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ABSTRACT:The eruption of large igneous provinces usually has majorgeodynamic influences on overrid‐
ing plates. Seamount chains indicate that the drifting direction of the Pacific Plate changed by ~80° in the
Early Cretaceous when the Ontong Java Plateau formed.This, however, is not fully consistent with the mag‐
netic anomalies. Here we show that there is an angle of ~25° between the magnetic anomaly lines M0 and 34 of
both the Japanese and the Hawaiian lineations, suggesting that the orientations of both spreading ridges
changed by roughly the same angle towards the same direction. The configurations of the Shatsky Rise, the
Papanin Ridge and the Osbourn Trough suggest that the eruption of the Ontong Java plume head uplifted
the southeastern corner of the Pacific Plate, and pushed its east part northward by ~700 km within 2 Ma.
Meanwhile, the west part of the Pacific Plate was subducting southwestward underneath the easternAsian
Continent. These two forces together rotated the Pacific Plate anticlockwisely by ca 50°. Consequently, the
drifting direction of the Pacific Plate also changed from southwestward to northwestward, which plausibly
explains the ca 80° bending of the Shatsky Rise and the Papanin Ridge.The ridge between the Pacific and the
Izanagi/Kula plates was pointed towards the ~300° orientation, whereas the Pacific Plate was subducting
towards the ~250° orientation before ~125 Ma, and towards ~280° afterward.
KEY WORDS: Pacific Plate, Ontong Java Plateau, rotation, magnetic anomalies, Shatsky Rise, geody‐
namics.

0 INTRODUCTION
The eruption of a large igneous province (LIP) is usually

very destructive. It uplifts and even breaks the overriding plate,
changes the drifting direction of associated plates, and may have
significant environmental impact that can cause mass extinc‐
tions (Sun, 2019; Courtillot and Olson, 2007; Sun et al., 2007;
Campbell, 2005; Xu et al., 2004; Griffiths and Campbell, 1991).
The Ontong Java Plateau is one of the largest LIPs so far recog‐
nized (Taylor, 2006; Coffin and Eldholm, 1993). Previous stud‐
ies on seamount chains proposed that its eruption changed the
drifting direction of the Pacific Plate by ~80° from southwest‐
ward to northwestward (Sun et al., 2007), which is best shown
by the distributions of the Shatsky and the Ojin rises and the
bending of the Papanin Ridge (Fig. 1). Unfortunately, the de‐
tailed process of such a major change is not fully compatible
with the magnetic anomalies (Fig. 2).

1 THE ROTATION OF THE PACIFIC PLATE
The Ontong Java LIP erupted at ~119–125 Ma (Taylor,

2006; Tejada et al., 2002) near M0 (~125.93 Ma), which was fol‐
lowed by the Cretaceous Superchron (125.93–83.64 Ma) (Gee
and Kent, 2007) that has no geomagnetic reversal for ~42 Ma.
Interestingly, the magnetic anomaly lines, M0 (125.93 Ma) and
34 (83.64 Ma) of the Hawaian Lineation, are not parallel to each
other, but with an angle of ~25°, such that the Cretaceous Super‐
chron crust forms a big triangle on the northwest Pacific Plate.
The width in the north end of this triangle is more than 2 000
km. Remarkably, the angle between M0 and 34 of the Japanese
Lineations is also ~25° (Fig. 2). Both angles are much smaller
than the bending angle of seamount chains (~80°) (Fig. 1).

Magnetic anomaly lines M0 and 34 represent the orienta‐
tions of the spreading ridges before and after the Cretaceous Su‐
perchron, respectively. The angle between M0 and 34 indicates
that the orientations of the two spreading ridges rotated during
this period. In general, the orientation of a spreading ridge is de‐
fined mainly by the relative movements of the paired plates.
Plate rotation is the most efficient way to change the orientation
of a spreading ridge.

The Japanese Lineation records the spreading between the
Pacific and the Izanagi/Kula plates, whereas the Hawaiian Lin‐
eation represents the spreading between the Pacific and the
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Farallon plates. Note, the angles between M0 and 34 are rough‐
ly the same for both the Hawaiian and the Japanese lineations,
~25° (Fig. 2), suggesting that either the Pacific Plate rotated an‐
ticlockwise by ~50°, while the other two did not change, or the
Pacific Plate remained stationary whilst the other two plates
both rotated clockwisely by ~50° (Fig. 3).

It is not easy to rotate and/or change the drifting direction
of a big plate, but it is far more difficult for two plates to rotate
and coordinate so well that the spreading ridges changed exact‐
ly the same degrees at the same time. Therefore, we propose
that the Pacific Plate rotated anticlockwise by ~50° relative to
the Kula and the Farallon plates, whereas the other two plates
did not rotate much.

This rotation occurred roughly simultaneously with the On‐
tong Java LIP. Previous studies suggested that the eruption of
the Ontong Java LIP changed the drifting direction of the Pacific
Plate by ~80° (Sun et al., 2007). The magnetic anomalies sug‐
gest that the eruption of the Ontong Java LIP was also responsi‐
ble to for the anticlockwise rotation of the Pacific Plate. It is like‐
ly that the eruption of the Ontong Java plume head has resulted
in rapid rotation and northwestward tilting of the Pacific Plate,
which pushed the Pacific Plate northwestward. These changes
are best recorded by the Shatsky Rise and the Papanin Ridge.

In fact, it is difficult for the Ontong Java plume head to in‐
fluence only the Pacific Plate, leaving other plates untouched. In
contrast to the Kula and the Farallon plates, the Izanagi Plate

was connected directly to the Pacific Plate along the Cretaceous
Superchron Triangle in the northwest corner of the Pacific Plate
(Fig. 2). The fast rotation of the Pacific Plate may have changed
the drifting of the Izanagi Plate. The problem is that the Hawai‐
ian Lineation is located all on the East Pacific Plate. No magnet‐
ic anomalies after the Cretaceous Superchron have been identi‐
fied in the northwest corner of the Pacific Plate.

2 DISCUSSION
Geochemical studies show that the Meiji and Detroit sea‐

mounts erupted on the fossil ridge between the Pacific and the
Izanagi plates, followed by plume-ridge interactions (Sun et
al., 2021; Regelous et al., 2003). The northward migration of
the fossil ridge, carrying the Hawaiian-Emperor plume with it,
formed the famous Emperor seamount chain (Sun et al., 2021).
Therefore, the Meiji and Detroit seamounts marked the posi‐
tion of the ridge (Sun et al., 2021). Note, the fossil ridge is not
parallel to the magnetic anomaly 31 of the Hawaiian Lineation.
Instead, the angle between M0 and the ridge is ~60° (Fig. 2).
This is likely because of the ridge jump associated with the ro‐
tation of the Pacific Plate (Norton et al., 2007; Heller et al.,
1996). After the ridge jump, the Izanagi and Kula plates were
separated into two plates.

Magnetic anomalies suggest that the Shatsky Rise and the
Papanin Ridge were erupted near a triple-junction at ~144–126
Ma (Sager et al., 2019; Nakanishi et al., 2015) (Fig. 1). The

Figure 1. Magnetic anomalies and seamount ages around the Shatsky Rise (Tejada et al., 2016; Sager et al., 2005). The age progression suggests that the Pacif‐

ic Plate was drifting southwestward. The Shatsky Rise is connected to the Papanian Ridge and the Ojin Rise. Significantly, the Papanin Ridge is curved in the

Early Cretaceous, and then lost connections to any other seaount chains. The age of the Papanian Ridge is not well constrained. However, based on the magnet‐

ic anomalies, we estimated that the bending occurred at ~125 Ma, as a result of the rotation of the Pacific Plate induced by the eruption of the Ontong Java LIP

(Sun et al., 2007; Taylor, 2006; Tejada et al., 2002). The ages of the Ojin range from 123.7–120.7 Ma (Sano et al., 2020). The base map is from GeoMapAPP.
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Papanin Ridge is bent at its north end, followed by a magmatic
gap. The end of the Papanin Ridge is more than 500 km away
from and, ~15 Ma older than the Hess Plateau. One explana‐

tion is that the Papanin Ridge was connected to the Hess Pla‐
teau (Tejada et al., 2016). However, the drifting rate of the
Pacific Plate was >10 cm/yr, which would corresponds to a dis‐
tance of >1 500 km in 15 Ma. This means that the distance
between the Papanin Ridge and the Hess Plateau is too short.
Alternatively, the rotation of the Pacific Plate resulted in a
ridge jump. Consequently, the younger seamounts of the Papa‐
nin Ridge erupted on the Farallon Plate, which was subducted
in the Late Cretaceous under the North American Continent
(Liu et al., 2010). We propose that the Papanin Ridge may be
connected to the Ojin Rise before the ridge jump.

Interestingly, the bending of the Papanin Ridge is curved,
which is consistent with an anticlockwise rotation with the axle in
the south. Previous studies estimated that the Papanin Ridge
formed between 128 and 121 Ma (Tejada et al., 2016), with large
errors. The Papanian Ridge erupted near a triple junction (Sager
et al., 2019; Nakanishi et al., 2015). Therefore, the age should be
fairly close to that of the magnetic anomalies. The bending of the
Papanin Ridge is right next to the M0, suggesting that it occurred
shortly after ~125.93 Ma, which gives the lower limit of the age.

The Pacific Plate was drifting southwestward before the
eruption of the Ontong Java LIP as indicated by the Shatsky

Figure 3. The relation between an oceanic plate and the associated spreading

ridge during rotation. During the rotation of an oceanic plate, the newly

formed oceanic crust distributes evenly on both sides of the spreading ridge.

Therefore, when an oceanic plate rotates by θ degrees, the ridge should have

rotated by θ/2.

Figure 2. Magnetic anomalies in the Northwest Pacific Plate. Note, anomaly lines M0 and 34 of both the Japanese and the Hawaiian lineations are not parallel to

each other. The angles between these magnetic anomaly lines are both 25°. Previous studies attributed these angles to the rotation of the ridges between the Pacific

and the Izanagi and the Farallon plates (Seton et al., 2012). Ridges, however, do not rotate by themselves. It was the Pacific Plate that rotated. Data source:

GeoMapApp and reference (Seton et al., 2012). Rotation is also recorded in the Ellice Basin (Benyshek et al., 2019).
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Rise (Fig. 1) (Sun et al., 2007). The arrival of the LIP lifted the
southeast corner of the Pacific Plate and pushed it northwest‐
ward (Sun, 2019; Sun et al., 2007). Meanwhile, the Pacific Plate
was subducting southwestward underneath the eastern Asian
continent in the west, as indicated by the distributions of gran‐
ites and ore deposits (Yan et al., 2021; Zhang et al., 2017; Li et
al., 2014; Sun et al., 2012; Wang et al., 2011). Namely, the east
end of the Pacific Plate moved northwards, while its west end
was moved southwestwards. Consequently, the Pacific Plate ro‐
tated anticlockwise quickly, with its rotation axle in the south.

In principle, the northwestward movement of the Pacific
Plate followed roughly along the tangent line of the rotation. This
is shown by the Shatsky and the Ojin rises (Fig. 1). The Ojin Rise
is parallel to the tail of the Papanin Ridge and erupted between
124–121 Ma (Sano et al., 2020). There are clear spatial and tempo‐
ral gaps between the Skatsky and Ojin rises. Considering the de‐
collation of the Papanin Ridge and the extensions along the Os‐
bourn Trough, we propose that the Ojin Rise is the succession of
the Papanin Ridge.

Due to the eruption of the Ontong Java LIP, the eastern
end of the Pacific Plate drifted rapidly northwards. Consequent‐
ly, the tail of the Papanin Ridge was “chopped off”, and the
plume formed the Ojin Rise to the south. The distance between
the tail of the Papanin Ridge and the Ojin Rise is ~700 km.
The oldest seamount of the Ojin Rise is about 2 Ma younger
than the youngest age of the Papanin Ridge. This corresponds
to a drifting rate of ~35 cm/yr during this 2 Ma period, which
is marginally faster than previous estimation of ~10–25 cm/yr
in the Cretaceous Superchron (Maruyama et al., 1997). Note,
the Ojin Rise is fairly straight, suggesting that the Pacific Plate
was settled rapidly and drifted northwestward after ~124 Ma.

Previous geodynamic laboratory simulation experiments
showed that the eruption of a plume head may cause kilometer
scale uplift and even the breakup of the overriding plate (Camp‐
bell, 2005; Griffiths and Campbell, 1991). Such uplift has been
well illustrated in the Emeishan LIP (Xu et al., 2004). The erup‐
tion of the giant Ontong Java and the Manihiki plateaus should
also have uplifted the southeastern corner of the Pacific Plate in a
kilometer scale and lubricated the lithosphere-asthenosphere
boundary through melting, which could have resulted in the
rotation of the Pacific Plate.

During the eruption of the plume head, large amounts of
magmas could be ponded underneath the lithosphere, forming a
big magma “mushroom” (Griffiths and Campbell, 1991; Camp‐
bell and Griffiths, 1990). The total volume of the Ontong Java
and the Manihiki plateaus together is estimated to be more than
60 million cubic kilometers (Ingle and Coffin, 2004). Given that
only a small portion (within ~20%) of the plume head erupted
(Campbell, 2007), there should be about 50 million cubic kilo‐
meters of magmas underneath the Ontong Java and Manihiki
plateaus. Assuming that the magma “mushroom” associated
with the Ontong Java Plateau was ~2 000–4 000 km in diameter,
and the average thickness of the mushroom disc was ~15 to 60
km. Because basaltic magmas are ~20% lighter than mantle
peridotite, the ponding of a such a large volume of basaltic
magmas alone can result in uplifts of a large area of the Pacific
Plate (~2 000–4 000 km in diameter) by ~3–12 km. Based on plate
reconstruction, the Ontong Java Plateau was several thousand

kilometers away from the subduction zone (Seton et al., 2012).
The uplift of such a large plate at the southeast corner produces an
additional northwestward push of ~5 to 20 TN/m, which was
responsible to for the breakup and tilting of the Pacific Plate. It
would also dramatically lower the viscosity, which is favorable
for the fast rotation and the change in drifting direction of the
Pacific Plate.

As discussed above, the anticlockwise rotation of the Pacif‐
ic Plate finished within 2 Ma after the eruption of the Ontong Ja‐
va LIP. Taking the 50° anticlockwise rotation out of the 80° an‐
gle between the Skatsky and Ojin rises, the drifting direction of
the Pacific Plate actually changed clockwise by ~30° (Fig. 1).

The Japanese Lineation M0 is currently pointing towards
the 250° orientation. Considering the rotation of 50°, the ridge
between the Pacific and the Izanagi/Kula plates was pointed to‐
wards an ~300° orientation before ~125 Ma. This is roughly
the same direction as the fossil ridge between the Pacific and
the Izanagi plates indicated by the Meiji and Detroit sea‐
mounts, ~310° (Sun et al., 2021).

The orientation of the Ojin Rise is now northwestward,
directing towards ~280°, whereas the Pacific Plate has no fur‐
ther major rotation after the Cretaceous Superchron. Therefore,
the Pacific Plate has been subducting towards the northwest,
~280°, after the rotation commenced at ~125 Ma (Fig. 1). If we
take all the ~80° bending at the Shatsky Rise as a result of
translational motion as previously did (Sun et al., 2007), then
the Pacific Plate should have been subducting towards ~200°,
which is roughly parallel to the subduction zone. In this contri‐
bution, we find that 50° of the bending came from the rotation,
such that the translational change was ~30° . Therefore, the
Pacific Plate was subducting towards ~250°.

The subduction of the Pacific Plate had a major influence
on the geologic evolution of eastern China (Zhang Z Z et al.,
2021; Zhu and Sun, 2021; Zhang Z K et al., 2020a, b; Wu et al.,
2019; Zheng et al., 2018; Zhu et al., 2015;Sun et al., 2013, 2012;
Wang et al., 2011; Xu et al., 2009; Li and Li, 2007; Zhou and Li,
2000). The subduction direction suggested by this study is con‐
sistent with the spatial and temporal distribution of magmatic
rocks and different types of ore deposits in southeastern China
(Yan et al., 2021; Zhang et al., 2017; Chen et al., 2016; Wang et
al., 2011). Meanwhile, the refined orientation of the spreading
ridge between the Pacific Plate and the Izanagi Plate is consis‐
tent with the distribution of adakite and Cu deposits and other
traces of ridge subduction along the Lower Yangtze River belt
(Liu et al., 2021; Zhang S et al., 2021; Jiang et al., 2020; Xie et
al., 2020; Jiang et al., 2018; Li et al., 2012; Ling et al., 2009)
and, to a lesser extent, the Xuhuai region (Sun et al., 2019; Ling
et al., 2013) and the Shandong Peninsula as well as basalts in the
North China Craton (Wu et al., 2017; Li et al., 2014).

The rotation of the Pacific Plate should also be recorded
in the Phoenix Lineation. This is not as clear as the other two
lineations. One reason is that the Phoenix Lineation has been
severely modified/destroyed by the eruption of the Ontong Ja‐
va Plateau and plate subduction. The magnetic anomalies of
the Phoenix Lineation are not continuous to the south and the
west of the Ontong Java Plateau, with the Caroline Ridge, the
Ellice Basin, the Manihiki Plateau and the Osbourn Trough dis‐
tributed between M0 and 34 (Fig. 2). Nevertheless, there is a
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15° rotation in the Ellice Basin (Benyshek et al., 2019). Al‐
though M0–M29 can be identified to the east of the plateau, the
connection between M0 and 34 is not clear, likely because of a
ridge jump (Müller et al., 2008).

The Manihiki Plateau erupted at the same time as the On‐
tong Java Plateau (Taylor, 2006). They are now separated by
the Ellice Basin. Previous studies suggest that the Ontong Java
Plateau, including the Manihiki Plateau, was erupted near the
Phoenix spreading ridge (Taylor, 2006). In this case, it is likely
that the Phoenix Ridge was located in the Ellice Basin. Howev‐
er, the M0 of the Phoenix Lineation is not parallel with, but
points towards, the fossil spreading ridge of the Ellice Basin,
suggesting that the spreading center may have jumped to the
Osbourn Trough shortly after the plume eruption.

The Osbourn Trough is an oxbow shaped fossil spreading
center located both to the south and to the east of the Manihiki Pla‐
teau, i.e., it is kinked around the Manihiki Plateau at the southeast
corner of the Pacific Plate (Fig. 2). The spreading along the Os‐
bourn Trough started shortly after M0 and ceased at ~83.5 Ma
(Zhang and Li, 2016), implying its connection to the eruption of
the Ontong Java Plateau, which pushed the Pacific Plate north‐
wards and to a lesser extent, westward. After ~83.5 Ma, the ridge
jumped southward. The total spreading of the south limb of the
Osbourn Trough adds up to ~3 000 km, whereas that of the east
limb, ~1 000 km (Fig. 2). This is consistent with the rotation and
the superfast drifting of the Pacific Plate during this period
(Maruyama et al., 1997).

3 IMPLICATIONS TO PLATE RECONSTRUCTION
The rotation of the Pacific Plate induced by the eruption

of the Ontong Java Plateau is critical for plate reconstruction.
Almost all previous models did not consider the rotation of the
Pacific Plate. Therefore, it was proposed that the ridge between
the Pacific and the Izanagi plates was roughly parallel to the
current subduction zone as recorded by the Japanese Lineation
(Fig. 4) and was subducted parallelly to the trench at ~51 Ma
(Seton et al., 2012), which is roughly the time of the Cenozoic
subduction initiation in the West Pacific (Li et al., 2021; Maun‐
der et al., 2020; Sun et al., 2020a, b; Sutherland et al., 2020;
Reagan et al., 2019; O՚Connor et al., 2015). This geodynamic
mechanism is very difficult. It is not supported by geologic ob‐
servations in the eastern Eurasian Continent. The Cenozoic
northwestward subduction initiation of the Pacific Plate was co‐
incident with the hard collision between Australian/Indian and
Eurasian continents, strongly suggesting that the subduction
initiation resulted from the collision along the Neo- Tethys oro‐
gen (Sun et al., 2020).

Ridge subduction forms adakite and A-type granites, in‐
stead of forearc basalts and boninites associated with subduc‐
tion initiations (Ling et al., 2009; Yogodzinski et al., 1994). The
abundant Cenozoic forearc basalt and boninite widely distribut‐
ed in the West Pacific, e. g., in the Izu-Bonin arc (Li H et al.,
2021; Li H Y et al., 2019) and the lack of adakite during subduc‐
tion initiation (~ 49–52 Ma) (Li et al., 2021) do not support such
a ridge subduction (Wu and Wu, 2019; Seton et al., 2012).

More importantly, magnetic anomalies show that the Pacific
Plate was drifting essential northwards between ~100–50 Ma
(Fig. 5), i.e., the Pacific Plate was not subducting westward (Mao
et al., 2011; Sun et al., 2007). If the ridge between the Pacific and
the Izanagi plates was roughly parallel to the subduction zone,

Figure 4. Plate reconstruction using GPlates by previous authors (Seton et al., 2012). This reconstruction did not consider the rotation of the Pacific Plate. It

suggests that the ridge between the Pacific and the Izanagi plates was parallelly subducted underneath the eastern Eurasian continent. In this case, there should

be abundant adakites parallelly distributed along the subduction zone. This is not observed.
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then the drifting direction of the Pacific Plate should have been
roughly parallel to the ridge. In this case, it is not a ridge, but a
transform fault. There should not be any magnetic anomalies.

Mantle plume is the igniter of plate tectonics (Sun, 2019).
A large plume head may uplift and break the overriding plate,
resulting in new spreading and new ocean basins. It may also
rotate associated plates, which should be considered carefully
in plate reconstruction.
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