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ABSTRACT: The Permian-Triassic transition saw extreme climatic changes that severely impacted the 
terrestrial ecosystem. Fossil plants, particularly fossil woods, are sensitive to climatic changes, and 
they, therefore, are unique materials revealing extreme environmental and climatic changes on land at 
that time. Abundant conifer woods were discovered in the Lopingian (Late Permian) strata of the Sun‐
jiagou Formation in Shanxi Province, North China. The newly finding permineralized woods record 
the unique landscape of Lopingian North China. They represent a new conifer genus and species: 
Shanxiopitys zhangziensis gen. et sp. nov. Analyses of growth pattern and anatomical characteristics of 
the fossil woods indicate these trees grew under optimal growing conditions, and without seasonal 
growth cessation. However, climate signals from leaf fossils, vertebrate fossils and sedimentary evidenc‐
es indicate a strongly seasonal climate in North China during the Lopingian. Thus, it is speculated that 
these trees likely lived in the gallery forests, which were distributed along the paleo-rivers within a sea‐
sonal landscape in the central North China block during the Lopingian.
KEY WORDS: Shanxiopitys zhangziensis gen. et sp. nov., wood, ecology, geography, gallery forest, Lop‐
ingian, North China.

0 INTRODUCTION 
The combination of the Laurasia and Gondwana during 

the Late Paleozoic lead to the formation of the supercontinent 
Pangaea, and dramatically changed the global climate (Shi and 
Waterhouse, 2010; van der Voo, 1988). In the Permian, the ter‐
mination of ice-age climates and the sea-level periodicity led to 
overall climatic warming (Montañez et al., 2007). The Permian 
successions in North China Block were formally regarded as 
continuous. However, Wu et al. (2021) suggested that there is a 
nearly 20 m. y. hiatus caused by tectonic movement spanning 
the Early Kungurian to the Mid-Guadalupian in North China. 
Moreover, the increasing global warming and aridification have 
completely changed the floras in the Permian North China 
(Wang et al., 2010; Stevens et al., 2011; Wu et al., 2021). 
Plants, particularly woods, are important indicators for terrestri‐

al paleoclimate variations. In this paper, we describe the permin‐
eralized tree trunks and stems discovered in the Lopingian suc‐
cession of the Sunjiagou Formation (formerly the Shiqianfeng 
Formation) in central North China. The exceptionally preserved 
woods provide new insights into the paleoclimate and land‐
scape of the North China block during the Late Permian.

1 GEOLOGICAL SETTINGS, MATERIALS AND 
METHODS 

The North China Block was calculated to be located be‐
tween 15°N and 35°N in the latest Permian (Domeier and Tors‐
vik, 2014). The Cisuralian sequence in North China was inter‐
preted to be a prograding delta (Norin, 1922; Wu et al., 2021). 
From Early Kungurian to the Mid-Guadalupian (or later), the 
closure and/or subduction of the Paleo-Asian Ocean and its re‐
lated tectonic convergence caused a long hiatus (Wang et al., 
2022; Wu et al., 2021). The Lopingian Sunjiagou Formation 
overlies unconformably above the Asselian –Early Kungurian 
Upper Shihhotse Formation (Wu et al., 2021; Hu et al., 1990).

The Sunjiagou Formation is ~92 m in thickness in the re‐
search area. Its lower part is composed of purplish-reddish 
muddy siltstones, yellowish or greenish fine sandstones and 
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medium sandstones, overlain by the upper purple-reddish mud‐
dy siltstones and thin sandstones. The age of Sunjiagou Forma‐
tion was assigned to Lopinggian (Wuchiapingian to Changhsin‐
gian) based on high-precision U-Pb chemical abrasion-isotope 
dilution-thermal ionization mass spectrometry (CA-ID-TIMS) 
geochronology of tuffs (Wu et al., 2021). The floral, palynolog‐
ical and magnetostratigraphic data also suggest that the Sunjia‐
gou Formation are Lopingian in age (Stevens et al., 2011; 
Wang, 2010; Ouyang and Hou, 1999; Li, 1997).

More than 300 siliceous permineralized wood trunks and 
branches were discovered from the yellowish fine sandstones 
or medium sandstones of Sunjiagou Formation in the Xian‐
wengshan Fossil Wood Geopark of Zhangzi County, Shanxi 
Province, China (Fig. 1). Three adjacent sections (Xiyu, 
Dongyu and Chongwazhang sections) in the geopark were 
logged (Fig. 2). We observed all the samples in the field and 
collected 21 samples. These fossil woods consist of 0.6–18 m 
long trunks or branches, 0.3–1.3 m in diameter (Fig. 3a). The 
branch scars show that the branchlets of the juvenile stem ar‐
range spirally, and the branches of the mature trunk arrange in 
whorls. They are all heterochthonous burial and clearly repre‐
sent the upper parts of the trees because they lack attached 
stumps. All the specimens were transported by streams and 
were deposited prostrate. The paleo-current evidence from 
trough trends in the sandstones yielding fossil woods shows a 
generally SE-NW oriented flow (317°).

Microscopic slides of the transverse, radial and tangential 

wood sections were made following the traditional techniques 
for permineralized woods: First, the samples were cut into ap‐
propriate sizes using a diamond saw and the top surface pol‐
ished using a grinding wheel with carborundum grades of #240, 
#800 and #1200 in turn. The smooth top surface was then glued 
onto a glass slide with epoxy resin and the bottom surface 
ground down to a thickness of about 30 μm. The thin section 
was covered with abienic balsam. Slides were photographed 
with a Panasonic DMC-FZ28 digital camera. They were stud‐
ied using a microscope Leica DM4000B. Photomicrographs 
were taken with a Nikon D300 digital camera. Images in fig‐
ures are processed and stitched together by Adobe Photoshop 
CC. All the specimens and slides are housed in the Research 
Center of Palaeontology and Stratigraphy, Jilin University.

2 RESULTS 
CLASS Coniferopsida Šternberg, 1820
ORDER Coniferales Šternberg, 1820
FAMILY Incertae sedis
GENUS Shanxiopitys gen. nov.
Genus diagnosis: pith of hollow type, periphery of the 

pith homogeneous with parenchyma cells. Primary xylem en‐
darch. Tracheids with araucarian radial pitting and cupressoid 
or taxodioid cross-fields, with usually 1–5 oculipores.

Etymology: The generic name is derived from the Shanxi 
Province, where the type specimen was collected.

Holotype: The specimen SZH-11.

Figure 1. Location of the fossil woods. (a) Location of Xianwengshan Fossil Wood Geopark. (b) Simplified paleogeographic reconstruction showing the loca‐

tion of North China Block. (c) Simplified geological map of the Xianwengshan Fossil Wood Geopark (O1. Lower Ordovician; O2. Middle Ordovician; P1. Low‐

er Permian; P2-3. Middle and Upper Permian; T1. Lower Triassic).
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Paratype: The specimen SZH-02.
Repository: All the specimens and slides are housed in the 

Key Laboratory for Evolution of Past Life and Environment in 
Northeast Asia, Jilin University, Changchun, China.

Type locality: Hezhi village, Zhangzi, Shanxi Province, 
PR China (Fig. 1).

Stratigraphic horizon and age: Sunjiagou Formation, Lop‐
ingian.

Etymology: The specific name is derived from the Zhang‐
zi County, where the type specimen was collected.

Type species: Shanxiopitys zhangziensis gen. et sp. nov.
Shanxiopitys zhangziensis gen. et sp. nov.

Figure 2. Sedimentological section for the Xianwengshan Fossil Wood Geopark where the samples were found.
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Specific diagnosis: pith of hollow type, periphery of the 
pith homogeneous with parenchyma cells. Primary xylem en‐
darch. Tracheids of primary xylem with helical, annular, and 
scalariform/reticulate thickenings. Secondary xylem homoxyl‐
ic. Growth rings diffuse or inconspicuous. Araucarian radial 
pitting, 1–2 seriate (up to 4 seriate); xylem rays homogenous, 
uniseriate, rarely partially biseriate in 1–24 cells high or even 
more; 1–40 cells high; cross-field pits cupressoid or taxodioid 
type, 1–2, occasionally 3–5 in number. Resin canals and verti‐
cal parenchyma cells absent.

Description:

All the studied samples have the same anatomy. The pith 
is 1.0–3.5 cm (Fig. 3a). The pith parenchyma cells are distribut‐
ed on the edge, circular in transverse section, max. A hundred 
μm in diameter (Figs. 3b, 3d). Intercellular spaces are invisible. 
The central part is hollow, many wizened parenchyma cells ex‐
ist at the pith periphery (Figs. 3b – 3e). The hollow-type pith 
may be a result of autolysis (self-digestion). Many scattered ar‐
thropod coprolites occur at the pith periphery and in the xylem 
(Figs. 3b, 3c). The primary xylem is endarch. Primary xylem 
tracheids, with helical, annular, and scalariform/reticulate thick‐
enings, are 17–27 μm in diameter (Figs. 3e, 3f).

Figure 3. Shanxiopitys zhangziensis gen. et sp. nov. (a) Specimen SZH-01, scale bar = 20 cm; (b) transverse section (TS) showing the parenchyma cells (blue 

arrows) and the scattered arthropod coprolites (black arrows) in the pith, and the endarch primary xylem (red arrows) in the pith periphery, scale bar = 1 cm, 

specimen SZH-02; (c) TS showing the scattered arthropod coprolites (black arrows) in the pith (the red box in picture b), scale bar = 100 µm, specimen SZH-

02; (d) radial section (RS) showing the hollow pith (P), primary xylem (PX) and secondary xylem (SX), scale bar = 500 µm, specimen SZH-02; (e) RS show‐

ing the close-up of the pith cells (P), primary xylem (PX) and secondary xylem (SX), scale bar = 100 µm, specimen SZH-02; (f) RS showing the primary xy‐

lem tracheids with helical, annular, and scalariform to reticulate thickenings, scale bar = 50 µm.
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The secondary xylem was well preserved, it is pycnoxyl‐
ic, with tracheids and parenchymatous rays. In the transverse 
section, the growth ring boundary is inconspicuous with only 
one row of latewood cells, or diffuse (Fig. 6). Resin duct and 
axial parenchyma are absent in all the specimens. Axial tra‐
cheids are circular or oval (Fig. 4a). The diameter of radial tra‐
cheid is 32–69 μm (average 52 µm) and that of tangential tra‐
cheid is 43 – 68 µm (average 52 µm); thickness of tracheid 
walls 6–9 µm (average 8 µm). Intercellular spaces between tra‐
cheas can be observed. Xylem rays usually consist of uniseri‐
ate cells. There are 1–9 seriates of tracheids between every two 
rays (Fig. 4a). The frequency of the ray is 3–6 in number in 
each millimeter.

In the radial section, the pits on the tracheid walls are bor‐
dered and subcircular or oblate in shape (flattening index = 
0.72–0.97). They are arranged in uniseriate to biseriate contigu‐
ously (occasionally up to tetraseriate, < 1%). When uniseriate, 
they are contiguous; when multiseriate, pits are alternate (Figs. 
3d, 3e). They are 15 × 13 to 23 × 15 μm (height × width) in 
size. The uniseriate pits often only occupy the midst of the radi‐
al tracheid wall with lateral margins of 4–10 µm and the biseri‐
ate pits often occupy the whole tracheid wall. Pores are circu‐
lar or oblique oval. The ray cells are brick-like and usually 
span 1.5 to 7 tracheids (100–200 to 800 µm) (Fig. 4d). The hor‐
izontal and end walls of ray cells are both smooth. There is 1 
(74%) or 2 (20%), occasionally 3 (4%), 4 (2%) or 5 (< 1%) oc‐

ulipores in each cross-field unit (Figs. 5a, 5b). Oculipores are 
of cupressoid or taxodioid type, 8 – 13 μm in diameter (Figs. 
5a, 5b).

In the tangential section, xylem rays are homogenous and 
uniseriate or locally biseriate (Figs. 5c, 5d). When biseriate, 
ray cells are opposite (Fig. 5d). They consist of circular or el‐
liptical parenchyma cells. Rays 1 to 30, even up to 40 (Mean = 
6) cells high and 14–17 per mm2, 5–6 per mm. Ray cells are 
circular to rectangular, 24 × 22 to 33 × 29 μm in size.

Remarks: The anatomical features of Shanxiopitys gen. 
nov. closely resemble some extinct and extant gymnosperm 
woods that also display a small homogeneous pith, an endarch 
primary xylem and a thick pycnoxylic secondary xylem. Cycad 
has transfusion tissue and scleroid cells in a wide pith. Shanxi‐
opitys differs from cycads in having a hollow-type pith with pa‐
renchyma cells at the periphery. Ginkgo has the irregular distri‐
bution of tracheids, the bending/crossing ends of tracheid ele‐
ments, and the development of axial parenchyma cells (Feng et 
al., 2010). These characteristics are absent in the Shanxiopitys. 
Thus, we consider Shanxiopitys gen. nov. as a coniferophyte of 
uncertain systematic affinity. The pith of the Shanxiopitys gen. 
nov. is homogenous, composed only of parenchyma cells. The 
secondary xylem of the new taxon resembles the extant and 
fossil Coniferopsida woods and the representatives of fossils. 
These closely resemble those of other Permian woods (He et 
al., 2013).

Figure 4. Shanxiopitys zhangziensis gen. et sp. nov. (a) TS showing the close-up of the tracheids and ray cells (red arrows), scale bar = 200 µm, specimen SZH-

11. (b) Radial section (RS) showing uniseriate araucarioid bordered pits with circular or elliptical apertures on the radial walls of wood tracheids, scale bar = 40 

µm, specimen SZH-11. (c) RS showing uniseriate or biseriate bordered pits with circular or elliptical apertures on the radial walls of wood tracheids. Scale 

bar = 40 µm. Specimen SZH-11. (d) RS showing the ray cells (red arrows), scale bar = 40 µm, specimen SZH-11.

171



Xiao Shi, Jianxin Yu, Yuewu Sun, Zhen Xu and Hui Li 

The anatomy of pith is always regarded as a critical criteri‐
on for the classification of the gymnospermous woods (e.g.Shi 
et al., 2021, 2017, 2015,, 2014; Feng, 2012;Feng et al., 2012, 
2010) and certain angiosperm woods (e.g., Mikesell and Schro‐
eder, 1980; Metcalfe and Chalk, 1950; Haberlandt, 1914; Soler‐
eder, 1908). But the development of pith goes through different 
stages (Mikesell and Schroeder, 1980). Mature individuals 
show stable pith characteristics. The pith characteristics of 
Shanxiopitys gen. nov. are from the large mature trunks. The 
pith of all the samples are of hollow type. Therefore, the char‐
acteristics of the pith are very reliable.

So far, about 16 fossil pycnoxylic wood genera preserving 
pith and primary xylem have been previously described from 
the Upper Paleozoic of China (Wei et al., 2019). Among them, 
the pith is either solid or septate, and none of them is of hollow 
type. The current specimens resemble to three genera of them.

Chapmanoxylon Pant and Singh, 1987 was firstly described 
in the Permian West Bengal, India. It possesses a homogenous 
pith, an endarch primary xylem and an Araucarioxylon-type sec‐
ondary xylem. The characteristics of Shanxiopitys gen. nov. is 
similar to the genus Chapmanoxylon. However, the present ge‐
nus has cupressoid or taxodioid type cross-field pits (the cross-
field with usually no more than four oculipores), instead of ar‐
aucarioid-type cross-field pits (the cross-field with numerous 
oculipores (either cupressoid or taxodioid) which alternate and 
which are contiguous) in Chapmanoxylon (Philippe and Bam‐

ford, 2008; Philippe, 1995).
Ningxiaites Feng (2012) was firstly discovered from the 

Lopingian Sunjiagou Formation of Ningxia Hui Autonomous 
Region, North China. It is featured by a eustelic vascular sys‐
tem, thick pycnoxylic woody cylinder, and prominent helically 
arranged clusters of leaf traces. In the secondary xylem, isolat‐
ed or vertically aligned axial parenchyma and inflated cells are 
present. That is different from the new taxon.

The fossil wood taxon Plyophyllioxylon Feng et al. (2012) 
was described from the Asselian Lower Shihhotse Formation 
of the Hulstai coalfield, Inner Mongolia Autonomous Region. 
Its pith is septate, and axial xylem parenchyma cells are pres‐
ent in the secondary xylem. These are different from Shanxiopi‐
tys gen. nov.

In conclusion, on the basis of the anatomical structures, 
we suggest that Shanxiopitys represents a new genus.

3 DISCUSSIONS 
Growth-ring features provide a promising approach to bet‐

ter understanding the tree habit and its growing environment 
(e. g., Shi et al., 2017, 2015; Brea et al., 2011, 2008; Falcon-
Lang, 2003, 2000a, b; Schweingruber, 1996, 1992). In Shanxi‐
opitys zhangziensis gen. et sp. nov., the latewood cells do not 
differ greatly from earlywood cells, and the transition between 
the adjacent earlywood cells and latewood cells is very gradual 
(Figs. 6a, 6b); or locally, it has only one row of the latewood 

Figure 5. Shanxiopitys zhangziensis gen. et sp. nov. (a) RS showing the 1–2 oculipores in cross-field units, scale bar = 40 µm, specimen SZH-11; (b) RS show‐

ing the 2–4 oculipores in cross-field units, scale bar = 40 µm, specimen SZH-11; (c) Tangential longitudinal section (TLS) showing the homogenous and unise‐

riate or locally biseriate rays, scale bar = 200 µm, specimen SZH-11; (d) TLS showing the ray cells are uniseriate or locally biseriate, scale bar = 40 µm, speci‐

men SZH-11.
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cells (Fig. 6b). The presence of indistinct growth rings is typi‐
cal in modern tropical and subtropical evergreen and semi-de‐
ciduous tree species (Tarelkin et al., 2016; Worbes, 1999). 
Thus, we speculate that S. zhangziensis gen. et sp. nov. was 
probably evergreen or semi-deciduous.

The trees show diffuse ring boundaries or a very low per‐
centage of latewood. It indicates that the growing conditions 
are convenient and the cambium is never forced to cease grow‐
ing for part of the year. Therefore, the growth-ring boundaries 
are diffuse or inconspicuous without any obvious change in 
cell wall thickness within a year. The latewood cells in the ring 
of the second year are still large, as the tree never enters dor‐
mancy and it continues to produce tracheids with thick walls at 
the end of the annual growing season (Speer, 2010; Worbes, 
1999). Thus, the growth pattern of S. zhangziensis gen. et sp. 
nov. reveals that it grew in the environment developed under a 

warm humid climate condition without dry periods or of hydric 
stresses.

Wang (1993) reported the Asselian–Lopingian succession‐
al sequence of plant-communities in North China. Considered 
as a directional result of a great north wind migration of the 
pond-aquatic plant associations, the Psygnophyllum first oc‐
curred in a series of profiles of the Upper Shihhotse Formation 
in Shanxi Province. The unidirectional ascending trend of the 
flora turnover second boundary denotes the paleomonsoon ac‐
tivity. Most of the gymnosperms (Psygmophyllum, Ullmannia, 
“Callipteris”, Tatarina, Pseudovoltzia, Quadrocladus, etc.) 
found in the Sunjiagou Formation show xeric cuticular texture, 
such as amphistomatic leaves with approximately the same 
number of stomata on both surfaces, thickened wall, sunken 
stomata, a much greater number of subsidiary cells arching 
over the aperture and dense hair or papillae, etc. (Wang and 

Figure 6. Shanxiopitys zhangziensis gen. et sp. nov. (a) TS showing the growth ring boundary is diffuse (red box), scale bar = 2 mm, specimen SZX-01; (b) TS 

showing the growth ring boundary is inconspicuous with only one row of latewood cells (arrows), or diffuse (red box), scale bar = 2 mm, specimen SZH-11.
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Wang, 1986). These characteristics indicates that a strong wet-
dry seasonality triggered by the mega-monsoon appeared in the 
Lopingian North China.

He et al. (2016) reported the Gigantopteris dictyophylloi‐
des Gu and Zhi in the Upper Shihhotse Formation of central 
Shanxi supporting it more likely formed under a seasonally dry 
climate. Moreover, the large tetrapod burrows from the Lopin‐
gian Naobaogou Formation of the Daqingshan Area, Inner 
Mongolia suggested the seasonal and semiarid or arid climate 
(Liu and Li, 2013).

The extensive red beds of Sunjiagou Formation were for‐
merly interpreted forming in hot and arid climates (Parrish, 
1995; Walker, 1976), or warm climates with wet-and-dry sea‐
sons (Parrish, 1998; Dubiel and Smoot, 1994). However, the 
growth pattern of S. zhangziensis gen. et sp. nov. reveals oppo‐
site results in Lopingian central North China. Sheldon (2005) 
believed that continental red beds can also form in warm, hu‐
mid climates with good drainage and as such red color in itself 
does not indicate specific paleoclimatic features. Besides, mud 
cracks, gypsum beds, calcareous nodules and septarian nod‐
ules, usually formed in arid condition, were also found in the 
upper part of Sunjiagou Formation of the Xiyu Section (Fig. 
7). In the other sections of North China, gypsum and numerous 
fine-grained aeolian sandstones were also reported (Wang and 
Chen, 2001; Wang and Wang, 1986;Norin, 1924, 1922). These 
demonstrated that Sunjiagou Formation was developed under 
an arid climate.

All of these indicate that the Lopingian successions of 

North China were deposited in a strongly seasonal climate. 
However, the growth pattern of S. zhangziensis gen. et sp. nov. 
seems to contradict previous biotic features and sedimentary 
characteristics. In this case, the conifers may live in a unique 
ecosystem in a seasonally dry landscape.

Gallery forest is mostly narrow strips of forest along 
creeks or rivers in an otherwise unfrosted landscape (Veneklaas 
et al., 2005). The species and resources in the riparian ecosys‐
tems are distinct from those in the surroundings. The gallery 
forests offer shelter and a breeding ground for the species liv‐
ing in the savannas, grasslands, or deserts. The modern exam‐
ples of gallery forests include Llanos ecoregion and Cerrado re‐
gion in South America, Madagascar and Konza Prairie in the 
USA. The recognition of gallery forests in the geological peri‐
od contributes to understanding the paleoenvironment and pa‐
leoecology in the Earth’s history. We speculate that in the Lop‐
ingian central North China, the conifers living in narrow strips 
of forest along permanent creeks or rivers formed a unique gal‐
lery forest ecosystem in a seasonally dry landscape. In the dry 
season, the trees could get enough water supply, while those 
plants living at the margin of the gallery forest might suffer a 
seasonal dry condition and display xerophytic characteristics. 
The recognition of gallery forests in the geological period con‐
tributes to understanding the paleoenvironment and paleoecolo‐
gy in the Earth’s history. This ecosystem is comparable with 
that of the Permian Tim Mersoi Basin in Niger, the Triassic 
Junggar Basin or the modern Lake Eyre Basin in Australia (Shi 
et al., 2021; Looy et al., 2016).

Figure 7. Representative field photographs, showing evidence of an arid climate during the Late Permian in North China Block. (a) Mud crack in the Sunjia‐

gou Formation; (b) gypsum in the Sunjiagou Formation; (c) calcareous nodule beds (black arrows) in the Sunjiagou Formation; (d) septarian nodule in the Sun‐

jiagou Formation. The hammer is 28 cm long and the diameter of the pencil is 0.5 cm.
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4 CONCLUSION 
In conclusion, the fossil woods found in the Xianweng‐

shan Fossil Wood Geopark, Zhangzi County, Shanxi Province 
show a hollow-type pith, endarch primary xylem and pycnoxyl‐
ic secondary xylem with Araucarian radial pitting and 
cupressoid/taxodioid-type cross-field pits, belong to a new tax‐
on Shanxiopitys zhangziensis gen. et sp. nov. Their exceptional 
anatomical characteristics indicate these trees grew under opti‐
mal growing conditions without seasonal growth cessation. 
Combined with the leaf fossils, vertebrate fossils and sedimen‐
tary evidences, we speculate that there may exist gallery for‐
ests in the seasonal terrestrial basin in the Lopingian central 
North China. Further researches on sedimentology and in-situ 
stump fossils will be needed to illustrate the entire landscape in 
that period of North China.
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