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ABSTRACT: Multi-layer slopes are widely found in clay residue receiving fields. A generalized hori‐
zontal slice method (GHSM) for assessing the stability of multi-layer slopes that considers the energy 
dissipation between adjacent horizontal slices is presented. In view of the upper-bound limit analysis 
theory, the energy equation is derived and the ultimate failure mode is generated by comparing the slid‐
ing surface passing through the slope toe (mode A) with that below (mode B). In addition, the influence 
of the number of slices on the stability coefficients in the GHSM is studied and the stable value is ob‐
tained. Compared to the original method (Chen’s method), the GHSM can acquire more precise re‐
sults, which takes into account the energy dissipation in the inner sliding soil mass. Moreover, the 
GHSM, limit equilibrium method (LEM) and numerical simulation method (NSM) are applied to ana‐
lyze the stability of a multi-layer slope with different slope angles and the results of the safety factor 
and failure mode are very close in each case. The ultimate failure modes are shown to be mode B when 
the slope angle is not more than 28°. It illustrates that the determination of the ultimate sliding surface 
requires comparison of multiple failure modes, not only mode A.
KEY WORDS: stability and failure mode, slope stability, generalized horizontal slice method, upper-
bound limit analysis, energy dissipation, geotechnical engineering.

0 INTRODUCTION 
The Shenzhen Hong’ao Landslide of December 20, 2015 

in Southeast China killed 77 people and buried or damaged 33 
buildings (Gao et al., 2017). Rapid urbanization generates a 
large amount of clay residue that is deposited in receiving 
fields, forming multi-layer slopes. The clay residue slopes are 
close to cities and have serious consequences if unstable, thus 
the stability of which is being increasingly emphasized.

Slope stability analysis is a classic subject in geotechnical 
engineering (Fang et al., 2023; Su et al., 2022; Tang et al., 
2022; Cui et al., 2021;Li et al., 2021, 2019; Wang et al., 2020). 
At present, limit equilibrium methods (LEM) such as the Swed‐
ish circle method (Fellenius, 1927) and Bishop method (Bish‐
op, 1955) are the most widely used methods in engineering due 
to their simplicity and convenience. However, the kinematic 

problem of soil mass failure remains to be solved because the 
slope soil mass is regarded as a statically indeterminate struc‐
ture in these methods (Zhou et al., 2024; Kamran et al., 2023; 
Chen et al., 2021; Li et al., 2020; Lim et al., 2017). Targeting 
the problems, Drucker et al. (1952) proposed the theory of lim‐
it analysis, and Wai-Fah Chen and his colleagues (Chen and 
Liu, 1990; Chen and Sawada, 1983; Chen, 1975; Chen and 
Giger, 1971) introduced this theory into slope stability with a 
strictly theoretical basis and physical significance; this method 
has been widely promoted by many researchers (Chen et al., 
2020; Li et al., 2010; Ausilio et al., 2001; Michalowski and 
You, 2000; Michalowski, 1998; Chang et al., 1984). Chen’s 
method (Chen, 1975) assumes that the sliding surface is a log-
spiral and the sliding soil mass is one rigid body without con‐
sidering its internal energy dissipation. However, the sliding 
soil mass corresponding to the different polar angles needs to 
experience deformation to accommodate the changing curva‐
ture of the log-spiral, which is not consistent with the above as‐
sumption of a single rigid body (Wang et al., 2020; Yan et al., 
2019; Liu et al., 2017).

To solve the aforementioned problem, a vertical slice 
method was proposed by Michalowski (1995), which divides 

∗Corresponding author: lichangdong@cug.edu.cn
© China University of Geosciences (Wuhan) and Springer-Verlag 
GmbH Germany, Part of Springer Nature 2024

Manuscript received November 9, 2021.
Manuscript accepted January 24, 2022.



Huawei Zhang, Changdong Li, Wenqiang Chen, Ni Xie, Guihua Wang, Wenmin Yao, Xihui Jiang and Jingjing Long 

the sliding soil mass into several vertical slices so that the soil 
can adapt to the corresponding curvature of the log-spiral. 
Based on the rotational failure mechanism, this method trans‐
forms the sliding movement into translational movement and 
considers the energy dissipation between the vertical slices. In 
addition, Chen et al. (2017) presented a polar slice method that 
divides the sliding soil mass into several small blocks with one 
polar point in the rotational failure mechanism and the energy 
dissipation between the adjacent blocks is considered to assess 
the slope stability. The results were compared with those of 
Chen’s method and the vertical slice method.

Multi-layer slopes, such as clay residue receiving fields 
slopes, have been widely found in the world (Zhang et al., 
2023; Zhong et al., 2023; Farshidfar et al., 2020; Guo and 
Griffiths, 2020; Li and Jiang, 2020; Wang and Huang, 2020; 
Qin and Chian, 2017). This type of artificial slope is formed by 
layered filling and then compaction, in which the soil proper‐
ties, for instance, weight and the soil shear strength index, ex‐
hibit obvious layered characteristics. If the vertical and polar 
slice methods are used to divide a sliding soil mass, the inner 
sliding soil mass is greatly affected by changes in the soil prop‐
erties, which complicates the calculations. To improve this, the 
horizontal slice method was presented to assess the slope stabil‐
ity (Lo and Xu, 1992), and further studies have been conducted 
by other researchers (Zhou et al., 2020; Kumar and Samui, 
2006; Shahgholi et al., 2001). However, in the upper-bound 
limit analysis, for multi-layer slopes where the sliding surfaces 
are mostly assumed to pass through the slope toe without con‐
sidering the condition of passing below the slope toe. There‐
fore, a generalized horizontal slice method (GHSM) is pro‐
posed to evaluate the slope stability considering the energy dis‐
sipation between the adjacent horizontal slices in this paper; 
this method determines the ultimate failure mode by compar‐
ing the stability coefficients of sliding surface passing through 
the slope toe with that below it. Compared to the original meth‐
od (Chen’s method), the GHSM can acquire more precise re‐
sults, which takes into account the energy dissipation in the in‐
ner sliding soil mass. Moreover, the GHSM, LEM and numeri‐
cal simulation method (NSM) are applied to analyze the stabili‐
ty of a multi-layer slope and explore the effect of slope angle 
on the stability and failure mode.

1 PRINCIPLES OF THE GHSM 
1.1 Upper-Bound Limit Analysis　

In this study, the upper-bound limit analysis is adopted to 
assess the slope stability which shows that the external rate of 
work is less than or equal to the rate of internal energy dissipa‐
tion (Shield and Drucker, 1953). The internal energy dissipa‐
tion includes the energy dissipation of the inner sliding soil 
mass and the sliding surface. To calculate the energy dissipa‐
tion of the inner sliding soil mass, it is necessary to assume 
that the soil mass obeys the law of associated flow to obtain 
the velocity fields between the adjacent horizontal slices. In the 
GHSM, the sliding surface is composed of a series of log-spi‐
rals with one pole, so its energy dissipation can be obtained by 
summing the integrals of partitioned log-spirals. In addition, 
the external work consists of the work of the soil weight and 
seismic force. The rates of the work of the soil weight and seis‐

mic force can both be calculated by summing the integrals of 
the divided sliding soil mass. Therefore, based on the upper-
bound limit analysis, the slope stability coefficient can be ob‐
tained by the equation between the external rate of work and 
the internal rate of energy dissipation.

1.2 Multi-Layer Slope Model Based on GHSM　
When clay residue is transported to a clay residue receiv‐

ing field to be filled, it usually needs to be horizontally com‐
pacted by rollers, thus resulting in a multi-layer slope. As 
shown in Figure 1a, a typical clay residue receiving field slope 
in Shenzhen, has distinct structural layering characteristics, 
and the physical and mechanical properties of each soil layer 
are distinctly different. Based on the practical slope model in 
Figure 1a, a simplified multi-layer slope model is generated as 
shown in Figure 1b. The GHSM divides the sliding soil mass 
into several horizontal slices and the potential sliding surface is 
composed of a series of log-spirals with one pole (O). The 
points on the potential sliding surface are represented by polar 
radius (r) and angle (θ) with respect to polar point O. Addition‐
ally, not only the energy dissipation of the sliding surface is cal‐
culated, but also the energy dissipation of the inner sliding soil 
mass is considered.

1.3 Coordinate Calculations　
As shown in Figure 2, the rectangular coordinate system 

is established with point A, which emerges from the ground as 
the origin. The slope height is H and the surface is represented 
as a series of 

- -- -- --- -- --
Ci - 1Ci (i = 1,2,...,n ). The sliding soil mass above 

the ground is divided into N horizontal layers and layer i with 
height hi and strength parameters (ci, φi, γi) (i = 1,2,…,n), which 
under the ground is treated as one whole layer with strength pa‐
rameters (c0, φ0, γ0). The potential sliding surface is composed 

of a series of log-spirals Bi - 1 Bi ( )i = 1,2,...,n   and log-spiral 

AB0 with polar point O(xO, yO). To facilitate the solution, the 

horizontal blocks are divided and region BnBn–1Cn–1Cn is taken 
as an example. Region BnBn–1Cn–1Cn is divided into triangle Bn‐

Bn–1Cn–1, triangle BnCn–1Cn, and region BnBn–1, which are obtained 
by region OBnBn–1 minus triangle OBnBn–1. Region AB0 is calcu‐
lated by region OAB0 minus triangle OAB0. The points E, Fn, 
Gn, and Hn are the centers of gravity of the triangles OAB0, Bn‐

Bn–1Cn–1, BnCn–1Cn, and OBnBn–1, and their coordinates can be ac‐
quired by the coordinates of A, Bn, Cn, and O.

Suppose that the polar angles θ0 and θ1 of the points B0 
and B1, the distance L between point A and point C0, which is 
the toe of the slope, are known.

Using the variable optimization method of Chen et al. 
(2017), all the other coordinates of the blocks are obtained.

The relationship between the vertical coordinates y0
B and 

y1
B of points B0 and B1 in the first horizontal block is expressed 

by Eq. (1)

y1
B - y0

B = r0 sin θ0 - r1 sin θ1 = h1 (1)

Based on the log-spiral equation, the polar radii r0 and r1 
of the points B0 and B1 satisfy Eq. (2)

r0 = r1 exp[ tan φ1(θ0 - θ1 ) ] (2)
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Through the combination of Eqs. (1) and (2), the polar ra‐
dii r0 and r1 are calculated.

Similarly, the polar angles θi–1, θi and polar radii ri–1, ri of 
the points Bi–1, Bi in the horizontal block i satisfy Eq. (3)

ü

ý

þ

ï
ïï
ï

ï
ïï
ï

ri - 1 = ri exp[ ]tan φ i( )θ i - 1 - θ i

ri - 1 sin θ i - 1 - hi = ri sin θ i

( )i = 2,3,...,n

(3)

Through the division of both sides of Eq. (3) and the elim‐
ination of the variable ri, Eq. (4) can be obtained

ri - 1

ri - 1 sin θ i - 1 - hi

=
exp[ ]tanφ i( )θ i - 1 - θ i

sin θ i

 (i = 2,3,...,n)(4)

According to Eq. (4), the polar angle θi can be obtained 
when the polar angle θi–1 and the polar radius ri–1 are known.

The polar radius ri is determined by Eq. (5)

ri = ri - 1 exp[ tan φ i(θ i - θ i - 1) ] (i = 2,3,...,n) (5)

Through the combination of Eqs. (4) and (5) and the per‐
formance of an iterative calculation, the θi and ri of point Bi (i = 
2,3,…,n) are calculated.

The vertical coordinates yA and y0
B of points A and B0 are 

equal, and the polar radii rA and r0 of points A and B0 satisfy the 
log-spiral equation. The relationship between points A and B0 is 
expressed as follows

ü
ý
þ

ïï
ïï

rA sin θA = r0 sin θ0

rA = r0 exp[ ]tan φ0( )θA - θ0

(6)

The polar radius rA and polar angle θA of point A are calcu‐
lated by Eq. (6).

The coordinates of polar point O can be determined by 
Eq. (7)

}x0 = xA - rA cos θA

y0 = yA + rA sin θA

(7)

where xA = 0 and yA = 0.

Figure 1. Practical and simplified slope models; (a) a typical clay residue receiving field slope in Shenzhen, China; (b) a simplified multi-layer slope model.

Figure 2. The schematic diagram of the principle of the GHSM.
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The coordinates of Bi are obtained by Eq. (8)

ü

ý

þ

ï
ïï
ï

ï
ïï
ï

xi
B = x0 + ri cos θ i ( )i = 0,...,n

y0
B = 0 ( )i = 0

yi
B =∑1

i hi ( )i = 1,...,n

(8)

The horizontal and vertical coordinates of Ci with differ‐
ent slope angle β are calculated using Eq. (9)

ü

ý

þ

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï

ï
ïï
ï
ï

ï

ï

ï

x0
C = L ( )i = 0

y0
C = 0 ( )i = 0

xi
C = L +

∑1

i hi

tan β ( )β ≠ 90° ( )i = 1,...,n

xi
C = L ( )β = 90° ( )i = 1,...,n

yi
C =∑1

i hi ( )i = 1,...,n

(9)

1.4 Energy Equation　
The external rate of work and the internal rate of energy 

dissipation would be calculated, the expressions of various 
powers are shown in Table 1.

The values of the cohesion ci
int and the internal friction an‐

gle φ i
intof the interface are assumed to be the smaller values out 

of the values of the two corresponding blocks.
The velocity Vn of block BnBn–1Cn–1Cn is determined by 

the velocity of the intersection point between the angle bisector 
of ∠Bn–1OBn and the log-spiral. Therefore, the value of the ve‐
locity can be obtained as Eq. (10)

Vn = rn exp
é
ë
êêêêtan φn( θn + θn - 1

2
- θn )ùûúúúúω (10)

where ω is the angle velocity to the polar point O.
In terms of the interfaces above the ground, the relation‐

ship of the velocity vectors is shown in Figure 3.
The values of the angle of the velocity vector triangle 

above the ground are expressed by Eq. (11)

ü

ý

þ

ï

ï
ïïï
ï

ï

ï

ï

ï
ïï
ï

ï

X =
π
2

+
θn + θn - 1

2
- φn - 1

int

Y =
π
2
-
θn - 1 + θn - 2

2
+ φn - 1

int

Z =
θn - 2 - θn

2

(11)

Table 1 The expressions of various powers (modified from Xia and Chen, 2018) 

Powers

PW

Pk

PS

PI

Above the ground

P i
W = P W

ΔBi - 1 BiCi - 1
+ P W

ΔBiCi - 1Ci
+ P W

Re gionOBi - 1 Bi
- P W

ΔOBi - 1 Bi

P W
ΔBi - 1 BiCi - 1

= 0.5γihi( xi - 1
B - xi - 1

C ) ( xi
F - x0 )ω

P W
ΔBiCi - 1Ci

= 0.5γihi( xi
B - xi

C ) ( xi
G - x0 )ω

P W
ΔOBi - 1 Bi

= 0.5γiri - 1ri sin (θi - 1 - θi ) ( xHi
- x0 )ω

P W
Re gionOBi - 1 Bi

= γir
3
i f1ω

(i = 1,2,…,n)

P i
k = P k

ΔBi - 1 BiCi - 1
+ P k

ΔBiCi - 1Ci
+ P k

Re gionOBi - 1 Bi
- P k

ΔOBi - 1 Bi

P k
ΔBi - 1 BiCi - 1

= 0.5γihi( xi - 1
B - xi - 1

C ) ( y0 - yi
F )ωkh

P k
ΔBiCi - 1Ci

= 0.5γihi( xi
B - xi

C ) ( y0 - yi
G )ωkh

P k
ΔOBi - 1 Bi

= 0.5γiri - 1ri sin (θi - 1 - θi ) ( y0 - yi
H )ωkh

P k
Re gionOBi - 1 Bi

= γir
3
i f3ωkh

(i = 1,2,…,n)

P i
S = cir

2
i ω

exp[ ]2tanφi( )θi - 1 - θi - 1

2tanφi

(i = 1,2,…,n)

P i
I = ( xi

B - xi
C ) ci

intV
i

int cos φi
int

(i = 1,2,…,n – 1)

Under the ground

P 0
W = P W

Re gionOAB0
- P W

ΔOAB0

P W
ΔOAB0

= 0.5γ0rArB sin (θA - θ0 ) ( xE - x0 )ω
P W

Re gionOAB0
= γ0r 3

A f2ω

P 0
k = P k

Re gionOAB0
- P k

ΔOAB0

P k
ΔOAB0

= 0.5γ0rArB sin (θA - θ0 ) ( y0 - yE )ωkh

P k
Re gionOAB0

= γ0r 3
A f4ωkh

P 0
S = c0r 2

Aω
exp[ ]2tanφ0( )θA - θ0 - 1

2tanφ0

P 0
I = ( x0

B - x0
C ) c0

intV
0

int cos φ0
int

PW. the power of soil weight; Pk. the power of seismic force; PS. the dissipation power of the sliding surface; PI. the dissipation power of interfaces; 

kh. the yield acceleration factor where only the horizontal component of the seismic coefficient is considered.

f1 =
( )3tanφi cos θi - 1 + sin θi - 1 exp[ ]3( )θi - 1 - θi tan φi - 3tanφi cos θi - sin θi

3( )1 + 9tan 2φi

; 

f2 =
( )3tanφ0 cos θA + sin θA exp[ ]3( )θA - θ0 tan φ0 - 3tanφ0 cos θ0 - sin θ0

3( )1 + 9tan 2φ0

;

f3 =
( )3tanφi sin θi - 1 - cos θi - 1 exp[ ]3( )θi - 1 - θi tan φi - 3tanφi sin θi + cos θi

3( )1 + 9tan 2φi

;

f4 =
( )3tanφ0 sin θA - cos θA exp[ ]3( )θA - θ0 tan φ0 - 3tanφ0 sin θ0 + cos θi

3( )1 + 9tan 2φ0

.
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Based on the sine rules of triangles, the value of the rela‐
tive velocity V n - 1

int of the interface can be calculated by Eq. (12)

V n - 1
int

sin Z
=

Vn

sin Y
(12)

The relationship of the velocity vectors for the interface at 
the ground is shown in Figure 4.

Point D is the intersection point between the angle bisec‐
tor of ∠AOB0 and the log-spiral.

The values of the angle of the velocity vector triangle at 
the ground are expressed by Eq. (13)

ü

ý

þ

ï

ï
ïïï
ï

ï

ï

ï

ï
ïï
ï

ï

X' =
π
2

+
θ1 + θ0

2
- φ0

int

Y' =
π
2
-
θ0 + θA

2
+ φ0

int

Z' =
θA - θ0

2

(13)

The value of the relative velocity V 0
int of the interface B0C0 

can be calculated by Eq. (14)

V 0
int

sin Z'
=

V1

sin Y'
(14)

With the principle of energy conservation, in which the en‐
ergy of the external force is equal to the energy dissipation, the 
energy equation of the upper-bound limit analysis can be ob‐
tained

PW + Pk = PS + PI (15)

From the above equations, the energy equation of the up‐
per-bound limit analysis of the sliding surface passing below 
the toe of the slope (mode B) can be established. When L = 0 
in mode B, the energy equation of the upper-bound limit analy‐
sis of the sliding surface passing through the toe of the slope 
(mode A) is obtained.

On the basis of Eq. (15), the stability coefficients (includ‐
ing static safety factor Fs or yield acceleration factor kh) can be 
minimized with respect to the three independent variables θ0, θ1 
and L. In this paper, instability of slopes would either from re‐
ducing strength parameters or from seismic forces, but not 

Figure 3. The relationship of velocity vectors above the ground; (a) schematic diagram of relative velocity and block velocity; (b) the triangle relationship with 

the three velocity vectors.

Figure 4. The relationship of velocity vectors at the ground; (a) schematic diagram of relative velocity and block velocity; (b) the triangle relationship with the 

three velocity vectors.
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both, i.e., Fs and kh are solved separately. The static safety fac‐
tor Fs is defined using the shear strength reduction (SSR) tech‐
nique, as shown in Eq. (16). The reduced shear strength param‐
eters ciʹ and φiʹ can be calculated below in Eq. (16).

Fs =
ci

ci '
=

tan ( )φi

tan ( )φi '
(16)

However, the mapping relationship between the stability 
coefficients and the independent variables is implicit, and the 
expressions are complex and cannot be solved directly by the 
analytical method. Therefore, a harmony search algorithm 
(Geem and Kim, 2001), which is a newly introduced heuristic 
global optimization algorithm, can be used to determine the sta‐
bility coefficients (including Fs and kh) and has been successful‐
ly used to address the optimization problem (Ma et al., 2022; 
Wang et al., 2013; Cheng et al., 2011).

The solution of the stability coefficients is implemented 
as a nonlinear constraint optimization problem, which are pre‐
sented as follows

Minimize: Fs or kh

Subject to: 

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

PW + Pk = PS + PI

0 < θ i < π (i = 0,...,n )

θ i > θ i - 1 (i = 1,...,n )

0 ≤ L ≤ 3H/ tan β

xi
B ≥ xi

C (i = 0,...,n )

(17)

The problem is solved by independent programming of 
MATLAB, and the flow chart is shown in Figure 5.

By trial and error, the stability coefficients can be ob‐
tained when the value of L is between zero and three times the 

slope width, namely, 0 ≤ L ≤ 3H/tanβ. When β = 90°, the range 
of the slope width L is 0 ≤ L ≤ 3H/tan(75°).

2 CASE STUDIES 
2.1 Case 1: Homogeneous Slope　

In this section, the parameters of the slope are specified as 
follows: the slope height H = 7 m, slope angle β = 60° , unit 
weight γ = 18 kN/m3, cohesion c = 12 kPa, and internal friction‐
al angle φ = 25°. The results (Fs or kh) of the GHSM, polar slice 
method, vertical slice method, and Chen’s method are marked 
with subscripts of 1, 2, 3, and 4, respectively, in this section.

The number of slices N in the GHSM directly affects the 
stability coefficient. The greater N is, the closer the stability co‐
efficient is to the real value, but the larger the computational 
burden. Therefore, on the basis of ensuring the accuracy of the 
stability coefficients, a suitable value of N should be selected 
to reduce the number of calculations. Figure 6 shows the 
curves of the static safety factor Fs1 and yield acceleration fac‐
tor kh1 varying with N ranging from 2 to 12 in the two modes.

Both Figures 6a and 6b show that as N increases, the sta‐
bility coefficients (including Fs1 and kh1) first present an upward 
trend and finally reach the steady state. Figure 6 shows that 
when N is not less than 8, the stability coefficients under 
modes A and B can reach stable values. In addition, the results 
of the static safety factor Fs1 or the yield acceleration factor kh1 
in Figure 6a are both smaller than those in Figure 6b, so mode 
A passing through the toe of the slope is the ultimate failure 
mode in this case.

Although the generalized horizontal, polar and vertical 
slice methods all use the slice method to divide the sliding soil 
mass that considers the energy dissipation between adjacent 

Figure 5. Flow chart for solving the results of stability coefficient.
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slices, the type of slice method used is different, so it is neces‐
sary to compare and analyze the stability coefficient obtained 
by the three different methods. The stability coefficients (in‐
cluding Fs and kh) of the three methods varying with N from 2 
to 12 are shown in Figure 7. It shows that as N increases, first, 
the stability coefficients (including Fs1 and kh1, Fs3 and kh3) of 
the generalized horizontal and vertical slice methods trend up‐
wards, while the stability coefficients (including Fs2 and kh2) of 
the polar slice methods trend downwards, which is explained 
by Chen et al. (2017). As N increases to a certain number, all 
the three slice methods all reach the steady state, and the stabil‐
ity coefficients finally reach stable values. The stable values of 
the GHSM are similar to those of the polar and vertical meth‐
ods. Both Figures 7a and 7b show that when N = 8, the stabili‐
ty coefficients of the GHSM are stable, while this occurs at N = 
10 for the polar and vertical slice methods.

According to the aforementioned parameters of the slope, 
the stability coefficients of the GHSM (N = 8), polar slice 
method (N = 10) and Chen’s method are listed in Table 2. The 
stability coefficients of the GHSM are close to those of the po‐
lar slice method but greater than those of Chen’s method, ne‐
glecting the energy dissipation in the inner sliding soil mass. 
Comparing the stability coefficients in the two modes, the ulti‐

mate sliding surfaces are determined by mode A.
Moreover, Figure 8 shows the ultimate sliding surfaces of 

the three methods. Figure 8a shows the ultimate sliding surfac‐
es by SSR, and the trailing edge of the ultimate sliding surface 
of the GHSM is near that of the polar slice method. Figure 8b 
shows the ultimate sliding surfaces induced by yield accelera‐
tions and presents the same phenomenon as Figure 8a.

2.2 Case 2: Multi-Layer Slope　
Clay residue slopes are usually formed by layered filling 

and then compaction, so they have strongly layering properties. 
In addition, the GHSM is more suitable for analyzing the stabili‐
ty of multi-layer slopes because it is not affected by the variabili‐
ty in the soil properties, and the soil parameters of each block 
can be obtained directly, which facilitates the calculations.

A multi-layer slope located at a receiving field in Shen‐
zhen, China, is used as an example to analyze slope stability and 
failure mode (derived from Wang, 2018). As shown in Figure 9, 
the slope height H = 10 m and contains 5 soil layers above the 
ground, in which the deposits thickness of each layer is 2 m. 
Layers 1–5 consist of clay residue generated from urban 
construction and layer 6 indicates the original ground consisting 
of silty clay. The values of the density ρ, cohesion c and internal 

Figure 6. Influence of the number of slices N on Fs1 and kh1 in two modes of rotational failure mechanisms; (a) mode A, passing through the toe of the slope; 

(b) mode B, passing below the toe of the slope.

Figure 7. Comparison between generalized horizontal, polar and vertical slice methods (Chen et al., 2017); (a) static safety factor Fs; (b) yield acceleration fac‐

tor kh.
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friction angle φ of the different layers can be seen in Table 3.
Based upon the above results, the number of slices N ≥ 8 

can ensure that value of the stability coefficient is stable, so 
N = 10 above the ground is selected for the GHSM calculations 
below; namely, the height of each block is 1 m.

Some researchers (Zhou et al., 2020; Kumar and Samui, 
2006) adopt upper-bound limit analysis to study the stability of 
multi-layer slopes but focus only on the failure mode of pass‐
ing through the slope toe (mode A). In this section, the GHSM 
is used with the soil parameters in Table 3. In each case, both 
failure modes A and B are calculated to determine the ultimate 
failure mode. The results of the safety factor are shown by the 
black line in Figure 10, and the ultimate sliding surface is pre‐
sented by the yellow line in Figure 11. Then, the LEM and 
NSM are used to verify the results under static conditions of 
GHSM. Among the LEM, the Morgenstern-Price method is ad‐
opted to evaluate the stability of slopes, which is more rigorous 
than other LEM because it considers both the balance of forces 
and moments. In the NSM, the commercial software FLAC3D is 
used to obtain the safety factor and potential sliding surface. In 
the FLAC3D, the safety factor and corresponding sliding surface 
by the SSR technique are related only to the cohesion and inter‐

nal frictional angle, while other parameters, such as the bulk 
modulus and shear modulus, just affect the deformation rather 
than the safety factor. The aforementioned parameters in Table 
3 are considered, and other parameters that do not affect the 
strength reduction technique are determined with values as fol‐
lows: bulk modulus K = 1 000 MPa and shear modulus G = 
300 MPa. The results of the safety factor of LEM and NSM are 
shown by the blue and red line in Figure 10, and the potential 
sliding surfaces of that are presented by the blue and magenta 
line in Figure 11, respectively.

Figure 10 indicates that the results of the safety factor un‐
der the static conditions of GHSM, LEM and NSM are very 
close, and the margin of error is within 5%. This proves the ap‐
plicability of GHSM in the multi-layer slopes. Figure 11 shows 
that the ultimate sliding surfaces of the GHSM, LEM and 
NSM have the same failure mode in each case. In addition, Fig‐
ures 11a and 11b show that both methods obtain the ultimate 
failure mode of passing below the toe of the slope (mode B) 

Table 3 The soil parameters of the multi-layer slope (from Wang, 2018) 

Layer

1

2

3

4

5

6

ρ (g/cm3)

1.87

1.89

1.92

1.98

2.01

2.15

c (kPa)

13.12

14.29

14.41

15.34

15.34

16.44

φ (°)

19.10

19.37

19.69

19.85

19.77

20.49

Figure 10. Static safety factor Fs with different slope angle β.

Table 2 Calculated results of generalized horizontal slice, polar slice, and 

Chen’s methods (Chen et al., 2017)

Failure 

mode

Mode A

Mode B

GHSM (N = 8)

Fs1

1.212 0

1.629 0

kh1

0.160 7

0.653 4

Polar slice method 

(N = 10)

Fs2

1.203 0

1.566 8

kh2

0.145 0

0.373 8

Chen’s method

Fs4

1.108 0

1.402 4

kh4

0.084 4

0.260 5

Mode A. passing through the toe of slope; mode B. passing below the 
toe of slope.

Figure 8. Ultimate sliding surfaces by GHSM, polar slice method and 

Chen’s method (Chen et al., 2017); (a) static condition; (b) seismic condition.

Figure 9. Model of the multi-layer slope (derived from Wang, 2018).
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Figure 11. Sliding surface with different slope angle β; (a) β = 10°; (b) β = 20°; (c) β = 30°; (d) β = 40°; (e) β = 50°.
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when the slope angle is not more than 20° . On the contrary, 
Figures 11c–11e show the ultimate failure modes are the slid‐
ing surface passing through the toe of slope (mode A) when 
slope angle is not less than 30°.

To further analyze the effect of slope angle on the failure 
mode of the multi-layer slope, the slope angle is divided by 
spacing for 1° from 21° to 29°, which can determine the criti‐
cal slope angle to distinguish mode A and mode B in this exam‐
ple. The stability of the multi-layer slope with the slope angle 
from 21° to 29° is solved by GHSM, LEM and NSM. The slid‐
ing surfaces of the slope angles of 28° and 29° are shown in 
Figure 12. The ultimate failure mode is mode B when the slope 
angle is 28° and it is mode A when the slope angle is 29°, so 
the critical slope angle is determined to be 28° in this example. 
It illustrates that the determination of the ultimate sliding sur‐
face requires comparison of multiple failure modes, not only 
passing through the toe of slope (mode A).

3 DISCUSSION 
On the basis of the GHSM, this paper derives a formula to 

assess the slope stability analysis considering the energy dissi‐
pation between the adjacent horizontal slices. The values of the 
soil parameters between adjacent horizontal slices are assumed 
to be the smaller values of the upper and lower layers. If there 
are no testing values, this assumption is feasible (Chen et al., 
2017; Michalowski, 1995), but it is better to use tests to mea‐
sure the values.

Additionally, this study carries out upper-bound limit anal‐
ysis on homogeneous and multi-layer slopes and obtains that 
the sliding surfaces of the slope pass below the toe of the slope 
when the slope angle is small. This shows that when the slope 
angle is small, it is necessary to focus on the failure mode 
(mode B). This agrees with previous research conclusions (Ku‐
mar and Samui, 2006).

For the layered slope, based on the limiting equilibrium 
method, some scholars (Deng et al., 2019; Qiu and Wang, 

2018; Deng and Li, 2012) have also used different methods to 
divide the sliding soil mass, including horizontal slice method, 
oblique slice method and the combination of several methods 
et al. Especially, Deng et al. (2012) and Qiu and Wang (2018) 
have adopted a combination of horizontal slice method and 
oblique slice method to analyze the slope stability when the 
sliding surface passing below the slope toe. These methods are 
worth applying to subsequent study of limit analysis.

This article considers the condition of the sliding surface 
passing below the toe of the slope, but this assumes that the 
soil layer under the ground is homogeneous and does not con‐
sider the conditions of multiple soil layers underground. Addi‐
tionally, although this paper compares the sliding surface pass‐
ing through the toe of the slope (mode A) with that below 
(mode B), the slope may also exhibit local instability failure; 
that is, the sliding surface passes the face of the slope which is 
worth studying. Moreover, the effects of other factors (e. g., 
groundwater and loading conditions) on slope stability are not 
the focus of this paper. Therefore, these factors will be compre‐
hensively studied in more detail in the future.

4 CONCLUSIONS 
Rapid urbanization generates a large amount of clay resi‐

due that is deposited by layers in receiving fields, forming 
multi-layer slopes. To further analyze the stability and failure 
mode of the multi-layer slope, a GHSM based on the upper-
bound limit analysis is presented in this paper, which divides 
the sliding soil mass into several horizontal slices and its ener‐
gy equation is derived by considering the energy dissipation be‐
tween adjacent horizontal slices. In the GHSM, the stability co‐
efficient and failure mode are determined by comparing the 
sliding surface passing through the toe of the slope (mode A) 
with that below it (mode B). Based on the harmony search al‐
gorithm, the stability coefficient and failure mode are solved 
by independent programming of MATLAB. Main conclusions 
are summarized as follows.

Figure 12. Sliding surface with different slope angle β; (a) β = 28°, (b) β = 29°.
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(1) The influence of the number of slices N on the results 
of stability coefficients in the GHSM is studied. When N is not 
less than 8, the stability coefficients of modes A and B can 
reach stable values.

(2) Compared to traditional Chen’s method, the GHSM 
can acquire more accurate results, which takes into account the 
energy dissipation in the inner sliding soil mass.

(3) The GHSM is applied to analyze the stability of a 
multi-layer slope and the results are very close to the LEM and 
NSM. The ultimate failure modes are shown to be mode B 
when the slope angle is not more than 28°. It illustrates that the 
determination of the ultimate sliding surface requires compari‐
son of multiple failure modes, not only mode A.
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