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ABSTRACT: The method of LA-MC-ICP-MS has become one choice for the analysis of many isotopic 
systems due to its relatively low cost, high analysis speed, high spatial resolution, and low matrix effect. 
However, there are still many challenges in the accuracy, precision, and spatial resolution of in situ iso‐
topic composition determination by LA-MC-ICP-MS, which mainly include: (1) how to improve instru‐
ment sensitivity, further improve the spatial resolution, and achieve simultaneous determination of iso‐
topes, multiple isotopes, or isotopes with trace elements in low-content samples? (2) how to deduct and 
correct interference to improve the accuracy of isotopic determination? (3) how to correct isotope frac‐
tionation? (4) how to reduce the matrix effect of isotopes? how to develop matrix-matched reference 
materials? and (5) how to achieve non-matrix-matched correction of isotopes? The high-sensitivity 
cone combinations, gas mixture, shield torch, and reasonable detector array can be applied to improve 
the elemental sensitivity. The interferences include the background interference and the interferences 
from the matrix elements (the isobaric interference, the polyatomic interference, and doubly charged 
ions interference). To reduce or even eliminate the interference, commonly used methods including in‐
terference elimination, background correction, and interference correction by evaluating with an inter‐
ference-free isotope. Isotopic fractionation correction mainly involves external standard calibration 
and internal and pseudo-internal standard normalization. For non-matrix matched calibration, many 
methods can be applied, such as the femtosecond laser, line scan, low laser energy, wet plasma condi‐
tion, optical setup below the sample surface, and matching the intensity of the sample and standard. In 
this review, we systematically summarized the above challenges and solutions to promote the study and 
application of LA-MC-ICP-MS in isotopic determination.
KEY WORDS: LA-MC-ICP-MS, isotopic determination, interference, isotopic fractionation, matrix ef‐
fect, reference materials, isotopes, geochemistry.

0 INTRODUCTION 
In 1984, the first generation of commercial inductively 

coupled plasma mass spectrometers (ICP-MS) appeared. Gray 
(1985) pioneered the connection of a laser system with ICP-
MS and applied it to the determination of Pb isotopes and ele‐
mental compositions in granites. The technique was subse‐
quently applied to trace elemental composition determination 
in geological samples (Jackson et al., 1992), partition coeffi‐
cient studies (Jenner et al., 1993), and in situ U-Pb dating of 
uranium-rich minerals (Fryer et al., 1993). Since 1984, quadru‐
pole mass spectrometry (Q-ICP-MS), magnetic mass spectrom‐
etry (SF-ICP-MS), and time-of-flight mass spectrometry (TOF-
ICP-MS) have been introduced, all of which have greatly im‐
proved the accuracy and precision of elemental content deter‐
mination (Liu et al., 2008). Multi-collector inductively coupled 
plasma mass spectrometry (MC-ICP-MS) has greatly contribut‐

ed to the accuracy and precision of isotope determination by its 
ability to obtain signals of isotopes simultaneously. For exam‐
ple, Misra and Froelich (2009) used Q-ICP-MS for Li isotope 
determination with a precision of >1‰ (2 SD), which is much 
lower than that of MC-ICP-MS (0.2‰ – 0.25‰, Lin et al., 
2016a; Nishio et al., 2015). Walder et al. (1993) first combined 
the laser ablation system (LA) with MC-ICP-MS to determine 
the Pb isotopic composition in NIST 610 and noted the poten‐
tial of LA-MC-ICP-MS for in situ microanalysis of isotopic 
composition. Subsequently, the LA-MC-ICP-MS was success‐
fully used to determine the Hf isotopes in zircon and Sr iso‐
topes in plagioclase by Thirlwall and Walder (1995) and Chris‐
tensen et al. (1995), respectively. Currently, LA-MC-ICP-MS 
is becoming increasingly more mature for the radioisotopic 
analysis, e.g., Sr (Dauphas et al., 2022; Yin et al., 2022; Zhu et 
al., 2020; Zhang et al., 2018), Nd (Guéguen et al., 2015; Xu et 
al., 2015), Pb (Yu et al., 2022; Mitchell et al., 2011) and Hf 
(Yang M et al., 2023; Hu et al., 2012), which has been widely 
developed in earth sciences, life sciences, environmental sci‐
ences, medicine, and archaeology. With the improvement of ac‐
curacy in isotope analysis by LA-MC-ICP-MS, the application 
of LA-MC-ICP-MS in non-traditional stable isotope analysis 
has also attracted the attention of an increasing number of ana‐
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lytical geoscientists. Horn et al. (2006) first applied fs-LA-MC-
ICP-MS for the non-matrix matched analysis of Fe isotopes. 
Subsequently, LA-MC-ICP-MS was gradually applied to non-
traditional isotopic analysis of Li (Lin et al., 2017; Kimura et 
al., 2016; Martin et al., 2015; Le Roux, 2010), B (Lloyd et al., 
2018; Lin et al., 2014), Mg (Oeser et al., 2014; Janney et al., 
2011; Xie et al., 2011; Young et al., 2002), Si (Frick et al., 
2016; Schuessler and von Blanckenburg, 2014; Steinhoefel et 
al., 2009b; Chmeleff et al., 2008) and Cu (Lazarov and Horn, 
2015; Ikehata and Hirata, 2013; Ikehata et al., 2008). LA-MC-
ICP-MS has become one of the most essential techniques for in 
situ isotope analysis due to its high sensitivity, low detection 
limit, wide dynamic linear range, low yield of double charge, 
low yield of multiatomic ionization, and low sample consump‐
tion (Fig. 1). LA-MC-ICP-MS in situ microanalysis provides 
high spatial resolution (>5 µm profile analysis and n × 10 to n × 
100 nm depth analysis) and high efficiency (single point analy‐
sis <3 min) (Günther et al., 1998; Perkins et al., 1993). In addi‐
tion, LA-MC-ICP-MS can avoid a series of problems in the 
sample digestion process of SN-MC-ICP-MS (e.g., incomplete 
digestion of minerals; Zhang W et al., 2016b, 2012; Cotta and 
Enzweiler, 2012; Hu et al., 2010), poor stability of sample solu‐
tion (Tong C L et al., 2009; Liu Y S et al., 2003) and severe 
memory effects (Hu et al., 2008b; Münker, 1998), the severe 
oxide interference caused by water (Oeser et al., 2014; Košler 
et al., 2005) and hydride interference (Czas et al., 2012; Regn‐
ery et al., 2010). Therefore, LA-MC-ICP-MS has become the 
method of choice for in situ microanalysis of both radio- and 
non-traditional stable isotopes. To date, 23 kinds of isotope/ 
isotopic systems (Li, B, C, Mg, Si, S, Cl, Ca, Ti, V, Fe, Ni, Cu, 
Zn, Sr, Zr, Sn, Ba, Hf, Os, Pb, Nd, U-Pb; Bao et al., 2022; 
Huang et al., 2022; Lin et al., 2022, 2017; Lu et al., 2022b; Lü 
et al., 2022a; Luo and Hu, 2022; Xu et al., 2022b; Zhang S H 
et al., 2022; Zhu et al., 2022; Liu et al., 2021; Xiong et al., 
2021; Hogmalm et al., 2019; Zhang W et al., 2019a, b, 2018; 
Yuan et al., 2018; Schuth et al., 2017; Weyrauch et al., 2017; 
Frick et al., 2016; Hu et al., 2012; Mitchell et al., 2011; Kase‐
mann et al., 2009; Fietzke et al., 2008a) have been determined 
by LA-MC-ICP-MS. Despite these advantages of LA-MC-ICP-
MS, there are still many problems with this technique in the 
isotopic analysis.

(1) Improve the instrumental sensitivity to further im‐
prove spatial resolution and achieve simultaneous determina‐
tion of isotopes, multiple isotopes (Yuan et al., 2018, 2008), or 
isotopes with trace elements for low-content samples (Stein‐
mann et al., 2019; Zhu et al., 2019). The accuracy of isotopic 
composition determination is closely related to the signal inten‐
sity, and the accuracy of the result decreases rapidly as the sig‐
nal intensity falls below a threshold value (Lin et al., 2017; Hu 
et al., 2012). LA-MC-ICP-MS is constrained by the tiny spatial 
scale (the level of μm), which is too small to be analyzed   
(0.25–2 μg; Günther et al., 1999), and many of the elements to 
be analyzed are mainly present in geological samples as trace 
elements (e.g., Li in the mantle is only 1.5 μg·g-1; Magna et al., 
2006). Therefore, when determining the isotopic composition 
of a sample with low element content, the obtained signal in‐
tensity is low. Whereas the isotopic fractionation of geological 
samples is small (e.g., Ca isotopic composition of natural rocks 

varies <2‰, DePaolo, 2011), lower signal intensities and 
smaller isotopic fractionation have greater demands of the ana‐
lytical precision and accuracy of the instrument. Therefore, im‐
proving the signal intensity of the element is one of the main 
solutions to obtain the high precision and accuracy of isotopic 
composition determined by LA-MC-ICP-MS.

(2) Interferences (Konter and Storm, 2014; Tanner et al., 
2002; Moens et al., 2001; Jiang et al., 1988) and matrix effect 
(Günther and Koch, 2008; Horn, 2008) caused by matrix ele‐
ments, can be avoided by the application of ion exchange res‐
ins in the isotopic analysis by SN-MC-ICP-MS. However, a 
large number of matrix elements in the sample would enter the 
mass spectrum with the elements to be measured in the isoto‐
pic analysis by LA-MC-ICP-MS, thus, the isotopic composi‐
tion of the elements to be measured will be interfered with by 
matrix elements (polyatomic interference, double and multiply 
charged interference) (Agatemor and Beauchemin, 2011; Fon‐
taine et al., 2009; Sylvester, 2008; Wieser and Schwieters, 
2005). To reduce the influence of the matrix effect, the com‐
monly used method is to develop matrix-matched standard ref‐
erence materials (Lü et al., 2022b; Yang et al., 2022; Zhang 
and Hu, 2019). In addition, the study of the non-matrix-
matched correction method is also helpful to the accurate in   
situ isotopic microanalysis by LA-MC-ICP-MS (Lin et al., 
2022; Li Z et al., 2016).

(3) Isotopic fractionation effect and matrix effect (Horn 
and von Blanckenburg, 2007; Kuhn et al., 2007; Jackson and 
Günther, 2003). Isotope fractionation refers to the obtained iso‐
tope ratio being different from the actual isotope ratio. When 
LA-MC-ICP-MS is used to determine the isotopic composi‐
tion, the ideal condition is that the uniform size of aerosol is 
generated in the process of laser ablation, there is no isotopic 
fractionation between aerosol particles, and there is no loss of 
aerosol during the transmission, and aerosol particles are com‐
pletely ionized in ICP, and the isotopic composition of the aero‐
sol particles obtained is consistent with that of the initial mate‐
rial. However, in practice, the aerosol particles produced by la‐
ser ablation have different sizes, the aerosol particle size distri‐
butions produced by different substances are inconsistent 
(d’Abzac et al., 2012), and particles with different sizes have 
different isotopic compositions (Hergenröder, 2006). In addi‐
tion, small-sized particles will be absorbed into the transmis‐
sion pipeline during the transmission process (Horn and von 
Blanckenburg, 2007), while large-size particles are easy to pre‐
cipitate (Jackson and Günther, 2003), thus, the aerosol particles 
cannot be completely transmitted. Furthermore, large aerosol 
particles cannot be completely ionized during the ionization 
process in ICP (Horn et al., 2001). In addition, a large number 
of substances are introduced into the ICP, which results in the 
loading effect (Kroslakova and Günther, 2007), and a lot of dif‐
ferent chemical components are introduced into the ICP result‐
ing in a matrix effect. Thus, the obtained isotopic composition 
is different from the actual isotopic composition of the sample, 
i.e., the isotopic fractionation was introduced.

In conclusion, there has been great progress and develop‐
ment for the in situ isotopic microanalysis by LA-MC-ICP-
MS, but it is still faced with a series of factors affecting the ac‐
curacy, precision, and spatial resolution of the isotopic analy‐
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sis. In this study, the problems existing in the LA-MC-ICP-MS 
technique for isotope analysis and the corresponding solutions 
are described to further promote the research and application of 
the technique.

1 ACCURATE DETERMINATION OF ISOTOPES IN 
SAMPLES WITH LOW SIGNAL INTENSITY 

Whether it is to improve spatial resolution, achieve isotope 
determination of low-content samples, or achieve simultaneous 
determination of multiple isotopes, it is necessary to improve 
the signal intensity. For laser ablation, the larger laser spot, 
higher laser frequency or higher laser energy can improve the 
amount of the ablated aerosol to improve the signal intensity 
(Iizuka and Hirata, 2005; Woodhead et al., 2004). Increasing 
the ablated sample amount to increase signal intensity will not 
only reduce the spatial resolution but also increase isotopic frac‐
tionation, which will affect the accuracy and precision of isoto‐
pic composition (Hu et al., 2012). In addition to improving the 
parameters of laser ablation, the following conditions for MC-
ICP-MS can also be considered to improve the signal intensity.

1.1 Applying High-Sensitivity Cone Combination　
The geometry of the sample cone and skimmer cone used 

in MC-ICP-MS will affect the instrument sensitivity. Hu et al. 
(2012) used LA-MC-ICP-MS to analyze the Hf isotopes and 
discussed the relationship of Hf signal intensity with the std + 
H, std + X, and Jet + X cone combination, respectively. The ex‐
perimental results showed that the signal intensity of Hf, Yb, 
and Lu can be improved by the factor of 1.4 and 2.5 when std + 
X and Jet + X cones were applied relative to std + H cones. Lin 
et al. (2014) and Xu et al. (2015) also discussed the signal inten‐
sity by applying three combinations of cones for the determina‐
tion of B and Nd isotopes, and the results showed that com‐
pared with std + H cones, Jet + X cones could increase the sig‐
nal intensity of B and Nd by the factor of 3.8 and 3, respective‐

ly. The reason why Jet + X cones improved the signals can be 
summarized as the large aperture and larger length of the Jet 
cone. The hole diameter of the Jet cone (1.2 mm) is larger than 
that of standard sample cones (1.0 mm), which can improve the 
extraction efficiency of ions (Flamigni et al., 2014). In addition, 
the larger length of the Jet cone can make its hole closer to the 
torch tube (Hu et al., 2012), which is more conducive to ion ex‐
traction. However, not all elements can get the highest signal in‐
tensity by applying the Jet + X cone, and the choice of cone 
combination is related to the element types. For example, New‐
man (2012) found that the signal intensity of Sr, Nd, Pb, and Hf 
was higher when the Jet + X cones were used. While with the 
Jet + X cones, the signal intensity of Li and Mg was lower. Lin 
et al. (2017) used std + X and Jet + X cones to determine Li iso‐
tope, the results indicated that the signal intensity of Li with std 
+ X cones would increase by 46% compared with Jet + X cones.

1.2 Improving the Behavior of Plasma and Laser Ablation 
with the Gas Mixture　
1.2.1 Improving laser ablation behavior with He as the 
carrier gas　

The carrier gas, as an important component in the aerosol 
transport system of LA-MC-ICP-MS, is used to transport the 
aerosol particles produced by laser ablation into the plasma. 
Besides, the chemical composition of the carrier gas can signif‐
icantly affect the laser ablation behavior and the aerosol trans‐
port efficiency (Horn and Günther, 2003). For example, there 
would be an induced plasma above the ablated crater during 
the laser ablation, and the laser ablation ability would be re‐
duced with the induced plasma (Shaheen et al., 2012). When 
He is used as the carrier gas, the laser-induced plasma is weak‐
er and the aerosol particles leave the sample surface vertically 
in the form of a mushroom cloud. Thus, the transport efficien‐
cy of the sample aerosol particles can be increased, and the de‐
position of aerosol particles around the ablation crater can be 

Figure 1. The schematic drawing of LA-MC-ICP-MS.
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reduced (Horn and Günther, 2003). However, when Ar is used 
as the carrier gas, the stronger laser-induced plasma can be gen‐
erated above the ablation crater, and aerosol particles leave the 
sample surface in a direction parallel to the sample surface, eas‐
ily leading to the deposition of aerosol particles around the ab‐
lation crater (Koch et al., 2007). Furthermore, He can quickly 
dissipate the heat from the laser-induced plasma, reducing the 
chance of re-condensation between aerosol particles, allowing 
finer aerosol particles to be produced in the He atmosphere, in‐
creasing the ionization degree of aerosol particles in ICP, and 
thus reducing the isotopic fractionation caused by incomplete 
ionization of large particles in ICP (Guillong and Günther, 
2002) and increases the signal intensity by a factor of 2 – 5 
(Günther and Heinrich, 1999; Eggins et al., 1998). Table 1 
compared the kinetic principle of aerosol particles as Ar and 
He used as the carrier gas.

1.2.2 Improving plasma behavior with the gas mixture　
The elemental signal intensity could also greatly increase 

with the introduction of reactive substrates into the plasma,     
e.g., oxygen (Hutton, 1986), nitrogen (Scheffler and Pozebon, 
2014; Louie and Soo, 1992), hydrogen (Louie and Soo, 1992), 
methane (Fliegel et al., 2011) and organic reagents or water 
(Liu et al., 2014). For example, Guillong and Heinrich (2007) 
showed that the elemental signal intensity was significantly in‐
creased when nitrogen, methane, hydrogen, and helium were 
added. And the sensitivities of 47 kinds of elements can in‐
crease by 2–4 times as 4–9 mL min-1 of hydrogen was added. 
Hu et al. (2008a) indicated that the addition of 5–10 mL min-1 
N2 to the central channel gas increased the sensitivity of 65 
kinds of trace elements by the factor of 2–3, while oxide inter‐
ference (ThO+/Th) and hydride interference (ArH+/Ar+) were re‐
duced by the factor of 1–3, respectively. The main reason for 
the improved signal intensity by the addition of N2 is that the 
physicochemical conditions, shape, temperature, and ion densi‐
ty distribution of the Ar plasma were changed (Montaser et al., 
1987). Hu et al. (2008a) and Witte and Houk (2012) indicated 
that the thermal conductivity of N2 is 23 times higher than that 
of Ar (Hu et al., 2008a) and that N2 can act as an “energy trap” 
during the heat transfer, transferring energy rapidly from the 
periphery of the plasma to the central channel and increasing 
the temperature of the central channel (Holliday and Beauche‐
min, 2004; Ishii et al., 1988). The increase in the central chan‐
nel temperature increases the evaporation efficiency of the ana‐
lytes (especially the high field-strength elements Zr, Hf; Hu et 

al., 2012), Yb and Lu; Iizuka and Hirata, 2005, etc.). However, 
the addition of N2 does not increase the signal intensity of all 
elements, especially those with lower ionization energies. For 
example, Lin et al. (2014) noted that the signal intensity of B 
can be reduced with the addition of N2 in the B isotopic analy‐
sis by LA-MC-IC-MS. Because B has the first ionization ener‐
gy of 8.3 eV, which is a readily ionizable element compared to 
the first ionization energy of Ar plasma (15.8 eV), and an in‐
crease in thermal conductivity has little effect on the ionization 
degree of B, thus B signal intensity cannot be increased. In ad‐
dition, the signal intensity of S (Fu et al., 2016), Sr (Zhang et 
al., 2018; Tong et al., 2016), and Li (Lin et al., 2021) was also 
found not to be increased with the addition of N2. Fortunately, 
the stability of the isotope ratios can be improved, contributing 
to the accuracy and precision of the isotopic determination.

In addition, the introduction of small amounts of organic 
reagents into the dry aerosol produced by laser ablation can also 
help to improve signal intensity. Liu et al. (2014) showed that 
the introduction of small amounts of ethanol into the dry aerosol 
produced by a 193 nm laser improved the sensitivity of 60 kinds 
of elements by a factor of 1.5 to 3.0. The reasons for the im‐
provement of signal intensity with the introduction of organic re‐
agents are controlled by many factors. For example, Kralj and 
Veber (2003) pointed out that the increased degree of elemental 
sensitivity was related to the volatility of the organic reagent, 
with the more volatile reagents having a greater sensitizing ef‐
fect. Llorente et al. (1997) pointed out that polyols, mono alco‐
hols, and organic acids have different levels of elemental sensiti‐
zation, suggesting that the sensitization of organic reagents may 
be related to the content of functional groups. Hu et al. (2004) 
pointed out that the increased degree of elemental sensitivity 
was related to the volatility and concentration of the organic re‐
agents, the mass and the first ionization energy of the analyzed 
element, as well as the operating conditions of the plasma. And 
the increased sensitivity was independent of the functional 
groups of the organic reagents. Although the mixture of gas as 
well as the organic reagent will greatly increase the signal inten‐
sity of elements. However, there are also some related disadvan‐
tages. For example, the addition of a mixture of gas can increase 
polyatomic ion interference for some elements (Scheffler and 
Pozebon, 2014). In addition, the introduction of organic re‐
agents might also result in carbon deposits blocking the cone 
holes (Liu et al., 2014), reducing the instrumental sensitivity 
and affecting the accuracy and precision of isotopic analysis.

Table 1 Comparison of the properties of Ar, He, and the kinetic properties of aerosol particles when Ar and He are used as carrier gas 

Characteristic

Density

Viscosity

Thermal conductivity

Plasma shielding

Particle diameter

Movement direction of aerosol

Particle deposition amount

Mass fractionation

Ar

High

High

Low

Big

Big

Horizontal

High

Big

He

Low

Low

High

Small

Small

Vertical

Low

Small

References

Horn and Günther (2003)

Horn and Günther (2003)

Horn and Günther (2003)

Koch et al. (2007)

Horn and Günther (2003)

Koch et al. (2007)

Horn and Günther (2003)

Jackson and Günther (2003)
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1.3 Applying the Shield Torch　
The shield torch is a grounded shield between the load 

coil and the torch tube to reduce the potential difference. The 
main function of the shield torch is to eliminate the secondary 
discharges and reduce background noise and polyatomic ion in‐
terference (Zheng et al., 2004; Gray, 1986). In addition, the 
shield torch reduces the plasma bias potential and the second‐
ary discharge effect, the use of a shield torch can also reduce 
the kinetic energy distribution of ions and improve the ion 
transport efficiency by a factor of 20 (Appelblad et al., 2000). 
The signal intensity of 39 kinds of elements was determined 
with/without the shield torch by Chen et al. (2015), and the ex‐
perimental results showed that the use of a shielded torch 
would increase the sensitivity of the elements by a factor of 17–
58, except for Li, Be and Na. In addition, Xu et al. (2015) not‐
ed that the signal intensity of Nd can be increased by a factor 
of 1.6 with the addition of nitrogen by using the shield torch. 
However, the signal can be decreased with the addition of N2 
when the shield torch was not used. The main reason was the 
addition of N2 expanded the kinetic energy distribution of ions 
in the plasma, while the use of a shield torch decreased the ki‐
netic energy distribution of ions, and the combination of the 
two factors did not decrease the ion transport efficiency and in‐
creases the signal intensity of Nd.

1.4 Reasonable Configuration of Detectors　
At present, the most commonly used detectors of MC-

ICP-MS are the Faraday cup, secondary electrons multiplier 
(SEM), and Daly detector (Koppenaal et al., 2005).

Faraday cup is the most commonly used ion detector for 
direct detection of ion current intensity in the mass spectrome‐
ter, which is suitable for measuring relatively large ion current 
intensity. The amplifiers currently fitted to Faraday cups typi‐
cally have resistance values of 1011, 1012, and 1013 Ω. Faraday 
cup has good stability for isotopic composition determination. 
However, Faraday cup detectors are less sensitive and have 
higher electronic noise than SEM. The noise of the Faraday 
cup can seriously affect the determination of isotopic ratios in 
samples with low elemental content (Koornneef et al., 2013; 
Wieser and Schwieters, 2005). The electron noise can be de‐
scribed as the following equation.

ΔV =
4κB RT

tm

where ΔV is the electronic noise (V), кB is the Boltzmann con‐
stant (1.38 × 10-23 J/K), R is the amplifier resistance value (Ω), T 
is the Kelvin temperature (K), and tm is the integration time (s). 
The electronic noise of a Faraday cup is related to the amplifier 
resistance value, the temperature, and the integration time. 
When the amplifier resistance is expanded by a factor of 10 or 
100, the signal intensity is expanded by a factor of 10 or 100, 
and the electronic noise of a Faraday cup is proportional to the 
square root of the amplifier resistance. Therefore, theoretically 
with 1012 and 1013 Ω, the signal-to-noise ratio relative to the 1011 
Ω resistors, the signal-to-noise ratio will be increased by the 
factor of 10 and 100, respectively. To extend the capability of 
Faraday cups to determine low signal intensity, 1012 and 1013 Ω 
have been exploited (Koornneef et al., 2015, 2014, 2013). For 

example, Lloyd et al. (2018) used a 1013 Ω Faraday cup amplifi‐
er to achieve high-precision determination of B isotopes in sam‐
ples with 11B signal intensity of less than 4.2 mV (2SD = 0.3‰).

The sensitivity of SEM is several orders of magnitude 
higher than that of the Faraday cup, so it is widely used in vari‐
ous mass spectrometer. Relative to the Faraday cup, the sensi‐
tivity of SEM can be improved by a factor of 105–108, and the 
SEM has a faster response speed. However, SEM has a series 
of shortcomings in determining isotope composition, including 
mass discrimination effect, poor peak shape, and dead time of 
the detector. In addition, because of the low counting statistics 
of SEM, the detection accuracy of isotopes is lower than that 
of the Faraday cup (Becker, 2008). The SEM can be used to de‐
termine the radioisotope composition of low-content samples 
(Zhu et al., 2019), and the spatial resolution of U-Pb dating can 
be improved (Xie et al., 2017). For example, Zhu et al. (2019) 
used SEM as a detector for the determination of the Os isotope, 
which could accurately determine the Os isotopic composition 
when the signal intensity of Os was below 10 mV. Xie et al. 
(2017) used a full SEM as a detector to carry out in situ U-Pb 
dating of zircons with a spatial resolution of 5.8–7.4 μm (beam 
spot) × 3 μm (depth) with an accuracy of <1%.

Daley detector is another kind of detector. Compared with 
SEM, its outstanding characteristics are high sensitivity, low 
background noise, linear range of 8 orders of magnitude, long 
service life, and no dead time correction and linear range cor‐
rection. Although the Daley detector is considered a substitute 
for the Faraday cup, the signal intensity of the Daley detector 
is 1–2 orders of magnitude lower than that of the Faraday cup 
(Becker, 2008).

For the elements with large differences in isotope abun‐
dance, the isotopic composition can also be determined using 
Faraday cups with mixed amplifier resistance and a mixture of 
Faraday cups and SEM. For example, for the Li isotope, the 
abundances of 7Li and 6Li are 92.5% and 7.5%, respectively, 
with the former being 12.3 times more abundant than the latter. 
Steinmann et al. (2019) used Faraday cups configured with 1011 
and 1013 Ω for the collection of 7Li and 6Li, respectively, for 
samples with Li content greater than 10 μg·g-1. For samples 
with Li content less than 10 μg·g-1, Steinmann et al. (2019) 
used Faraday cups configured with 1013 Ω and an SEM to col‐
lect 7Li and 6Li, respectively. It is worth noting that a τ correc‐
tion is needed when 1013 Ω Faraday cups are used. In the case 
of the SEM, a dead time correction, as well as a dynamic linear 
range correction of the signal is required (Richter et al., 2016; 
Nelms et al., 2001).

2 ELIMINATION/REDUCTION AND CORRECTION 
OF MASS SPECTRAL INTERFERENCE 

The first consideration for mass spectral interference is to 
use appropriate measures to eliminate or reduce them. Howev‐
er, in cases where mass spectral interference cannot be elimi‐
nated, an interference correction method should be considered. 
Interference correction can be divided into blank correction 
and interference correction.

2.1 Elimination/Reduction of Mass Spectral Interference　
The elimination/reduction of mass spectral interference is 
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mainly achieved by three methods: optimizing plasma ioniza‐
tion conditions (cold plasma, shielding torch, sampling depth, 
active gas, carrier gas flow rate, etc.), physical separation 
(change resolution by slit control) and chemical separation (col‐
lision cell or reaction cell).

At first, the mass spectral interference can be reduced or 
even eliminated by optimizing plasma ionization conditions. 
For example, the interference of ArH, ArN, ArO, and ArC can 
be reduced by the application of cold plasmas (lower RF power 
or higher sample gas flow rates), thus enabling the determina‐
tion of the isotopic composition of elements such as low levels 
of K, Ca, and Fe (Chernonozhkin et al., 2017; Murphy et al., 
2002). However, the application of cold plasma can reduce the 
ionization capacity of the plasma, and use of the low RF power 
can significantly reduce the ionization efficiency of difficult-to-
ionize elements, resulting in a significant reduction in signal in‐
tensity. In addition, the lower temperature of the central plasma 
channel under cold plasma conditions results in incomplete ma‐
trix decomposition and thus poor matrix tolerance in isotope 
determination (Chernonozhkin et al., 2017). In addition to the 
use of cold plasmas, the application of appropriate instrumen‐
tal components and reasonable parameters can also reduce in‐
terference to a large extent. For example, the use of a shield 
torch can reduce the yield of doubly charged ions (Chen et al., 
2015; Gray, 1986). Additionally, the doubly charged ion and 
polyatomic ion yields can also be reduced by optimizing instru‐
mental parameters such as plasma gas flow rate, sampling 
depth, and RF power (Chen et al., 2015). Another straightfor‐
ward way to reduce interference is to improve the instrumental 
resolution. For example, for in situ determination of Fe iso‐
topes by LA-MC-ICP-MS, the use of high resolution can re‐
duce the interference of 40Ar14N, 40Ar16O, 40Ar16O1H and 40Ar18O 
to 54Fe, 56Fe, 57Fe, and 58Fe (Oeser et al., 2014; Steinhoefel et 
al., 2009a), but the sensitivity would be greatly reduced with 
the high resolution.

Another method to eliminate/reduce mass spectrometry in‐
terference is to use chemical separation, using a collision reac‐
tion cell to eliminate interfering elements based on their proper‐
ties. For example, the interference of 87Rb on 87Sr in the Rb-Sr 
isotope system can be eliminated using a collisional reaction 
cell, where Sr is formed by reacting with the gas CH3F to form 
SrF+ and Rb does not react with the gas, thus eliminating the in‐
terference of 87Rb on 87Sr and obtaining accurate Rb-Sr dating 
based on the difference in properties of the elements (Bevan et 
al., 2021. Moens et al., 2001). For the interference of Lu and 
Yb on Hf in the Lu-Hf isotope system, Wu et al. (2023) used 
NH3 as the reaction gas in the collision reaction cell to achieve 
accurate Lu-Hf isotope dating of xenotime, apatite, and garnet. 
At present, the collisional reaction cell technique has also been 
successfully applied to the determination of isotopes of K, Ca, 
and Fe (Gao et al., 2022; Wang et al., 2022; Zheng et al., 2022; 
Chen et al., 2021; Li W Q et al., 2016). In addition to chemical 
reactions, mass spectral interference can be eliminated and re‐
duced by physical adsorption and gas exchange. For the inter‐
ference of Hg on Pb isotope determination, Hirata et al. (2005) 
and Yuan et al. (2015) used charcoal filters or activated carbon 
to reduce most of the Hg in the Ar gas; Hu et al. (2015) and 
Zhang et al. (2016a) used Au-plated de-mercury homogenizers 

and gas exchange devices to rapidly reduce Hg from samples 
and carrier gases, respectively. Additionally, recent research in‐
dicated that the background interference can be reduced by the 
wet plasma and the addition of N2. For example, the main inter‐
ferences (12C14N+ and 48Ca2+ ) in Mg isotopic analysis by LA-
MC-ICP-MS can be significantly suppressed, making it appli‐
cable for the application of low mass resolution. Zhang et al. 
(2018) pointed out that the interference of Kr on Sr would be 
greatly reduced when 12 mL·min-1 N2 was introduced into the 
central gas for in situ Sr isotopic determination using LA-MC-
ICP-MS.

2.2 Correction of Mass Spectral Interference　
2.2.1 Correction of blank interference　

For the isotopic determination by LA-MC-ICP-MS, the 
main component of the plasma is the small number of other 
gases in addition to Ar, e.g., typically 99.999% Ar will contain 
about 1 µg·g-1 of O2, 2 µg·g-1 of H2O and a small number of oth‐
er gases (CO2, N2). When blank interferences are related to the 
working gases, e. g., 40ArO16+ interferes with 56Fe+ , 40Ar4+ inter‐
feres with B10+ , the blank interferences can be corrected using 
blank deduction. The blank value was obtained as all the flow 
rates and instrument parameters are kept the same as the sam‐
ple being analyzed (Lin et al., 2017). However, this blank de‐
duction method is proved to be not reasonable because, during 
the measurement of the actual sample, sample aerosol particles 
are introduced into the whole system, i.e., a certain mass load‐
ing (matrix effect) is generated, and the presence of the mass 
loading affects the signal intensity; whereas no aerosol parti‐
cles are introduced during the determination of the blank signal 
intensity. Therefore, to deduct the true blank signal value, a 
sample without the element to be measured (i.e., a blank sam‐
ple) needs to be stripped (Kimura et al., 2013b; Ramos et al., 
2004; Christensen et al., 1995). The blank signal intensity is 
more related to the instrumental contamination by the measure‐
ment process and the memory effect of the element (Lin et al., 
2016a; McGinnis et al., 1997). For elements with a strong 
memory effect, the background signal intensity increases with 
increasing the analysis time. To reduce the effect of memory ef‐
fect on the blank deduction, the silicate glasses that do not con‐
tain the analyzed element can be ablated and reduce the deposi‐
tion of the aerosol in the transport process (Lin et al., 2017; Gil‐
bert et al., 2014a). In addition, for such elements with strong 
memory effects, the blank deduction can also be performed by 
performing a linear fit based on the relationship between the 
blank value and the analysis time, calculating the real-time 
blank signal value during the measurement, and then making 
an accurate deduction for the blank value (Kimura et al., 2016; 
Tang et al., 2007).

2.2.2 Correction of interference from the sample matrix　
For the in situ microanalysis of isotopes, not only the ana‐

lyzed elements but also the sample matrix will enter the ICP si‐
multaneously. Therefore, the sample matrix may interfere with 
the determination of the isotopic composition of the elements 
to be measured. The sample matrix-related interference in‐
cludes isobaric interference (54Cr+ vs. 54Fe+), polyatomic ion in‐
terference (40Ca16O+ vs. 56Fe+ ) (Xu et al., 2021; Zheng et al., 
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2018), and doubly charged interference (88Sr2+ and 86Sr2+ vs. 
 44Ca+  and 43Ca+) (Zhang L et al., 2020). For interference correc‐
tion from the sample matrix, the interference can be corrected 
by measuring the signal intensity of the non-interfering isotope 
of the element and then combining this with a mass fraction‐
ation correction. For example, for in situ Ca isotope determina‐
tion by LA-MC-ICP-MS, 86Sr2+ and 88Sr2+ can lead to doubly 
charged ion interference to 43Ca+ and 44Ca+. Accurate determina‐
tion of the signal intensity of the non-interfering isotope 87Sr2+, 
i. e., mass number 43.5, combined with the mass fractionation 
factor fSr allows accurate deduction of the signal intensity of 
86Sr2+ and 88Sr2+ (Zhang et al., 2019a).

I 42Ca
= I42 - ( I 87Sr+ + × r( )84Sr/ 86Sr

× ( )M84 /M86

fSr

r( )87Sr/ 86Sr
× ( )M87 /M86

fSr )
I 43Ca

= I43 - ( I 87Sr+ +

r( )87Sr/ 86Sr
× ( )M87 /M86

fSr )
I 44Ca

= I44 - ( I 87Sr+ + × r( )88Sr/ 86Sr
× ( )M88 /M86

fSr

r( )87Sr/ 86Sr
× ( )M87 /M86

fSr )
where I means the signal intensity obtained on LA-MC-ICP-
MS; r means the isotope ratio; M/M means the isotope mass 
ratio.

3 CORRECTION OF ISOTOPIC MASS FRACTION‐
ATION 

During the laser ablation process, the aerosol ionization 
process, and the ion extraction-transport process, the conver‐
sion or transport efficiency of the material is not consistent. 
Therefore, the final isotopic ratio deviates from the initial ratio, 
which refers to isotopic fractionation (Zhang and Hu, 2020; 
Yang L et al., 2018). Thus, isotope fractionation occurs in the 
process of particle formation, aerosol transport, and ICP ioniza‐
tion (Garcia et al., 2009). Due to the isotopic mass fraction‐
ation, the determined isotopic composition cannot be directly 
used and need to be corrected for isotopic composition using 
the fractionation correction method. Currently, isotope fraction‐
ation correction methods commonly used in LA-MC-ICP-MS 
include internal (pseudo-internal), external, and linear regres‐
sion methods (Meija et al., 2012; Yang, 2009; Fietzke et al., 
2008b; Albarède et al., 2004).

3.1 Mass Fractionation Correction Method　
3.1.1 Internal and pseudo-internal standardization　

Internal standard methods were commonly used for frac‐
tionation corrections of radioisotopic compositions, e. g., Sr 
(Müller and Anczkiewicz, 2016; Jochum et al., 2009; Fietzke 
et al., 2008b; Vroon et al., 2008; Woodhead et al., 2005), Hf
(Fisher et al., 2014, 2011a; Hu et al., 2012; Woodhead et al., 
2004; Griffin et al., 2002) and Os (Pearson et al., 2002), which 
used a stable isotope pair as an internal standard to calculate 
the mass fractionation factor, and then accurately corrected for 
the isotopic composition. For example, for the determination of 
Nd isotope, the mass fractionation factor was calculated using 

146Nd/144Nd as the internal standard, which is used for the deter‐
mination of 143Nd/144Nd (Fisher et al., 2011b; Iizuka et al., 2011; 
Yang et al., 2008; Foster and Vance, 2006). For the elements 
with only two isotopes (e.g., Cu) or elements with multiple iso‐
topes but no two stable isotopes (e. g., Pb), accurate isotopic 
corrections cannot be made using the internal standard method. 
However, mass fractionation correction can be made using 
mass fractionation factors obtained for isotopes of similar mass 
to the measured isotope, i.e., the pseudo-internal standard meth‐
od. For example, the mass fractionation of the Pb, Re, Lu, and 
Cu isotopes can be corrected using 205Tl/203Tl (Thirlwall, 2002), 
193Ir/191Ir (Pearson et al., 2002); 173Yb/171Yb or 172Yb/171Yb (Fish‐
er et al., 2014) and 66Zn/64Zn (Maréchal et al., 1999). For the 
case of in situ isotopic microanalysis by LA-MC-ICP-MS, the 
specific measures of introducing pseudo-internal standard ele‐
ments can be implemented using a combination of nebulizer 
and chamber (Zhang W et al., 2022) or a membrane desolation 
device (Feng et al., 2018; Chen K Y et al., 2017). The specific 
isotopic correction using internal and pseudo-internal standard‐
ization can be referred to (Lin et al., 2016b).

The internal and pseudo-internal standardization methods 
can improve the accuracy and precision of isotopic determina‐
tions, and two points that need to be noted: 1. The atomic mass 
of the internal standard or pseudo-internal standard isotope pair 
should be as close as possible to that of the measured isotope 
(Vance and Thirlwall, 2002); 2. The internal scale must be a 
constant natural ratio. However, many scholars have pointed 
out that what was previously considered to be a natural ratio is 
not constant. For example, Ma et al. (2013) and Fietzke and 
Eisenhauer (2006) showed that the 88Sr/86Sr ratio is not con‐
stant, so the correction of 88Sr/86Sr may vary depending on the 
used 88Sr/86Sr. However, it is still not possible to give an accu‐
rate assessment of whether the errors caused by differences in 
internal scale values affect the interpretation of geological 
problems (Lin et al., 2015). Similar problems also exist for the 
determination of Nd, Hf, and Os isotopic ratios (Yang, 2009).

3.1.2 External standard-sample bracketing (SSB) method
For isotope systems that lack a suitable internal standard 

or a pseudo-internal standard, mass fractionation correction us‐
ing an external standard method is required. For example, for 
low-mass elements (e.g., Li, B, Mg, and Fe), isotope fraction‐
ation corrections cannot be made using internal or pseudo-      
internal standards, even if isotopic pairs of similar masses are 
selected. Because the difference in mass fractionation factors is 
large at the low mass end of the spectrum, and mass bias is 
more severe at the lower mass elements, an external calibration 
is required (Johnson et al., 2004). The external standard calibra‐
tion method, also known as the standard-sample bracketing 
method (SSB), involves inserting two standards before and af‐
ter the measured sample, and the average of the fractionation 
factors of these two standards is used as the fractionation factor 
of the sample. For isotopic composition determination by SN-
MC-ICP-MS, the standard solution (e.g., L-SVEC solution for 
Li isotope; Qi et al., 1997) can be directly determined, whereas 
for isotope ratio determination by LA-MC-ICP-MS, the solu‐
tion sample cannot be directly determined and a solid standard 
(e.g., the calibration standard) is usually ablated, and the mea‐
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sured isotopic composition can be calculated using the follow‐
ing equation (Steinmann et al., 2019; Kasemann et al., 2005).

δsam
std = (rsam /rcali - std - 1) × 1 000 + δcali - std

std

where, δsam
std  refers to the isotopic composition of the measured 

sample relative to the reference standard solution, rsam and rcali-std 
refer to the isotopic composition of the measured sample and 
the calibration standard, and δcali - std

std  refers to the isotopic com‐
position of the calibration standard relative to the reference so‐
lution. However, Lin et al. (2019) used the formula to calculate 
the isotopic composition of Li in tourmaline, noting that the 
calculation method introduced large errors when the isotopic 
compositions of the calibration standard and samples differ sig‐
nificantly and need to be corrected accordingly. This problem 
was subsequently sorted out by Zhang and Hu (2020), who 
pointed out that the above calculation method should only be 
used if the isotopic compositions of the sample and the calibra‐
tion standard are similar or if the isotopic composition of the 
calibration standard is close to 0‰. The universal and accurate 
correction method can be used as the following equation.

δsam
std = (rsam /rcali - std - 1) × 1 000 + δcali - std

std × (rsam /rcali - std )
the key to isotopic composition correction by the external stan‐
dard method is the selection of a standard that matches the ac‐
tual sample matrix. This means that the fractionation factor of 
the standard can be approximated to that of the sample to en‐
sure accurate isotopic fractionation correction. The commonly 
used USGS and MPI-DING glasses have been successfully 
used in the accurate calibration of a wide range of isotopes. For 
example, the determination of the isotopes of Li (Lin et al., 
2017, 2016a; Le Roux, 2010), B (Kimura et al., 2016), Mg 
(Lin et al., 2022; Oeser et al., 2014), Si (Frick et al., 2016), Fe 
(Oeser et al., 2014). In contrast, the geological samples are the 
most complex and diverse, and the commonly used reference 
glass cannot meet the needs of isotopic analysis in geological 
samples. The new standards including natural mineral samples 
as well as synthetic standards have been developed. To provide 
a reference for future isotopic analysis in different geological 
samples, the existing isotope standards with different isotopes 
were compiled in Table 2.

Table 2 The commonly used reference materials for in situ isotopic determination 

Li

B

C

Garnet glass

Andesite glass

Tourmaline

Clinopyroxene

Orthopyroxene

Zircon

Olivine

Tourmaline

Obsidian

Andesite glass

Calcite

WHS01-06

ARM-1/2/3

Elbaite #98144

Schorl #112566

IAEA-B-4

IMR RB1

SAE152

CpxBZ226/CG

06JY06 /29 /31 cpx

CPXA/B01

06JY06/31 /34 opx

Opx BZ226

MNHN#146260

M257

MW-sc

OlBZ29

SC-1 Ol

Ol334

09XDTC1-24

06JY06/29/31/34 Ol

IAEA B4

IMR RB1

DD-01

Dravite #108796

Elbaite #98144

Danburite #115089

Schorl #112566

IAEA B6

ARM-1/2/3

SXD8

Hoover et al. (2021)

Wu et al. (2021)

Wiedenbeck et al. (2021)

Tang et al. (2007)

Decitre et al. (2002)

Su et al. (2015)

Yang A et al. (2023)

Su et al. (2015)

Decitre et al. (2002)

Ushikubo et al. (2008)

Li X H et al. (2011)

Tang et al. (2007)

Decitre et al. (2002)

Kobayashi et al. (2004)

Tang et al. (2014)

Su et al. (2015)

Tonarini et al. (2003)

Hou et al. (2010)

Lin et al. (2014)

Dyar et al. (2001)

Gonfiantini et al. (2003)

Wu et al. (2021)

Chen W et al. (2017)

Isotopes Mineral Standard name References
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Mg

Si

S

Cl

Ca

Ti

V

Dolomite

Magnesite

Siderite

Olivine

Dolomite

Siderite

Magnesite

Carbonate

Quartz mineral

Si

Quartz glass

Zircon

Diopside glass

Pyrite

Synthetic sulfide

Synthetic Ag2S

Sphalerite

Galena

Chalcopyrite

Ag2S

S

Barite

Apatite

Calcium phosphate

Igneous apatite

Hydroxyapatite

Ti

Rutile

Ilmenite

Synthetic glass

V

DOL-8

MGS-1

SD-5

San Carlos

ALM-1/2

ALM 3

Brenham

Pallasite

DOL-8

SD-5

MGS-3

JCp-1

JCt-1

eBlue

eYel

NBS 28

Qinghu-Qtz

IRMM 017

Glass-Qtz

Qinghu-Zir

Penglai-Zir

JER

PPP-1

PY-4

MASS-1

PS-1

IAEA-S-1

NBS123

SPH-1

NWU-GN

GC-1

HTS4-6

CPY-1

TC1725

IAEA-S-1/2/3

GBW04414/04415

IAEA-S-4

NBS127

Eppawala-AP

Durango

SRM 1486

Durango

SRM 1400

HAPs

Alfa-Ti

KNW

USNM 83191

PZH12-15

CMAS

Alfa Aesar V metal

Lu et al. (2022b)

Norman et al. (2004)

Pearson et al. (2006)

Beyer et al. (2006)

Norman et al. (2006); Young et al. (2009)

Mittlefehldt et al. (1998); Wasson et al. (1999)

Lu et al. (2022a)

Inoue et al. (2004)

Sadekov et al. (2020)

Ding et al. (2005)

Li et al. (2013)

Frick et al. (2016)

Liu et al. (2022)

Li et al. (2013)

Li et al. (2010)

Reid et al. (2001)

Gilbert et al. (2014b)

Bao et al. (2017)

Wilson et al. (2002)

Wilson et al. (2002)

Ding et al. (2001)

Chen K Y et al. (2017)

Lü et al. (2022b)

Lü et al. (2022b)

Lü et al. (2022b)

Li et al. (2020)

Li et al. (2020)

Bao et al. (2021)

Ding et al. (2001)

Ding et al. (2001)

Qi and Coplen (2003)

Halas and Szaran (2001)

Li et al. (2020)

McDowell et al. (2005)

Zhang L et al. (2020)

Zhang L et al. (2020)

Tacail et al. (2016)

Tacail et al. (2016)

Huang et al. (2022)

Huang et al. (2022)

Simon et al. (2017)

Huang et al. (2022)

Williams et al. (2016)

Schuth et al. (2017)

Table 2  Continued

Isotopes Mineral Standard name References
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Fe

Ni

Cu

Zn

Sr

Zr

Sn

Ba

Fe

Pyrite

Ilmenite

Ni steel

Ni

Chalcopyrite

Cu

Zn

Sphalerite

Synthetic glass

Apatite

Clinopyroxene

Potassium feldspar

Carbonate

Scheelite

Plagioclase

Epidote

Zircon

Sn

Cassiterite

Barite

IRMM-014

IRMM-524A

JMC

PZH12-15

PZH12-18

D-184-1

NIST 1226

Ni-rod

TC1725

NIST SRM 976

SSC-1, 3, 4

CUPD-1

NIST SRM 683

NBS 123

CPX05G

Durango

AP1

Slyudyanka

SDG

JJG1424

YY09-47

YY09-04

YY09-24

YY12-01

HNB-8

Tuyk

NanoSr

MNP

HTPW

XJSW

AMNH-107160

G29958

Hrappsey 14-2

BDL-1/2/3

YG0440

YG0383

YG4301

PSV

GJ-1

91500

Plešovice

Tanz

Paki

Aus

Mala

Ban-1

Sn rod

synthetic cassiterite

NBS127

IAEA-SO-5,6

Taylor et al. (1992)

Xu et al. (2022b)

Hirata and Kon (2008)

Xu et al. (2022b)

Xu et al. (2022b)

Weyrauch et al. (2017)

Weyrauch et al. (2017)

Weyrauch et al. (2017)

Bao et al. (2021)

Ikehata and Hirata (2013)

Yang et al. (2021)

Yang et al. (2021)

Yang et al. (2018)

Bao et al. (2022)

Tong et al. (2016)

Zhang et al. (2018)

Yang et al. (2014)

Zhao et al. (2020)

Zhang et al. (2018)

Zhang et al. (2018)

Weber et al. (2020)

Liang et al. (2023)

Li et al. (2018)

Li et al. (2018)

Mulder et al. (2023)

Xu et al. (2022a)

Zhang et al. (2018)

Zhang et al. (2018)

Zhang et al. (2018)

Huang et al. (2023)

Jackson et al. (2004)

Wiedenbeck et al. (1995)

Sláma et al. (2008)

Hu et al. (2021)

Zhang S H et al. (2022)

Xie et al. (2023)

Schulze et al. (2017)

Zhang et al. (2023)

Zhang S H et al. (2022)

Table 2  Continued

Isotopes Mineral Standard name References
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Nd

Hf

Os

U-Pb

Titanite

Allanite

Synthetic glass

Apatite

Monazite

Zircon

Rutile

Eudialite

Titanzircon

Sulfide

Zircon

SP-REN,

SP-HUL

BLR-1

OLT1

Ontario

MKED1

T3

DAI

JNdi-1

LREE

Durango

MAD

Trebilcock

91500

GJ-1

Mud Tank

Plesovice

Temora

QingHu

M127

M257

CZ3

CN92-1

SK10-2

Tanz

Jilin

SLZA

SLZB

SLZC

SA01

SA02

BB

Ban-1

KV01

RMJG

R10

Sugluk-4

PCA-S207

JDX

LV01

ZrKA

CR-1

CO-1

COR-1

POR-1

91500

GJ-1

Mud Tank

Plesovice

Temora

Foster and Vance (2006)

Ma et al. (2019)

McFarlane and McCulloch (2007)

Fisher et al. (2011b)

Kimura et al. (2013a)

Yang et al. (2014)

Xu et al. (2015)

Wiedenbeck et al. (1995)

Jackson et al. (2004)

Black and Gulson (1978)

Sláma et al. (2008)

Black et al. (2003)

Li et al. (2013)

Klötzli et al. (2009)

Nasdala et al. (2008)

Kinny et al. (1991)

Feng et al. (1993)

Yuan et al. (2003)

Hu et al. (2021)

Luo et al. (2021)

Hu et al. (2023)

Huang et al. (2020)

Huang et al. (2021)

Santos et al. (2017)

Xie et al. (2023)

Wei et al. (2020)

Zhang and Hu (2020)

Luvizotto et al. (2009)

Bracciali et al. (2013)

Li Q L et al. (2011)

Wu et al. (2010)

Zhu et al. (2016)

Wiedenbeck et al. (1995)

Jackson et al. (2004)

Black and Gulson (1978)

Sláma et al. (2008)

Black et al. (2003)

Table 2  Continued

Isotopes Mineral Standard name References
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Xenotime

Rutile

Allanite

Apatite

QingHu

M127

M257

CZ3

CN92-1

SK10-2

Tanz

Jilin

SLZA

SLZB

SLZC

SA01

SA02

BB

Ban-1

KV01

MG-1

Z6413

XN01

XN02

R10

Sugluk-4

PCA-S207

RMJG

R632

JDX

Tara

AVC

Bona

Daibosatsu

EM-1

LE40010

LE2808

Mucrone

Swiss

LE2808

LE40010

A007

A011

A012

AP1

AP2

Durango

MAD

Otter Lake

NW-1

Slyudyanka

UWA-1

McClure Mountain

SDG

Li et al. (2013)

Klötzli et al. (2009)

Nasdala et al. (2008)

Kinny et al. (1991)

Feng et al. (1993)

Yuan et al. (2003)

Hu et al. (2021)

Luo et al. (2021)

Hu et al. (2023)

Huang et al. (2020)

Huang et al. (2021)

Santos et al. (2017)

Xie et al. (2023)

Wei et al. (2020)

Fletcher et al. (2004)

Stern and Rayner (2003)

Vasconcelos et al. (2018)

Luvizotto et al. (2009)

Bracciali et al. (2013)

Zhang L et al. (2020)

Axelsson et al. (2018)

Li Q L et al. (2011)

Gregory et al. (2007)

Barth et al. (1994)

von Blackenburg (1992)

Hoshino et al. (2005)

Rubatto et al. (2011)

Smye et al. (2014)

Cenki-Tok et al. (2011)

von Blackenburg (1992)

Yang et al. (2022)

Yang et al. (2014)

McDowell et al. (2005)

Thomson et al. (2012)

Chew et al. (2011)

Zhou et al. (2013)

Chew et al. (2011)

Zhou et al. (2007)

Chew et al. (2011)

Zhou et al. (2012)

Table 2  Continued

Isotopes Mineral Standard name References

1674



Review on in situ Isotopic Analysis by LA-MC-ICP-MS

Bastnaesite

Eudialite

Cerium-niobium perovskite

Titanzircon

Perovskite

Titanite

Potassium feldspar

Garnet

K-9

LV01

LOP01

ZrKA

Ice River

Tazheran

AFK

BLR-1

OLT-1

Khan

GST

Ontario

Fish Canyon Tuff

T3

Pakistan

MKED1

Albany K-feldspar

Willsboro

Mali

PL57

WS20

QC04

IUC-1

IUC-2

Yang et al. (2014)

Wu et al. (2010)

Mitchell et al. (2011)

Wu et al. (2010)

Heaman (2009)

Kinny et al. (1997)

Wu et al. (2013)

Aleinikoff et al. (2007)

Kennedy et al. (2010)

Heaman (2009)

Kennedy et al. (2010)

Sun et al. (2012)

Schmitz and Bowring (2001)

Ma et al. (2019)

Spandler et al. (2016)

Liebmann et al. (2023)

Seman et al. (2017)

Li et al. (2022)

Yang et al. (2018)

Deng et al. (2017)

Aysal et al. (2023)

Table 2  Continued

Isotopes Mineral Standard name References

3.1.3 Regression model calibration method　
The regression model calibration method is a newly used 

in situ isotopic microanalysis calibration strategy. The linear re‐
gression method takes all collected isotope signals (signal in‐
tensity + blank intensity) and analyses them as a whole and de‐
rives a linear regression line from all instantaneous isotope ra‐
tios, the slope of which is used as the final obtained isotope ra‐
tios (Feng et al., 2022a; Fietzke et al., 2008a). The advantages 
of the regression model calibration method are that (1) the arti‐
ficial subjective influence of setting signal integration regions 
is avoided; (2) all the obtained data during the experiment are 
used for the analysis; (3) the contribution of each data point to 
linear regression line depends on its signal intensity and both 
blanks and signals are equally valid; and (4) deviations from 
the linear regression line due to transient signal fluctuations in 
isotopic analysis can be detected. Fietzke et al. (2008b) applied 
this method to LA-MC-ICP-MS for the Sr isotopic analysis of 
carbonates and showed that the method was able to improve 
the analytical precision by a factor of five, with an increase in 
accuracy. Feng et al. (2022a) coupled the regression model cali‐
bration method with a short-time, high-frequency laser ablation 
approach to the Sr and Hf isotope analysis in AMD, MACS-3, 
Plešovice, and GJ-1, and the obtained results were consistent 
with the recommended values within the certainty. In addition, 
the regression model calibration method has been widely used 
in other instruments, such as liquid chromatography coupled 
with MC-ICP-MS (Guéguen et al., 2015); gas chromatography 
coupled with mass spectrometry (Renpenning et al., 2015); and 

capillary electrophoresis coupled with MC-ICP-MS (Martelat 
et al., 2018).

3.2 Development of Standard Materials　
The importance of standards is evident, not only for the 

SSB calibration method but also for monitoring data quality and 
instrumental drift correction. However, there are some problems 
with the use of standards for the analysis of different isotopes by 
LA-MC-ICP-MS, such as the depletion of existing standards 
during the determination (e.g., 91500; Hu et al., 2021), the limit‐
ed variety of standards available and the low content of some el‐
ements. Therefore, it is imperative to obtain suitable standard 
materials (such as exploring the natural samples as standard 
samples or synthesizing standard materials using artificial syn‐
thesis techniques).

3.2.1 Exploring the natural sample　
Exploring the homogeneous crystals or single minerals in 

nature as standards in LA-MC-ICP-MS analysis is the best 
way to satisfy the analysis of actual geological samples (Hu et 
al., 2021; Huang et al., 2020; Su et al., 2015). Natural samples 
are very close to the analyzed samples in terms of physical 
properties such as mineral color, transparency, hardness, and 
similar content of major trace elements, all of which are advan‐
tages that synthetic standards are difficult to get. For example, 
Su et al. (2015) collected five olivine samples, three plagio‐
clase samples, and three monazite samples, and concluded that 
these samples could be used as Li isotopic standards for SIMS 
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and LA-MC-ICP-MS with the homogeneity tests for elemental 
content and isotopic composition. Hu et al. (2021) obtained the 
largest international sample of natural zircon crystal (Tanz) for 
high-quality U-Pb dating and Zr-O-Hf isotopic analysis.

However, due to the complexity of the geological environ‐
ment, the environmental requirements for mineral growth, and 
the relatively high cost of finding geological samples in the 
field, exploring homogeneous crystals or minerals in nature is 
rare. Therefore, artificially prepared synthetic standards are in‐
dispensable for the future development of LA-MC-ICP-MS 
standards for each isotope (Liu et al., 2013).

3.2.2 Powder pressing and high-temperature melting tech‐
niques　

Common techniques for the preparation of synthetic stan‐
dards include powder pressing techniques (Fu et al., 2016; Zhu 
et al., 2016) and high-temperature melting techniques (Wu et 
al., 2021).

The powder pressing technique refers to grinding sample 
particles to the micron-nanometer level, selectively mixing 
them with a binder, and mechanically polymerizing them to‐
gether under conditions of applied pressure. For example, Zhu 
et al. (2016) used pyrite powder (GBW07267) and chalcopyrite 
(GBW07268) mixed with different concentrations of Ir, Re, and 
Os solutions and applied the powder pressing technique to de‐
velop four standards (CR-1, CO-1, COR-1, and POR-1) that 
can be used in the determination of the Re-Os isotopic composi‐
tion of sulfides. Bao et al. (2017) mixed natural pyrite, chalco‐
pyrite, and sphalerite with small amounts of galena respective‐
ly, and then ground the samples into ultrafine powders of sever‐
al microns in diameter, and obtained homogeneous standards 
for sulfur and lead isotopes after pressing the tablets.

High-temperature melting technique refers to the melting 
of an initial powder sample at high temperatures, followed by 
rapid quenching to form a glass after homogenization of the 
isotopes in the melt. This method was divided into flux-melt‐
ing techniques (Bayon et al., 2009) and flux-free melting tech‐
niques (Shimizu et al., 2011). With the development of high-
temperature heat source equipment and methods to suppress 
the loss of highly volatile elements, the flux-free melting tech‐
nique has become the dominant method for the preparation of 
LA- (MC) -ICP-MS standards. For example, Wu et al. (2021) 
used a flux-free high-temperature melting technique to synthe‐
size three andesite standards with high homogeneity in the iso‐
topic composition of Li-B-Si-O-Mg-Sr-Nd-Hf-Pb. The advan‐
tages of the high-temperature melting method are that the laser 
ablation behavior of the developed glass standards is close to 
that of natural minerals, the laser ablation signal is stable, easy 
to preserve and polish, and easy to use. The USGS series of sil‐
icate glasses (Jochum et al., 2005) and MPI-DING silicate 
glasses (Jochum et al., 2006) were successful examples of the 
high-temperature melting technique.

The use of the powder pressing technique for the develop‐
ment of reference materials was a simple process that allows the 
preparation of a large number of initial powders at the same time 
to meet practical needs, and in particular, the latest preparation 
method used ultrafine powders to achieve binder-free compacts, 
which have been widely promoted for the development of refer‐

ence materials (Wu et al., 2018; Mukherjee et al., 2014). Howev‐
er, the internal porosity of the standard obtained from the powder 
pressing technique remains, and the mechanical strength of the 
standard was weaker than that of natural minerals or high-tem‐
perature melted glass, which would result in a higher ablation 
rate than that of natural samples, leading to a mismatch in signal 
intensity between the samples and causing severe fractionation 
effects of elements and isotopes as the ablation pits become 
deeper. In addition, the standards produced by the powder press‐
ing technique were prone to oxidation and swelling and can be 
easily cracked and broken in the air, making them difficult to pre‐
serve. There are also problems with the high-temperature melt‐
ing method of developing standards, for example, the sulfide 
glasses prepared by this method are often loose and fragile, and 
the sulfide glasses obtained by the high-temperature and high-
pressure technique, although dense, are usually small in size, 
making it impossible to obtain a sufficient number of samples 
for distribution in the same batch. In addition, there is isotopic 
fractionation between different batches of melted samples dur‐
ing the development process (Zhang et al., 2017). Thus, the suit‐
able producing process of the standard should be chosen based 
on the properties of the analyzed samples.

3.2.3 The method of spark plasma sintering　
Spark plasma sintering technique (SPS) is an emerging 

technique for the preparation of solid standard samples, which 
involves the simultaneous application of a pulsed current and 
pressure to a mold containing an initial powder sample, result‐
ing in a dense, grain growth-inhibited solid sample develop‐
ment method. The rapid and efficient heating by current ap‐
plied to the sample at temperature of 1 200 ° C and less than 
100 MPa allows the sample grains to clump together without 
major phase change processes (Champion, 2013). This spark 
plasma sintering technique allows a significant reduction in the 
porosity of the sample, resulting in sintered materials that 
reach or exceed 98% of the theoretical maximum density. Ta‐
cail et al. (2016) used this method to prepare natural and syn‐
thetic hydroxyapatite as a standard for in situ Ca isotope test‐
ing and experimentally verified that the Ca isotope composi‐
tion was homogeneous. Feng et al. (2022b) showed that the 
plasma spark sintered pyrite and chalcopyrite had a smoother 
surface, denser structure, and similar laser exfoliation behavior 
to natural sulfides and that the Fe and S isotopic compositions 
of pyrite and chalcopyrite were homogeneous. Based on the 
high- efficiency and practicality of the plasma spark method, 
the method has full potential for the preparation of isotopic 
standards by LA-MC-ICP-MS.

Furthermore, the 3D printing method (Gao et al., 2023) 
and sintering method (Onuk et al., 2017) can also be used as 
the preparation method of standards. For example, the elemen‐
tal-homogeneity standards can be produced by Gao et al. 
(2023). Sphalerite standards can be made with the resulting 
powder mixture being pressed into pellets and sintered at 400 °
C for 100 h using argon as an inert gas by Onuk et al. (2017).

3.3 Exploration of Non-matrix Matched Calibration 
Method　

In addition to the development of matrix-matched isotopic 
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standards for isotopic fractionation calibration, analytical geo‐
chemists have recently explored methods to achieve non-ma‐
trix-matched fractionation calibration, which can largely avoid 
the development of matrix-matched standards and greatly im‐
prove analytical efficiency. Commonly used main methods to 
reduce matrix effects to achieve non-matched calibration in‐
clude the use of femtosecond lasers and the use of wet plasma.

3.3.1 Adopting the femtosecond laser　
The pulse width (energy duration) of the femtosecond laser 

(fs, 10-15 s) is one hundred thousandth of the pulse width of a 
nanosecond laser (ns, 10-9 s). The short residence time of the 
femtosecond laser pulse on the sample surface greatly reduces 
the thermal effects during ablation and thus reduces fraction‐
ation at the ablation pits. In addition, the extremely high peak 
power of the femtosecond laser (1015 W/cm2) allows for aerosol 
particle size in the nanometer range to be obtained from the abla‐
tion. The production of small aerosol particles improved the 
transport and ionization efficiency of the aerosol, thereby in‐
creasing the signal intensity of the ions, and thus improving the 
analytical accuracy and spatial resolution, as well as reducing 
the isotopic fractionation and matrix effects during laser abla‐
tion (Kimura et al., 2017; Poitrasson and d’Abzac, 2017; Sha‐
heen et al., 2012; Hergenröder, 2006; Zeng et al., 2005). It 
showed that the femtosecond laser has significantly improved in 
terms of laser ablation capability, particle size distribution, sen‐
sitivity, fractionation effect, and spatial resolution. Currently, 
femtosecond laser ablation systems have been successfully ap‐
plied for the in situ isotopic microanalysis of Li (Lin et al., 
2019; Steinmann et al., 2019), Mg (Lin et al., 2022; Oeser et al., 
2014), Fe (Xu et al., 2021; Zheng et al., 2018; Oeser et al., 2014; 
Steinhoefel et al., 2009a; Horn et al., 2006), Si (Schuessler and 
von Blanckenburg, 2014; Chmeleff et al., 2008), Cu (Lazarov 

and Horn, 2015; Ikehata et al., 2008), Ti (Huang et al., 2022), 
and Sr (Zhang et al., 2018). Although previous studies have 
shown that the use of femtosecond laser can effectively elimi‐
nate or reduce matrix effects in isotope analysis (Oeser et al., 
2014; Chmeleff et al., 2008; Horn et al., 2006). However, matrix 
effects have also been reported during femtosecond laser abla‐
tion. Ikehata et al. (2008) used an infrared wavelength femtosec‐
ond laser to analyze the Cu isotopic composition of pure copper, 
hematite, pyroxene, and chalcopyrite and found that the use of 
pure copper as an external standard accurately corrected the in‐
strumental mass fractionation of hematite. However, it resulted 
in systematic deviations in the copper isotopic determination of 
pyroxene and chalcopyrite (0.5‰ to 2.0‰). Similar matrix ef‐
fects were also reported by Ikehata and Hirata (2013) and Zheng 
et al. (2018). Therefore, femtosecond laser-induced isotope frac‐
tionation and matrix effects need to be further investigated.

3.3.2 Adopting the Wet Plasma　
Wet plasma mode is used, whereby a small amount of wa‐

ter is added before and after the ablation cell during the laser 
ablation process to form the wet plasma (Fig. 2). The use of 
wet plasma increases the tolerance of ICP to mass loading and 
is one of the main ways to achieve LA-MC-ICP-MS non-ma‐
trix-matched isotope calibration. Among others, O’Connor et 
al. (2006) showed that the use of wet plasma conditions im‐
proved the plasma tolerance, and both mass loading effects and 
matrix effects are greatly reduced. Oeser et al. (2014) and 
Schuessler and von Blanckenburg (2014) realized non-matrix-
matched correction of Mg, Fe, and Si isotopes using wet plas‐
ma. Zheng et al. (2018) used ns- and fs-LA-MC-ICP-MS to de‐
termine the Fe isotopic composition of magnetic pyrite and 
magnetite using pure Fe as calibration standard, respectively, 
and showed that the matrix effect can be reduced under the 

Figure 2. Diagrams showing the wet plasma. I. Water was added before the ablation cell using the ns-laser; II. water was added after the ablation cell using the 

fs-laser (modified from Lin et al., 2019).
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condition of adding water after the ablation cell of the fs-LA-
MC-ICP-MS. Luo et al. (2018) used 193 nm and 213 nm-LA-
ICP-MS for U-Pb dating of single mineral and innovatively 
used the addition of water before the ablation cell to achieve 
NIST 610 glass corrections of U-Pb dating in zircon, titanite, 
and apatite. Lin et al. (2019) used ns-LA-MC-ICP-MS and fs-
LA-MC-ICP-MS to achieve the NIST 610 glass correction of 
Li isotopes in tourmaline with the addition of water before and 
after the ablation cell with the non-matrix-matched calibration. 
Lü et al. (2022a) pointed out that non-matrix-matched calibra‐
tion of Cu isotopes in Chalcopyrite by Cu metal sheet can be 
realized under the condition of wet plasma. In the determina‐
tion of isotopic compositions by LA-MC-ICP-MS, the applica‐
tion of wet plasma not only reduces the matrix effects but also 
reduces polyatomic ion interference. For example, Lin et al. 
(2022), in the determination of Mg isotopic composition by fs-
LA-MC-ICP-MS, noted that the use of a wet plasma can signif‐
icantly reduce the 12C14N+ interference to 26Mg, allowing accu‐
rate determination of Mg isotope even at low mass resolution.

In addition to the application of femtosecond laser and 
wet plasma for non-matrix-matched calibration, line ablation 
mode can be used to reduce the mass fractionation effect dur‐
ing laser ablation; low laser energy density (1–3 J·cm-2) can be 
used to ensure stable ablation (Lazarov and Horn, 2015); focus‐
ing the laser lower than the ablation position to avoid the ion‐
ization of He above the sample which consumes laser energy 
(Steinmann et al., 2019; Lazarov and Horn, 2015); adjusting 
the laser ablation conditions to ensure that the signal intensity 
of the standard and the sample are identical and that the same 
mass loading is applied can also reduce the matrix effect (Lin 
et al., 2017; Chmeleff et al., 2008). A variety of these measures 
can also significantly reduce the matrix effect, thus facilitating 
the implementation of non-matrix-matched calibration.

4 DATA REDUCTION SOFTWARE 
With the isotopic mass fractionation and interference in 

the LA-MC-ICP-MS, suitable data reduction software is re‐
quired to efficiently process laser ablation isotope data in a vi‐
sual format. Currently, most data reduction software is only 
used in elemental content calculations (Mischel et al., 2017; 
Guillong et al., 2008; Jackson, 2008), U-Th-Pb dating (Petrus 
and Kamber, 2012; Andersen, 2008), and map scanning analy‐
sis (Petrus et al., 2017; Sforna and Lugli, 2017), but there are 
not much software available for LA-MC-ICP-MS data reduc‐
tion (Table 2). ICPMSDataCal (Liu et al., 2008), Iolite v4 (Pa‐
ton et al., 2011) and Iso-Compass (Zhang W et al., 2020) are 
three commonly used data reduction software.

ICPMSDataCal is compatible with calibration methods in 
the software for isotopic systems such as Li, Sr, Nd, Hf, Os, and 
Pb. And the software was written in the Visual Basic program‐
ming language and works on Microsoft Excel. This software in‐
tegrates all the above calculation and correction methods for 
LA-MC-ICP-MS analysis of isotopic ratios. It gives users a 
unique analytical environment, based on the interactive selec‐
tion of background and sample intervals from the time-resolved 
signals provided by (MC) -ICP-MS. It provides real-time and 
online data reduction for the LA-MC-ICP-MS analysis, and fea‐
tures linked graphics and analysis tables, greatly improving 
both productivity and the flexibility of analysis. At present, data 
analyzed by (MC)-ICPMS of Agilent, thermo X and Neptune, 
Elan, Varian, Nu Plasma, and AttoM can be directly used with‐
out additional adjustment. In addition, the software is upgraded 
and modified based on the different requirements

Iolite v4 is a successful commercial software based on io‐
lite (Paton et al., 2011). It can import Almost all instrument da‐
ta and run as independent software without the support of the 
operating platform. By arranging the data in time series, it is 

Figure 3. The problems and solutions of accurate isotope determination by LA-MC-ICP-MS.
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easy to achieve batch processing of a large amount of data and 
the restoration of high spatial resolution information, support‐
ing the rendering of surface scanned images of the mapping 
analysis. By optimizing drift correction and excellent deep frac‐
tionation correction (Paton et al., 2010), high-precision single-
point isotope ratio measurement results can be obtained. To 
date, the Iolitev4 has been widely used in U-Th-Pb dating and 
Hf isotopic calculation. In addition, as a data processing pro‐
cess template, Iolitev4 supports secondary development using 
Python language, and in its latest version, it also supports data‐
base storage, greatly facilitating data storage and comparison.

Iso-compass is non-commercial software for isotope data 
reduction in LA-MC-ICP-MS, it is implemented using the pro‐
gramming language C#, which can be used independently on a 
Windows system without installing other commercial software. 
This software can provide highly practical functions, including 
a simple data input interface, a manually defined selection of 
laser and background signals, background correction, internal 
or external mass bias correction, interference correction, visual 
data presentation, and formatted data output. These functions 
can achieve an easier and more efficient reduction of LA-MC-
ICP-MS data. The flexible formula editing mode enables Iso-
Compass to be used in different isotope systems, thereby offer‐
ing the potential to become a universal isotope data reduction 
platform for the geochemical community.

In summary, due to the differences in experimental process‐
es and calibration methods, it is difficult to compare the results 
and errors obtained by the different software. For high-precision 
isotope ratio measurement, it is crucial to provide appropriate 
calibration methods and convenient data reduction software.

5 CONCLUSIONS AND OUTLOOK 
LA-MC-ICP-MS is the method of choice for the in situ iso‐

topic microanalysis. The isotopes of twenty-three kinds of ele‐
ments have been accurately determined using LA-MC-ICP-MS. 
This review integrated the problems and solutions of accurate 
isotope determination for low signal-intensity samples, mass 
spectral interferences, isotope fractionation, and non-matrix-
matched correction by LA-MC-ICP-MS (Fig. 3). This review 
aims to promote the further application of LA-MC-ICP-MS in 
analytical geochemistry, improve the accuracy and precision of 
the existing analyzable isotopes, and realize the accurate deter‐
mination of more elements’  isotopes.
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