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tonics and magmatic activity are complex and mark the closure 
of sutures between several microcontinents (Zhao et al. 2017; 
Wu et al., 2011; Zhang et al., 2006). The study area is in the 
Huaan depression, the subzone between the Longjiang uplift 
and the Nenjiang depression, bounded by the Nenjiang-Balihan 
fault, the Great Xing’an fault, and the Xar Moron River fault. 
The Yalu River fault is closely spatially related to the NAGC 
and trends NW to NNW. Fault activity occurred during the Late 
Mesozoic to Cenozoic, and was significantly later than the 
formation age of the NAGC (Qian et al., 2018). Voluminous 
volcanic rocks occur in the area. The oldest volcanic strati-
graphic units in the study area belong to the Laolongtou Group 
(T1l) in the NW. Late Mesozoic volcanic units in the region 
comprise the Manitu Group (J3mn), the Baiyingaolao Group 
(K1b), and the Meiletu Group (K1m). Sedimentary formations 
are the Dashizhai Group (P2d), the Zhesi Group (P2z), and Qua-
ternary sediments. Intrusive magmatic rocks are common in the 
region and comprise Late Paleozoic and Early Mesozoic mon-
zonitic granites related to the NE-SW closure and extension of 
the Paleo-Asian Ocean (Fig. 1b). Late Mesozoic A-type granite 
with typical miarolitic cavities is common in the region, and its 
genesis is attributed to subduction of the Pacific Plate. In addi-
tion, dyke swarms of granitic and dioritic porphyries are found 
within Late Mesozoic strata (K1b). 

 
2  PETROLOGY 

The study area is near Qiqihaer City in Heilongjiang 
Province. The NAGC outcrops over an area of approximately 

25 km2, and is divided into a central and a marginal facies (Fig. 
1b); the boundary between them is gradational. Fresh granite is 
pale-red and turns brown when weathered (Figs. 2a, 2c). The 
granite at the center of the complex is medium to coarse- 
grained with a roughly circular outcrop approximately 4 km in 
diameter. Miarolitic cavities with diameters from 0.5 to 2.0 cm 
are uniformly distributed within the coarse-grained granite and 
infilled with quartz and blue to black hornblende. The marginal 
facies is of porphyritic alkaline granite, located mainly to the 
north and southeast and in contact with Early Cretaceous rhyo-
lite. We have not examined these contacts in this study. This 
fine-grained granite is often weathered from a light color to 
brown (Fig. 2d). The country rock rhyolite is glassy and con-
tains quartz and plagioclase (15 vol.%). 

Alkaline miarolitic granite: The alkaline miarolitic granite 
is porphyritic, consisting of alkali-feldspar with hypidiomor-
phic quartz, blue-green pleochroic arfvedsonite and aegirine. 
Apatite, zircon, and magnetite are accessory phases. Alkali- 
feldspar phenocrysts are hypidiomorphic to idiomorphic 
K-feldspar (~45 vol.%) and albite (~20 vol.%) crystals up to ~3 
mm, suggesting early crystallization. Feldspar grains have un-
dergone sericitization and kaolinization. Interstitial, subhedral 
to anhedral quartz grains ranging from 1 to 2 mm in size con-
stitute ~30 vol.% of the granite. Amphibole crystals range from 
0.5 to 0.8 mm in size and constitute 5 vol.% to 10 vol.% of the 
granite. Pyroxene rims are observed around the amphibole 
grains. The acicular to fibrous amphibole is pleochroic from 
light brown to dark green. It contains 47.84 wt.% to 51.69 wt.%  

 

 

Figure 1. (a) Regional tectonic map of NE China (after Zhang et al., 2006).  Mongolia① -Okhotsk suture zone;  Deerbugan fault;  Hegenshan fault;  ② ② ②

Xilamulun fault;  Nenjiang⑤ -Balihan fault;  Mudanjiang fault;  Jiamusi⑥ ⑥ -Yitong fault;  Dunhua⑧ -Mishan fault;  Xilin⑨ hot-Alin central belt; (b) schematic 

geological map of the NAGC and surrounding area (Regional Geological Survey of Heilongjiang Province, China, unpublished). 
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SiO2, 33.74 wt.% to 35.71 wt.% FeO, and 7.20 wt.% to 7.87 
wt.% Na2O. On the basis of 23 oxygen atoms, Si is 7.856 to 
8.270, A/(Na+K) is 0.796 to 1.187, and CaB is 0.043 to 0.235, 
indicating that the amphibole is typical arfvedsonite (Leake et 
al., 1997). Pyroxene contains 52.82 wt.% to 52.93 wt.% SiO2, 
31.3 wt.% to 37.81 wt.% FeO, and 12.51 wt.% to 12.87 wt.% 
Na2O. Its orthoferrosilite (Fs) content is 49.4 wt.% to 50.0 
wt.%, acmite (Ac) is 49.2 wt.% to 49.7 wt.%, and the rest is 
wollastonite (Wo) and enstatite (En). It is classified as acmite 
(Morimoto, 1988) (Figs. 2b, 2d). 

Porphyritic syenite enclosures (sample NZS-7): Syenite 
enclosures 2 to 50 mm in size are common in the granite. They 
consist of fine-grained porphyritic syenite containing ca. 7-mm 
phenocrysts of K-feldspar (40 vol.%), plagioclase (5 vol.% to 
10 vol.%), quartz (<5 vol.%), and fine-grained groundmass (50 
vol.%) (Fig. 2e).  

Rhyolite (sample NZS-8): The rhyolite is porphyritic with 
dark gray phenocrysts, consisting of quartz (10 vol.% to 15 
vol.%), and feldspar (5 vol.%) with grain sizes from 0.5 to 1 
mm. Most quartz grains are angular and rounded at the margins. 
The groundmass (70 vol.% to 80 vol.%) is microcrystalline to 
cryptocrystalline or glassy (Fig. 2f).  

 
3  SAMPLING AND ANALYTICAL METHODS 

Five samples were collected from the NAGC for analysis: 
three samples of miarolitic granite (NZS-3, NZS-4, and NZS-5); 
one porphyritic syenite (NZS-7); and one rhyolite (NZS-8). All 
samples were little weathered and appropriate for whole-rock 
geochemistry and Sr-Nd isotope analyses. Samples NZS-3, 
NZS-4 and NZS-7 were selected for geochronological dating. 
 
3.1  LA-ICP-MS U-Pb Dating 

Zircon grains were separated from samples NZS-3, NZS-4 
and NZS-7 for U-Pb age dating. The bulk samples were 
crushed to 60 to 80 meshes size, and zircons were separated 

using gravity and electromagnetic techniques and finally 
hand-picked under a binocular microscope. The zircon crystals 
were then mounted on epoxy resin, smoothed and polished, and 
finally gold coated. They were examined using transmitted and 
reflected light and cathodoluminescence (CL) microscopy.  

Zircon U-Pb ages were determined at the Institute of Min-
eral Resources, CAGS, Beijing, using a Finnigan, Neptune 
ICP-MS with a New Wave UP213 laser-ablation system. He-
lium was used as the carrier gas, and the beam diameter was 30 
μm with a 10-Hz repetition rate and a laser power of 2.5 J/cm2. 
Eight ion counters were used to receive 238U, 235U, 232Th, 208Pb, 
207Pb, 206Pb, 204Pb, and 202Hg signals simultaneously, while data 
for 208Pb, 232Th, 235U, and 238U were collected in a Faraday cage. 
Zircon GJ-1 was used as standard, and Plešovice zircon was 
used to calibrate the mass spectrometer. U, Th, and Pb concen-
trations were calibrated using 29Si as internal standard and zir-
con M127 (U: 923 ppm; Th: 439 ppm; Th/U: 0.475, Nasdala et 
al., 2008) as external standard. 207Pb/206Pb and 206Pb/238U were 
calculated using the ICP-MS DataCal 4.3 program. No correc-
tion was made for common Pb because of a high 206Pb/204Pb 
ratio. Abnormally high 204Pb data were deleted. The Plešovice 
zircon was dated as unknown and yielded a weighted mean 
206Pb/238U age of 337±2 Ma (2SD, n=12), which is in good 
agreement with the recommended 206Pb/238U age of 337.13± 
0.37 Ma (2SD) (Sláma et al. 2008). Age calculations were per-
formed, and concordia diagrams generated using the Isoplot/Ex 
3.0 software (Ludwig, 2003). 
 
3.2  Major and Trace Elements 

Major and trace elements were analyzed at the Hubei 
Testing Center, Wuhan. Relatively fresh samples were selected 
after examination in thin section under the microscope, sawn 
into slabs, and the central parts were used in whole-rock analy-
sis. Specimens were crushed in a steel mortar and ground in a 
steel mill to powders of ~200 meshes. Major elements were  

 

 

Figure 2. (a) and (c) field photographs, camera lens cap 67 mm diameter. (a)–(d) Miarolitic alkaline granite; (e) porphyritic syenite enclosure; (f) rhyolite. Q. 

Quarz; Kf. orthoclase; Pl. plagioclase; Arf. arfvedsonite; Agt. aegirine-augite. Dashed red line in (a) surrounds a microporphyritic syenite enclosure; (b) in 

plane-polarized light; (d), (e), (f) between crossed polars. 
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analyzed by X-ray fluorescence spectroscopy using the me-
thods of Norrish and Chappell (1977), and ferric and ferrous 
iron were determined using wet chemical methods.  

Trace elements were determined in solution by ICP-MS at 
the National Research Center for Geoanalysis, Beijing. Ap-
proximately 40 mg of sample was dissolved in distilled 
HF+HClO4 in 15 mL Savillex Teflon screw-cap beakers. Ana-
lytical precision for most elements was typically better than 5% 
relative standard deviation (RSD), and the measured values for 
Zr, Hf, Nb, and Ta were within 10% of the certified values. The 
sample preparation and instrument operation and calibration 
were described by Qi et al. (2000). 
 
3.3  Sr-Nd Isotope Analysis 

Sr-Nd isotope analyses were performed using a Finnigan 
MAT262 mass spectrometer at China University of Geos-
ciences, Beijing. Approximately 50 mg of whole-rock pow-
dered sample were dissolved in a Teflon bomb using a mixture 
of HF and HNO3. Sr and rare earth elements (REE) were iso-
lated using a 0.2 mL column filled with Sr and REE-Spec re-
sins (manufactured by Eichrom Industries, Inc.) for selective 
extraction of Sr and REE, respectively. Nd fractions were fur-
ther separated and purified using LN resin with HCl as eluent. 
Procedures for performing mass analyses followed those de-
scribed by Qiao (1988). Rb and Sr mass fractionations were 
calibrated using 86Sr/88Sr=0.119 4, and Sr blank was <100 pg 
during the entire process. The 87Sr/86Sr of the standard is  
0.710 248±0.000 011. Nd blank was <500 pg, and the 
143Nd/144Nd of the standard was 0.512 111±0.000 011 (2σ, n=10); 
a 146Nd/144Nd=0.721 9 correction was applied to 143Nd/144Nd.  
 
4  RESULTS 
4.1  Zircon U-Pb Chronology 

The zircon grains of samples NZS-3 and NZS-4 exhibit 
length-to-width ratios between 1 : 1 and 2 : 1 and are 100 to 
300 μm in size. Most zircon grains have oscillatory zoning 
(Fig. 3), suggesting an igneous origin. U content is from 48 
ppm to 523 ppm, Th content is from 38 ppm to 543 ppm, and 
Th/U ratio is >0.4; all these values are characteristic of typical 
magmatic zircons (Schulz et al., 2006; Wu and Zhen, 2004; 
Rubatto, 2002). 

The length-to-width ratios of zircon grains in sample 
NZS-7 and their internal structures are similar to those of the 
alkaline granite (2 : 1) and are overall >100 μm (Fig. 3). U 
contents vary between 34 ppm and 3 525 ppm and Th between 
48 ppm and 1 689 ppm; zircon Th/U averaged approximately 
0.86. The zircons are grouped into (1) light-colored with U of 
71.3 ppm to 357.11 ppm and Th of 75.2 ppm to 358.09 ppm 

and (2) dark with metamictization and U of 1 365.1 ppm to   
1 697.3 ppm and Th of 423.69 ppm to 2 500.3 ppm.  
 
4.1.1  Miarolitic alkaline granite (NZS-3 and NZS-4) 

Nineteen out of thirty spot analyses of the miarolitic gra-
nite sample NZS-3 yielded 206Pb/238U ages of 107 to 133 Ma, 
with a concordia U-Pb age of 112.95±0.93 Ma (MSWD=1.14). 
This age provides the best estimate for the crystallization age of 
the NAGC (Fig. 4a). Thirteen spot analyses of the miarolitic 
granite sample NZS-4 yielded 206Pb/238U ages of 96 to 135 Ma 
and a concordia U-Pb age of 114.1±1.7 Ma (MSWD=0.72) (Fig. 
4b). Two samples collected from different parts of the rock 
exhibited almost identical ages within analytical errors. Thus, 
the Nianzhishan A-type granitic magmatism is Late Cretaceous 
in age. 
 
4.1.2  Porphyritic syenite inclusion (NZS-7) 

Twenty-nine spot analyses yielded 206Pb/238U ages ranging 
from 102 to 131 Ma. The ages for the two zircon groups over-
lap each other. The age of the light-colored group ranges from 
102 to 131 Ma, whereas that of the dark group ranges from 
118±1 to 119±1 Ma. Seven of analyses are concordant or nearly 
concordant and cluster as a single population with weighted 
mean 206Pb/238U age of 118.6±0.51 Ma (MSWD=8.6) (Fig. 4c). 
Since the porphyritic syenite occurs as an inclusion within the 
granite, this age suggests that it crystallized somewhat earlier 
than the granite. 
 
4.2  Geochemistry 
4.2.1  Major elements 

Table 1 lists major and trace element analyses. Miarolitic 
alkaline granite (samples NZS-3–5) has high SiO2 (71.98 wt.% 
to 72.90 wt.%), FeOT (2.96 wt.% to 3.39 wt.%), and K/Na >1; 
its alkali content is 8 wt.% to 10 wt.%, FeOT/MgO ratios range 
23 to 34, Al2O3 is less than 13 wt.%, A/CNK is from 0.95 to 
1.01, and A/NK ratio is from 1.0 to 1.04. CIPW normative 
minerals yield a quartz content of 23.60 wt.% to 27.25 wt.%, 
plagioclase of 0.5 wt.% to 4 wt.%, alkali-feldspar of 63.2 wt.% 
to 70.6 wt.%, corundum <1 wt.%, and pyroxene >2 wt.%. The 
porphyritic syenite inclusion (sample NZS-7) has concentra-
tions of 67.47 wt.% SiO2, 17 wt.% Al2O3, 0.24 wt.% MgO, 
0.41 wt.% CaO, 5.50 wt.% Na2O, and 6.22 wt.% K2O and is 
characterized by high ALK (Na2O+K2O) (11 wt.%), and high 
K/Na ratio (1.13), A/CNK ratio of 1.01 and A/NK ratio of 1.05 
point to a weakly peraluminous rock. CIPW normative miner-
als yielded 10.55 wt.% of quartz, 81.96 wt.% of alkali-feldspar, 
and 3.99 wt.% of plagioclase. Rhyolite (sample NZS-8) is sim-
ilar to granite in composition, with high SiO2 and ALK and low  

 

 

Figure 3. Cathodoluminescence images of selected typical zircon grains. 
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Figure 4. Zircon U-Pb concordia diagrams of the NAGC obtained by 

LA-ICP-MS; NZS-3, NZS-4. miarolitc alkaline granite; NZS-7. porphyrite 

syenite. 

 
Al2O3, MgO, CaO, Mn, Ti, and P contents. Total FeO and FeOT/ 
MgO are lower than those in the granite. A/CNK and A/NK 
ratio are 1.19 and 1.24, respectively. The CIPW normative 
minerals are quartz (39.7 wt.%); alkali-feldspar (54.54 wt.%); 
plagioclase feldspar (2.1 wt.%), and with corundum >1 wt.%. 

Granite and syenite affinities are displayed in Fig. 5 and 
calc-alkaline and alkaline (AC) affinities in Fig. 6. Samples of 
the NAGC have similar geochemical properties to other grani-
toids in the Great Xing’an-Songliao Basin in Northeast China 

 

Figure 5. Total alkali-silica (TAS) classification diagram (Middlemost, 1994) 

of the NAGC major element analyses (Table 2). 1. olivine gabbro; 2. gabbro; 

3. gabbroic diorite; 4. diorite; 5. granodiorite; 6. granite; 7. foidmonzo- 

gabbro; 8. monzo-gabbro; 9. monzo-diorite; 10. monzonite; 11. quartz 

monzonite; 12. foidolite; 13. foidmonzo-diorite; 14. foidmonzo-syenite; 15. 

syenite; 16. foid syenite. Purple area: range of 120–100 Ma granitoid com-

positions in the Great Xing’an-Songliao Basin in Northeast China. 

 

 

Figure 6. SiO2 versus (Na2O+K2O-CaO) diagram. Black data points are 

from this study (Table 2), gray data points are from Lin et al. (2003) and Li 

(1992), colored areas from a dataset of 214 Early Cretaceous granitoid 

samples from the Great Xing’an-Songliao Basin in northeast China com-

piled for this paper. Purple area samples formed from 120 to 100 Ma, grey 

area samples formed from 140 to 120 Ma. 

 
in the age range 120 to 100 Ma (purple area in Figs. 5 and 6). 
 
4.2.2  Trace elements 
4.2.2.1  Miarolitic alkaline granite (samples NZS-3–NZS-5) 

The trace elements in all samples have broadly similar 
patterns with elevated Rb, U, Ta, Ce, Nd, and Hf and depleted 
Ba, K, La, Sr, P, and Ti (Fig. 7b). Contents of Zr+Nb+Ce+Y are 
from 1 394 ppm to 1 631 ppm, greater than the mean value of 
the global A-type granite content of 350 ppm proposed by 
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Whalen et al. (1987). Ratio of 10 000×Ga/Al is >4, which is 
close to the global average of 3.75 but higher than the boundary 
value of 2.6 for A-type granites. K/Rb ratios are from 214 to 
263, and Rb/Sr are from 12 to 25. The chondrite-normalized 
REE patterns of the granites are similar (Fig. 7a), exhibiting 
LREE/HREE fractionation [(La/Yb)N from 9.14 to 11.46] and 
negative Eu anomalies (Eu/Eu* from 0.09 to 0.13). Total REE 
(from 499 ppm to 744 ppm) and heavy REE (from 48.16 ppm 
to 71.36 ppm) of the studied samples are higher than typical 
granites. The heavy rare earth elements vary a little perhaps due 
to fluid-rock interactions. The contents of Rb, Ga, Zr, and Ta in 
the porphyritic syenite enclosure (sample NZS-7) are high, 
whereas Ba and U are low. The 10 000×Ga/Al is 3.15. The 
content of Zr is 486 ppm, and Zr+Nb+Ce+Y is 696 ppm. The 
chondrite-normalized REE patterns show weak negative Eu 
anomalies (Eu/Eu*=0.37) and display fractionation of REE 
similar to the miarolitic alkaline granite [(La/Yb)N=9.38, Fig. 
7b]. The rhyolite (sample NZS-8) has contents of Zr, Hf, Nb, 
Ta, Ga, and Zn enriched; Zr is 825 ppm, K/Rb ratio is 194, and 
Rb/Sr is 5.5. The contents of Zr+Nb+Ce+Y is 991 ppm and  
10 000×Ga/Al is approximately 4. There are obvious negative 
anomalies in mantle-normalized Ba, Sr, Ti, and P concentra-
tions (Fig. 7b). The total REEs are low (ΣREE=272 ppm). A 
clear Eu anomaly is observed in the chondrite-normalized REE 

diagram, with Eu/Eu*=0.06. However, fractionation of REE is 
not obvious, and the trend is relatively gentle [La/Yb)N=1.81]. 

Compared to igneous rocks at 140 to 120 Ma, the NAGC 
has an extremely high total rare earth content and a more ex-
treme negative Eu anomaly displayed in Fig. 7a. Again, more 
significant depletion of trace elements (Ba, Sr, Ti, P, Ta, Nb, 
etc.) can be recognized easily in Fig. 7b. 

Zircon saturation temperature (Tzr) calculations indicate 
that temperatures of the NAGC A-type granites are from 961 to 
981 ºC, with an average of 971 ºC, whereas Tzr values of the 
enclosure and rhyolite are 875 and 975 ºC. Sui and Chen (2011) 
obtained Tzr values of 868 to 928 ºC for the NAGC A-type 
granites. Their Tzr values are probably slightly lower than ours 
because they did not measure TFe2O3. Our calculated Tzr value 
of 971 ºC should be close to the magma temperature of the 
A-type granites, and is broadly consistent with temperatures 
independently constrained by oxygen isotope equilibrium tem-
peratures (Wei et al., 2008). 

 
4.3  Sr and Nd Isotopes 

Sr-Nd isotopic data for the NAGC are listed in Table 3. 
The Sr contents of A-type granites are from 6.19 ppm to 9.63 
ppm, compared with 17.20 ppm in the porphyritic syenite. Ini-
tial Sr and Nd isotopic ratios were back-corrected using ages of 

 

 

Figure 7. General chondrite normalized rare earth element diagram of the NAGC (Sun and McDonald, 1989). 

 
Table 3  Sr-Nd contents and isotope values 

Sample Rb (ppm) Sr (ppm) 87Rb/86Sr 87Sr/86Sr Sm (ppm)

NZS-3 164.84 6.56 72.746 685 0.714 259 18.41 

NZS-4 197.55 9.63 59.381 411 0.712 827 17.02 

NZS-7 116.7 17.2 19.644 723 0.715 428 9.8 

NZS-8 205.44 37.35 15.916 588 0.710 625 6.53 

Sample Nd (ppm) 147Sm/144Nd 143Nd/144Nd εNd(t) TDM1 

NZS-3 88.1 0.126 333 0.512 681 1.85 821 

NZS-4 87.6 0.117 466 0.512 685 2.06 739 

NZS-7 48.39 0.122 407 0.512 678 1.90 791 

NZS-8 19.89 0.119 855 0.512 739 1.94 671 

 

112 and 114 Ma for A-type granites, and 118 Ma for porphyrit-
ic syenite. Variable and unreasonable (87Sr/86Sr)0 ratios less 
than basaltic achondrite best initial (BABI) (0.698 98) were 
found due to high 87Rb/86Sr ratios. However, the (143Nd/144Nd)0 
ratios are robust with positive εNd(t) values ranging from +1.85 
to +2.06. TDM1 ranges from 671 to 821 Ma. The εNd(t) values 
and TDM1 ages for the A-type granite, porphyritic syenite and 
rhyolite are similar, suggesting a common origin. 
 
5  DISCUSSION 
5.1  Timing of Magmatism 

Reliable ages of the Nianzishan A-type granitoid complex 
have been lacking up to now. Li and Yu (1993) obtained an age 
of 123 Ma for the A-type granites by K-feldspar and biotite 
Ar-Ar dating, similar to a whole-rock Rb-Sr isochron age ob-
tained by Yan et al. (2000). Li and Yu. (1993) dated porphyritic 
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syenite at 135 Ma from a whole-rock Rb-Sr isochron. This 
study has obtained high-precision LA-ICP-MS zircon U-Pb 
ages of 112.95±0.73 and 114.1±1.7 Ma for the A-type granites 
and 118.77±0.43 Ma for the porphyritic syenite (Table 4). 
These newly available ages are younger than those previously 
reported and suggest that the A-type granites and porphyritic 
syenite are the products of late stage Early Cretaceous mag-
matism.  

Jahn et al. (2001) reported an Rb-Sr isochron age of 125 
Ma for the Baerzhe A-type granite, and Qiu et al. (2014) ob-
tained the same age from zircon U-Pb dating. The Shangma-
chang A-type granite is 106 Ma old (Wu et al., 2002), and the 
Alongshan A-type granite crystallized 117 Ma ago. The age of 
the A-type granite in the Longtoushan is 117 Ma, for the 
Gangshan A-type granite is 107.7 Ma, and for the Baishilazi 
A-type granite is 123±3 Ma (Wu et al., 2002), respectively. Qin 
et al. (2012) reported 117.8 Ma for the Shanglüshuiqiao A-type 
granite in the Jilin Province. Zhang Q F et al. (2007) and Ge et 
al. (1999) obtained ages of 111 to 120 and 102 to 107 Ma for 
volcanics of the Yingcheng Formation (K1yc) at Shenping and 
Xingcheng, respectively. Nearly 100 igneous samples, of which 
10 are A- type granite, are compiled in Fig. 8. There were two 
main peaks of magmatism during the Period from 140 to 100 
Ma. The magmatism between 140 and 120 Ma shows obvious 

calc-alkaline affinity and suggests a large-scale tectonic trans-
formation event in the Mesozoic era. But most of the A-type 
granites occur in the period 120 to 100 Ma. 
 
5.2  Magma Genesis 

Nianzishan miarolitic alkaline granite contains sodium- 
rich pyroxene (aegirine-augite) and arfvedsonite; has high SiO2, 
FeOT, alkalies, K/Na ratios, and FeOT/MgO ratios; and plots in 
the alkaline field in Fig. 6. The trace element composition of 
the Nianzishan miarolitic granite is characteristic of A-type 
granites. The Nianzishan miarolitic granite is enriched in HFSE 
(Ga, Zr, Nb, and Y) and REE but depleted in Ba, Sr, P, Ti, and 
Eu. Zr+Nb+Ce+Y is 1 394 ppm to 1 631 ppm, ∑REE is 560.05 
ppm to 866.61 ppm, and 10 000×Ga/Al is 4.10–4.29. All these 
values are much higher than the lowest values usually observed 
in A-type granites (Whalen et al., 1987). Affinities with A-type 
granite were evidenced by geological, petrological, mineralog-
ical and geochemical features of the samples studied. Using 
various discrimination diagrams to further constrain the type of 
A-type granite, it can be seen that all samples in this study plot 
into the A-type granite field (Fig. 9). Whole-rock TZr values 
suggest that overall magmatic temperatures were higher than 
850 ºC for the NAGC (Table 2), in good agreement with global 
hot granites (Miller et al., 2003) that originated by low degrees 

 
Table 4  Ages of A-type granites in the Great Xing’an Range-northwestern Songliao Basin in Early Cretaceous 

Name Location Analytical method Age Reference 

Alongshan North of Great Xing’an Range K-Ar 116–118 Ma Han et al., 2009 

Shangmachang North of Great Xing’an Range LA 106 Ma Wu et al., 2002 

Nianzishan Middle Section of Great Xing’an Range K-Ar 123 Ma Li and Yu, 1993 

LA 112, 114 Ma This study 

Baerzhe Middle Section of Great Xing’an Range Rb-Sr 122±5 Ma Jahn et al., 2001 

LA 116–126, 118–127Ma Qiu et al., 2014 

Longtoushan Zhangguangcai Range TIMS 117±4 Ma Liu et al., 2005 

Gangshan Songnen Block U-Pb 107.7 Ma Fang, 1989 

Baishilazi Zhangguangcai Range TIMS 123±3 Ma Wu et al., 2002 

Shanglvshyuiqiao Zhangguangcai Range LA 117.8 Ma Qin et al., 2012 

 

 

Figure 8. Histogram of age distribution of igneous and A-type granites in 

the Great Xing’an Range-NE Songliao Basin between 140 to 100 Ma. 

of partial melting of dry source rock(s) by dehydration reac-
tions in extensional settings (e.g., Creaser et al., 1991; Clement 
et al., 1986). 
 
5.3  Magma Source 

Whole-rock Sr-Nd isotope data for the Nianzishan A-type 
granite have previously been published (Wei et al., 2002, 2001a, 
b; Li and Yu, 1993; Li, 1992), but because of low Sr contents 
and high 87Rb/86Sr ratios, there were large uncertainties in back- 
corrected (87Sr/86Sr)0 ratios (Wu et al., 1999; Li, 1992). 

Such previous studies in NE China reported positive εNd(t) 
values, low (87Sr/86Sr)0, and young TDM1 (Li J Y et al., 2014; Li 
H X et al., 2012; Guo et al., 2010; Zhang J H et al., 2008; Liu 
et al., 2005; Lin et al., 2003; Jahn et al., 2001; Shao et al,. 
1999). The high εNd(t) and low (87Sr/86Sr)0 ratios for granites 
from the west coast of the United States have been used to 
constrain mantle material input into the continental margin, but 



700 Jinhua Qin, Cui Liu, Yuchuan Chen and Jinfu Deng 

 

mantle input cannot explain the isotopic distribution of igneous 
rocks in Northeast China. Wu et al. (1999) and Hong et al. 
(2000) suggested that the positive εNd(t) and low initial ISr ratios 
from the Xing’an-Mongolian orogenic belt in NE China might 
represent new underplating material derived from partial melt-
ing of subducted oceanic crust. 

As shown in Fig. 10, all samples from the Xing’an-  
Mongolian orogenic belt plot between CHUR and DM lines. 
Hong et al. (2000) suggested that the TDM1 ages of the granites 
in the Xing’an-Mongolian orogenic belt coincided with the 
expansion of the Paleo-Asian Ocean during the Proterozoic, 
and the granites were derived from partial melting of subducted 
oceanic crust. Combined whole-rock Nd and zircon oxygen 
isotopes (low δ18O values ranging from 3.08‰ to 4.27‰ for 
non-metamict phases) further indicated that gabbroic oceanic 

crust could be the source rock of the Nianzishan A-type granites, 
and their formation contributed to the net continental growth 
during the Late Mesozoic (Wei et al., 2008, 2002, 2001a, b). 

 
5.4  Geological Implications 
5.4.1  Tectonic setting 

A-type granites were once thought to be rifting related, 
e.g., in Nigeria and Greenland. However, subsequent studies 
showed that A-type granites also occur within post-orogenic 
settings (Eby, 1992). The tectonic setting of the NAGC is 
therefore constrained by major and trace elements in this study. 
It can be seen that all available samples fall clearly within the 
A1-type field (Figs. 11a, 11b, 11c) and the AA field (Fig. 11d) 
(Hong et al., 1995). Both AA and A1 represent extensional set-
tings. On the tectonic discrimination diagrams of Pearce 

 

 

Figure 9. Discrimination diagrams for A-type granites. (a) FeOT/MgO versus Zr+Nb+Ce+Y; (b) Na2O+K2O/CaO versus Zr+Nb+Ce+Y; (c) Na2O+K2O/CaO 

versus 10 000×Ga/Al; (d) FeOT/MgO versus 10 000×Ga/Al (after Whalen et al., 1987). 

 

 

Figure 10. εNd(t) versus emplacement age and εNd(t) versus model age (TDM1) (b) diagrams (after Hong et al., 2000). 
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(1984), samples from the NAGC plot in within plate environ-
ments (WPG in Fig. 12). 
 
5.4.2  Petrotectonic assemblage 

The notion of petrotectonic assemblages was first proposed 
by Dickinson (1971) to identify ancient tectonic settings (Con-
die, 2014). The concept reflects a correlation between igneous 
rocks and tectonic environment (Deng et al., 2007, 2004, 1996).  

The NAGC is located on the east side of the XMOB at the 
junction of the Xing’an and Songnen blocks. In this area Early 
Cretaceous (140 to 120 Ma) intrusive rocks comprise alkali- 
feldspar granite, granite, quartz monzonite, granodiorite, tona-
lite, monzonite, and melteigite (Table 5). The Peacock index 
results show that they mainly comprise CA and only a small 
amount of calcium (C) and AC. Exposed intrusive rocks are 
less common in the later part of the Early Cretaceous (120–100 
Ma) and comprise alkali granite, syenogranite, granite, por-
phyry, diorite, and metamorphic core complexes. Intrusive 
rocks are predominantly alkaline (A) and AC. The Mesozoic 
granitoids of Jilin Province are granite and monzonitic granite 
(CA) at 130 to 120 Ma and alkali-feldspar granite composites 
(A) at 115 Ma (Sui, 1995). 
 

 

Figure 11. (a) and (b) Nb-Y-3Ga and Nb-Y-Ce triangles (after Eby, 1992); (c) 

Yb/Ta versus Y/Nb diagram (after Eby, 1992); (d) R1 versus 10 000×Ga/Al 

diagram (after Hong et al., 2000). 

 

Figure 12. Tectonic discrimination diagrams for the NAGC (after Pearce et al. 1984). Solid data points are from this study, gray ones are after Lin et al. (2003). 

 
Table 5  Petrotectonic assemblage of the Great Xing’an Range-Songliao Basin in Early Cretaceous 

Epoch Intrusive assemblage References 

140–120 Ma (K1-1) Alkali-feldspar granite-granite-quartz  

monzonite-granodiorite-tonalite-monzonite-melteigite 

Qin et al., 2019; She et al., 2012;  

Wu et al., 2009; Sui, 1995 

120–100 Ma (K1-2) Alkali granite-syenogranite-granite prophyry-sillite-dioritic

porphyrite-metamorphic core complex 

Wang et al., 2013; Guo et al., 2012; Liu C et al., 2011;  

Sun et al., 2008; Cheng et al., 2006; Liu W et al., 2005;  

Lin et al., 2004; Wu et al., 2002; Zhang and Shao, 1998;  

Wang and Zhao, 1997; Li and Yu, 1993 

Epoch Volcanic assemblage References 

140–120 Ma (K1-1) Olive basaltic-andesite-mugearite-gibelite- 

latite-trachyte-olivine basalt-rhyolite 

Zhao et al., 2013; Meng et al., 2011; Zhang, 2009;  

Zhang Y T et al., 2007 

120–100 Ma (K1-2) Rhyolite-comendite-dacite-andesite- 

trachyandesite-basalt (bimodal volcanic rock) 

Wang et al., 2015; Liu R P et al., 2015; Meng et al., 2014;  

Liu W et al., 2014; Jin, 2012; Xu et al., 2010; Zhang, 2009;  

Dong et al., 2008; Lin et al., 2003 
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Volcanic rocks outcrop in the Great Xing’an Range and 
the western Songliao Basin and range stratigraphically from old 
to new as follows: Shangkuli Formation (K1s), Illek Group 
(K1y), Mailer Group (K1m), and Baiyingaolao Group (K1b). The 
Early Cretaceous (140 to 120 Ma) volcanics are olivine basaltic 
andesite, mugearite, latite, trachyte, olivine basalt, and rhyolite. 
Rocks show CA and AC properties, and the olivine basalts are 
tholeiitic (TH). 

Volcanic assemblages at 120 to 100 Ma are composed of 
rhyolite, alkaline rhyolite, anganite, andesite, and basalt and 
occur in the Yingcheng Group (K1yc) in the Songliao Basin. The 
volcanics are mainly alkaline (A). Rhyolite in the margin of the 
Songliao Basin exhibits A-type characteristics (Wang and Xu, 
2003; Ge et al., 2000). The rhyolitic cover of the NAGC has 
A-type characteristics, and its age and geochemistry are con-
sistent with the volcanics of the Yingcheng Group (K1yc) (Liu et 
al., 2014; Li and Yu, 1993). 

These igneous rocks suggest an active continental margin 
and arc environment in the Great Xing’an Range and Songliao 
Basin during the Early Cretaceous (K1-1) and the Ergun Block 
suggests an extensional setting. The igneous assemblages for 

the later part of the Early Cretaceous (K1-2) all suggest stret-
ching and thinning. 
 
5.4.3  Timing constrains on regional extension 

Wang and Xu (2003) studied the formation pressure of 
Mesozoic volcanic rocks in the Songliao Basin and proposed 
that basaltic trachyandesite and trachyandensite of the Huo-
shiling Group formed at 1.0 to 1.2 GPa. The Shahezi Group and 
Illek Group in the Great Xing’an Range yielded pressures of 
1.2 to 1.4 GPa, and the Yincheng Group formed at 0.6 to 1.0 
GPa. Differences in pressure suggest that the lithospheric 
thickness varied from 40 to 20 km and 46 to 90 km and was the 
thinnest (20 to 30 km) at 120 to 100 Ma. 

In summary, igneous rocks related to compressional set-
tings were widespread in the Great Xing’an Range-Songliao 
Basin at 140 to 120 Ma, and roots of the lithosphere from that 
period still exist (Fig. 13a). With continuing subduction of the 
Paleo-Pacific Plate, large scale delamination occurred in the 
NE China and the lithospheric thinning reached its peak from 
120 to 100 Ma (Fig. 13b).  

 

 

Figure 13. Tectonic evolution model of northeast China at 140 to 120 Ma. (a) Period of 140 to 120 Ma, transition stage from compressed to extended setting 

with lithospheric roots still there. (b) Period of 120 to 100 Ma, peak stage of lithospheric delamination and thinning (Lithospheric thickness data from Wang and 

Xu, 2003). 

 
6  CONCLUSIONS 

(1) The age of the Nianzishan A-type granite is from 
112.95±0.93 to 114.1±1.7 Ma, and the age of the porphritic 
syenite is 118.6±0.51 Ma. Sr-Nd isotopes and Nd model ages 
suggest that they originated from partial melting of a common 
juvenile crust source rock. 

(2) The geochemical characteristics of the Nianzishan 
A-type granitoid complex suggest an affinity with A1- or 
AA-subtype granite formed within an extensional setting. 

(3) The occurrence of the NAGC suggests that the Great 
Xing’an Range-Songliao Basin underwent lithosphere thinning 
and extension from 120 to 100 Ma. 
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