For delamination
factor (Fd). b For surface roughness (Ra)
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The least delamination occurs at lower level of spindle speed and centre level of

drill diameter as shown in Fig. 16a. From Fig. 16b, it is clear that small drills are

advantageous to minimize surface roughness at different spindle speeds.

It is evident that the developed artificial neural network model is extremely

useful in investigating the influence of various drilling-process parameters on the

response parameters. Using the current ANN model it is very convenient to predict

the response parameters for any given set of inputs. The developed ANN model is

very versatile and accurate; its accuracy may be increased further by using more

Fig. 14 Effect of N & t on the response parameters at f = 0.175 mm/rev and D = 12 mm. a For
delamination factor (Fd). b For surface roughness (Ra)
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training data patterns. The current ANN model is capable of capturing any non-

linearity in input and the output parameters with high generalization ability. Hence

by using this model, the combined influence of several drilling parameters can be

predicted with high degree of accuracy.

Figure 17a, b shows the SEM micrograph of drilled surface at entry and exit side

of the hole respectively under minimum delamination condition. Figure 18a, b

shows the same for maximum delamination condition. From Fig. 17 it is seen that

the crack propagation is parallel to the surface whereas Fig. 18 reveals that the crack

propagation is inclined to the surface. Hence in minimum delamination condition

the crack cannot be manifested from the top of the drilled hole but in the maximum

Fig. 15 Effect of D & t on the response parameters at f = 0.175 mm/rev and N = 800 rpm. a For
delamination factor (Fd). b For surface roughness (Ra)
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delamination condition it is possible. Thus the delamination factor is small for

minimum delamination condition but large for maximum delamination condition.

Conclusions

The prime interest of this work was to build an artificial neural network model with

very high accuracy to analyse the effect of several drilling constraints on the

delamination factor (Fd) and surface roughness during drilling of chopped GFRP

composites. Thus the multilayer feed forward ANN model was developed and

Fig. 16 Effect of D & N on the response parameters at f = 0.175 mm/rev and t = 12 mm. a For
delamination factor (Fd). b For surface roughness (Ra)
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evaluated. From the experiments and numerical simulations, the following

inferences can be drawn,

• The current artificial neural network model shows an extremely healthy

correlation between the training and testing datasets, thus confirming the validity

of the ANN. The overall difference between experimental results and artificial

neural network predictions for training and testing datasets is found to be 1.37

and 2.34 % respectively.

• The response parameters and the selected drilling process parameters have a

very high non-linear relationship. The combined effect of the process parameters

on both the surface roughness, namely Ra and Rq are quite similar while

different from the delamination factor (Fd).

• All the response parameters are very sensitive to all the process constraints with

feed rate being the most important parameter.

• Delamination reduces with increase in material thickness and decrease in in feed

rate.

Fig. 17 SEM micrograph of drilled surface of minimum delamination (t = 16 mm, D = 12 mm,
N = 400 rpm and f = 0.100 mm/rev). a At entry side of drilled surface. b At exit side of drilled surface
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• Both the surface roughness parameters increase with increase in feed rate.

Smaller value of drill diameter is required for the minimum surface roughness.

• Feed rate has most significant effect on the response parameters while the

spindle speed has negligible effect. The output response are also highly

dependent on the material thickness and drill diameter.
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