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of the Hermyingyi deposit was emplaced at 70.0±0.4 Ma (Jiang 
et al., 2017), but the age of W-Sn mineralization is still poorly 
constrained. Molybdenite has high contents of Re and negligi-
ble initial or common 187Os which make it an ideal mineral for 

Re-Os dating (Stein et al., 2001, 1998) and it has been widely 
used to constrain the mineralization ages of a variety of ore 
deposits including W-Sn deposits in South China (Yang et al., 
2017; Zhang X B et al., 2017; Zhang Z et al., 2017; Zhao et al., 

 

 

Figure 1. (a) Distribution of principal continental blocks and sutures of SE Asia (after Metcalfe, 2013; Hall, 2002); (b) a schematic map showing the 

tin-tungsten bearing granitoid provinces of SE Asia with major sutures and faults (after Sone and Metcalfe, 2008; Cobbing et al., 1986). 
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2017; Hu et al., 2012; Feng et al., 2011; Peng et al., 2006). In 
this contribution, we report the Re-Os age of molybdenite and 
sulfur isotopic compositions of sulfide minerals from the Her-
myingyi W-Sn deposit for the first time, with the aim of con-
straining the mineralization age and elucidating the association 
of W-Sn mineralization with the granites in the Hermyingyi 
deposit. 
 
1  GEOLOGICAL BACKGROUD 

Three sub-parallel Mesozoic granite provinces, which are 
closely associated with the tin-tungsten belt, have been deli-
neated in SE Asia (Fig. 1b; Schwartz et al., 1995; Cobbing et 
al., 1986). The Eastern Province, to the east of the Bentong- 
Raub suture, includes granites that stretch from NW Laos 
through Chiang Mai in Thailand and southerly into East Malay 
Peninsula, whereas the Main Range Province is located west of 
the Bentong-Raub suture that is characterized by granitic gneiss, 
migmatite and granites (Schwartz et al., 1995; Cobbing et al., 
1986). The Western Province, as suggested by Cobbing et al. 
(1986), customarily refers to the granites which extend from 
Phuket in Peninsula Thailand northwards into Mogok in central 
Myanmar, and which may be correlated with the Tengliang 
granite belt distributed further north in the Tengchong Block, 
western Yunnan (Hou et al., 2007). 

Myanmar can be roughly divided into three main tectonic 
domains: Indo-Burma Ranges, West Burma Block and Sibu-
masu Block. The West Burma and Sibumasu blocks are located 
in the west and east of the Sagaing fault, respectively (Fig. 2). 
The Indo-Burma Ranges has been interpreted as the suture zone 
separating the Indian Plate from the West Burma Block, which 
contains Cretaceous–Eocene marine sedimentary rocks, 
mélange and turbidites (Allen et al., 2008; Mitchell, 1993). To 
the east of the Indo-Burma Ranges, the West Burma Block 
consists of the Wuntho-Popa arc and Cenozoic sedimentary 
basins (Mitchell et al., 2012; Mitchell, 1993). The Sibumasu 
Block in Myanmar, bounded to the west by the N-S striking 
dextral strike-slip Sagaing fault (Khan et al., 2017; Barber and 
Crow, 2009), is composed of Cambrian to Triassic sedimentary 
rocks structurally overlying Precambrian metamorphic rocks, 
which, in turn, are unconformably overlain by Upper Jurassic– 
Lower Cretaceous red beds with angular unconformity (Searle 
et al., 2007; Oo et al., 2002). 

Southern Myanmar is rich in W-Sn resources, with more 
than 120 ore deposits or occurrences within a N-S trending belt 
that stretches from the Myeik Archipelago northwards east of 
Yangon (Gardiner et al., 2016). The ore types of W-Sn minera-
lization include quartz vein type (Hermyingyi, Zaw, 1978), 
greisen type (Mawchi, Zaw and Khin Myo Thet, 1983; Pen-
naichaung, Zaw, 1984), stratabound type (Yetkanzintaung, Zaw, 
1984), and alluvial/eluvial type (Heinda), among which the 
quartz vein type is of most importance. The quartz vein type 
W-Sn deposits generally occur in close proximity to the gra-
nites in the “MMM” belt (Jiang et al., 2017; Gardiner et al., 
2015), part of the Western Province (Schwartz et al., 1995; 
Cobbing et al., 1986). W-Sn mineralization is mainly hosted in 
quartz veins and occurred along the exo- and endo-contacts of 
granites, at the apical zones of granitoid intrusions or in the 
adjacent sedimentary rocks. 

2  GEOLOGY OF THE HERMYINGYI W-SN DEPOSIT 
The Hermyingyi W-Sn deposit (Latitude 14°14′N, longi-

tude 98°21′E) is located at approximately 40 km northeast of 
Tavoy Township, Tennasserim Division, southern Myanmar 
(Fig. 3). The Mergui Series forms the sole country rock for the 
deposit. It is composed of Upper Carboniferous to Lower Per-
mian unfossiliferous metasedimentary rocks that strike 
NNW-SSE with steep easterly dips and are dominated by very 
thick intervals of argillaceous with minor limestone, quartzite 
and volcanic detritus. The Mergui Series is intruded by the 
Hermyingyi monzogranite dated at ca. 70 Ma. According to 
Jiang et al. (2017), the Hermyingyi monzogranite is composed 
of plagioclase, K-feldspar, quartz, muscovite and biotite, with 
accessory amounts of garnet, apatite, ilmenite and fluorite; on 
the basis of the geochemical and isotopic signatures, they sug-
gest that the Hermyingyi A-type granite is derived from crustal 
melting of ancient basement rocks. 

According to Zaw (1990), more than 300 major and 
branching veins have been explored in the Hermyingyi deposit. 
Among them, about 60 quartz veins have been mined out and 
only 15 major ore veins are productive at present. The deposit 
has been developed by main crosscuts in five levels, but current 
mining levels are concentrated on 154 and 100 m because the 
adits above 154 m level have all collapsed and become inac-
cessible. These productive veins strike N-S or NNW-SSE with 
steep easterly dips of 80°–85°, although some west dipping 
veins are occasionally noted. The veins vary from several cen-
timeters to 2 m in thickness and some veins can be over 200 m 
in length. Most quartz veins occur in the cupola of the granite, 
occasionally intersect the contact with the country rock and 
penetrate the adjacent metasedimentary rocks for short distances. 
The analogous strikes and no evidence of crosscutting or over-
lapping of the major ore veins may imply that a single fluid 
activity contributed to the formation of the Hermyingyi deposit. 
The ore minerals mainly include wolframite, cassiterite, molyb-
denite, pyrite, galena, sphalerite, and chalcopyrite with subordi-
nate scheelite, bornite and cosalite. The gangue minerals mainly 
include quartz, muscovite, lithium mica, topaz and fluorite. 
Hydrothermal alteration is well-developed, including greiseni-
zation and silicification (Figs. 4a, 4b). 

According to mineral assemblages and crosscutting rela-
tionships, four paragenetic stages are recognized. The silicate- 
oxide stage (I) formed earliest and is marked by the presence of 
feldspar, quartz, wolframite, cassiterite and molybdenite (Figs. 
4a, 4b, 4c and Fig. 5). The second stage is the quartz-sulfide 
stage (II) that followed and cross cut the early silicate-oxide 
stage, and is composed mainly of pyrite, molybdenite, chalco-
pyrite, galena, sphalerite and quartz, with minor wolframite (Figs. 
4d, 4e). Subsequently, the barren quartz vein stage (III) is domi-
nated by quartz, with some fluorite and muscovite (Fig. 4f). The 
supergene stage (IV), as represented by tungstite and malachite, 
is the fourth stage which may have resulted from oxidation of 
wolframite and chalcopyrite at higher supergene levels. 
 
3  SAMPLING AND ANLYTICAL METHODS 
3.1  Molybdenite Re-Os Dating 

Five molybdenite samples from the silicate-oxide stage 
were collected at the 154 m mining level underground. The 
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molybdenite occurs primarily as lamellar or tabular minerals in 
quartz veins, intergrown with wolframite and cassiterite (Fig. 5). 
The molybdenite separates were magnetically separated and 
then carefully handpicked under a binocular microscope to 
achieve >99% sample purity. Subsequently, the selected sepa-
rates were crushed in an agate mortar to about 200 meshes. 
Re-Os isotope analyses of molybdenite were performed using 

ELAN DRC-e ICP-MS at the State Key Laboratory of Ore 
Deposit Geochemistry, Institute of Geochemistry, Chinese 
Academy of Sciences, Guiyang. The improved Carius tube 
method was used for digesting molybdenite separates owing to 
the extremely low Os concentrations in molybdenite (Shirey 
and Walker, 1995). Detailed analytical procedures were docu-
mented in Du et al. (2004), Li et al. (2010) and Qi et al. (2010). 

 

 

Figure 2. Simplified geological map showing major blocks, major W-Sn deposits and the granitoid belts of Myanmar (after Jiang et al., 2017; Gardiner et al., 

2014; Zaw, 1990). 
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The equation: t=[ln (1+187Os/187Re)]/λ has been used to calcu-
late the model ages, where λ is the decay constant of 187Re of 
1.666×10-11/yr-1 (Smoliar et al., 1996). The Re-Os isochron age 
was calculated following the least squares method of York 

 

 

Figure 3. Geological map of the Hermyingyi W-Sn deposit. 

 

(1968), as implemented in Isoplot/Ex_ver3 (Ludwig, 2003). 
 
3.2  Sulfur Isotope Analysis 

Sulfur isotope analyses were performed for 18 sulfide 
samples from the quartz-sulfide stage, including four galenas, 
three sphalerites, four pyrites, four chalcopyrites and three 
molybdenites. These samples were collected at the 154 and 100 
m mining level underground, respectively. The sulfur isotopic 
analysis were carried out using a continuous flow-isotope ratio 
mass spectrometry (CF-IRMS) at the State Key Laboratory of 
Environmental Geochemistry, Institute of Geochemistry, Chi-
nese Academy of Sciences, Guiyang, China. The detailed ana-
lytical procedure can be found in Grassineau et al. (2001). The 
data are reported in standard delta notation relative to VCDT, 
and the analytical error is ≤ 0.2‰. 
 
4  RESULTS 
4.1  Molybdenite Re-Os Age 

Five molybdenites are analyzed for their Re-Os isotopes 
and the results are listed in Table 1 and illustrated in Fig. 6. The 
Re-Os model ages range from 67.8±1.6 to 69.2±1.6 Ma 
(weighted mean age of 68.7±1.2 Ma). The calculated isochron 
age is 68.4±2.5 Ma (MSWD=0.18, 2σ), and the calculated ini-
tial 187Os value is 0.000 1±0.001 1 ng/g. A nearly zero intercept 
confirms that molybdenite contains a negligible amount of 
common Os and that most of the 187Os in molybdenite are ra-
diogenic. The nearly identical Re-Os weighted mean age and 
isochron age within the uncertainty suggest that the analytical 
result is reliable and could precisely constrain the timing of the 
Hermyingyi W-Sn mineralization. 
 
4.2  Sulfur Isotopic Composition 

Sulfur isotopic compositions of 18 sulfides are presented 
in Table 2 and illustrated in Fig. 7. The δ34S values of sulfides  

 

Figure 4. Photographs of ore and gangue minerals. (a) (b) and (c) for ore minerals of the silicate-oxide stage; (d) and (e) for ore minerals of the quartz-sulfide 

stage; (f) for the barren quartz vein stage. Cst. Cassiterite; Ccp. chalcopyrite; Mol. molybdenite; Py. pyrite; Qz. quartz; Wol. wolframite. 
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Figure 5. Photographs of molybdenite-bearing ore samples from the Hermyingyi W-Sn deposit. 

 
Table 1  Re and Os isotopic data for molybdenite from the Hermyingyi W-Sn deposit 

Sample Weight (g) Re (ng/g) 187Re (ng/g) 187Os (ng/g) Model ages (Ma) 

Measured 1σ Measured 1σ Measured 1σ Measured 1σ 

HMG14 0.043 9 22.92 0.34 14.30 0.10 0.016 39 0.000 46 68.8 1.1 

HMG16 0.040 7 69.92 0.86 43.77 0.31 0.049 45 0.000 91 67.8 1.6 

HMG17 0.042 3 28.67 0.46 18.84 0.19 0.021 75 0.000 53 69.2 1.6 

HMG29 0.044 4 80.34 0.92 65.40 0.41 0.075 15 0.001 41 68.9 1.5 

HMG67 0.043 2 298.6 2.5 189.0 0.8 0.216 7 0.007 1 68.8 1.3 

 

 

Figure 6. (a) Re-Os isochron age and (b) weighted mean model age of molybdenites from the Hermyingyi deposit. 

 
are homogeneous with a narrow range of +1.9‰ to +5.6‰ 
(average +3.7‰). The δ34S values of four galena separates 
range from +1.9‰ to +2.8‰ (average +2.5‰); the δ34S values 
of three sphalerite separates range from +2.9‰ to +3.9‰ (av-

erage +3.5‰); the δ34S values of four chalcopyrite separates 
range from +3.5‰ to +4.3‰ (average +3.8‰); the δ34S values 
of four pyrite separates range from +3.3‰ to +5.6‰ (average 
+4.9‰); the δ34S values of three molybdenite separates range  
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Table 2  The sulfur isotopic composition of the Hermyingyi W-Sn deposit 

Sample Location Minerals δ34SVCDT (‰)

HMG20 Vein 26E at 154 m level Galena +2.7 

HMG25 Vein 15E at 154 m level Galena +2.8 

HMG37 Vein 15E at 154 m level Galena +2.5 

HMG71 Vein 20E at 154 m level Galena +1.9 

HMG24 Vein 15E at 154 m level Sphalerite +3.9 

HMG25 Vein 15E at 154 m level Sphalerite +3.5 

HMG27 Vein 26E at 154 m level Sphalerite +2.9 

HMG20 Vein 26E at 154 m level Chalcopyrite +4.3 

HMG31 Vein 20E at 154 m level Chalcopyrite +3.5 

HMG35 Vein 20E at 100 m level Chalcopyrite +3.7 

HMG38 Vein 24E at 154 m level Chalcopyrite +3.8 

HMG20 Vein 26E at 154 m level Pyrite +5.6 

HMG22 Vein 14E at 154 m level Pyrite +5.3 

HMG31 Vein 20E at 154 m level Pyrite +3.3 

HMG35 Vein 20E at 154m level Pyrite +5.6 

HMG36 Vein 14E at 154 m level Molybdenite +3.7 

HMG34 Vein 13E at 100 m level Molybdenite +3.6 

HMG68 Vein 13E at 100 m level Molybdenite +3.9 

 

 

Figure 7. Sulfur isotope histogram of the Hermyingyi W-Sn deposit. 

 
from +3.6‰ to +3.9‰ (average +3.7‰). 
 
5  DISCUSSION 
5.1  Age of the Hermyingyi W-Sn Deposit 

The recent zircon U-Pb age determination revealed that 
the monzogranite related to W-Sn mineralization of the Her-
myingyi deposit was emplaced at 70.0±0.4 Ma (MSWD=0.9, 
2σ) (Jiang et al., 2017). However, no accurate mineralization 
age has been reported for the Hermyingyi W-Sn deposit prior to 
this study. In the Hermyingyi W-Sn deposit, homogenization 
temperatures of fluid inclusions from vein quartz and quartz in 
the adjacent greisens range from 186 to 250 ºC (Zaw, 1978), 
which are significantly lower than the estimated closure tem-
perature of 500 ºC for the Re-Os isotopic system (Suzuki et al., 
1996). In addition, the molybdenite samples were selected from 
the ore-bearing quartz veins at the silicate-oxide stage (Fig. 5). 
Wolframite, when presented, is generally the first ore mineral 

to crystallize, followed by molybdenite and cassiterite. Thus, it 
can be assumed that the Re-Os system for molybdenite re-
mained closed during and after mineral precipitation which 
could be less easily disturbed by later hydrothermal overprint-
ing (Stein et al., 2001, 1998). The molybdenite Re-Os isochron 
age of 68.4 Ma could represent the mineralization age of the 
Hermyingyi deposit. 
 
5.2  Possible Source of Ore-Forming Metals 

According to Ohmoto (1972), the interpretation of the 
sulfur source of hydrothermal deposit must be dependent on the 
total sulfur isotopic composition of hydrothermal fluids (δ34S∑) 
and physico-chemical parameters of the fluid system. Under a 
reduced deposition environment that is characterized by low 
pH and oxygen fugacity (fo2), the fluid system is dominated by 
H2S and the sulfide δ34S could approximate the hydrothermal 
fluid δ34S in the equilibrium state (Ohmoto, 1972). The ore 
minerals from the Hermyingyi deposit have simple sulfide 
assemblages, including galena, sphalerite, chalcopyrite, pyrite 
and molybdenite, but sulfate minerals are scarce, implying a 
reduced system for the deposition of sulfides. The δ34S values 
in each coexisting mineral assemblage (HMG20, HMG25, 
HMG35) decrease progressively in the sequence of molybdenite- 
pyrite-sphalerite-chalcopyrite-galena, suggesting that a sulfur 
isotopic fractionation equilibrium had been reached (Ohmoto, 
1972). Therefore, the sulfide δ34S could represent the hydro-
thermal fluid δ34S. The δ34S values of sulfides from the Her-
myingyi deposit are homogenous and vary from +1.9‰ to 
+5.6‰, with an average of 3.7‰, indicating a magmatic source. 
These values are in well agreement with the contention of Oh-
moto and Rye (1979), who suggested that the magmatic-  
hydrothermal ore deposits related with felsic intrusions which 
are derived from a homogenized continental crust have a δ34S 
range of +0.2‰ to +5.8‰. 

The Re-Os isotopic system is generally regarded as a 
highly sensitive indicator for the source of ore-forming metals 
(Stein et al., 2001; Mao et al., 1999). Previous studies have 
demonstrated that Re contents in molybdenite display a mono-
tonic decreasing trend from >100 ppm for a mantle source, 
through tens of ppm for a mixed source of mantle and crust, to 
<10 ppm for a crustal source (Berzina et al., 2005; Mao et al., 
1999). As shown in Table 1, Re contents in molybdenite from 
the Hermyingyi deposit vary from 22.9 ppb to 299 ppb, with an 
average of 100 ppb, and are similar to values obtained from 
typical quartz vein type tin-tungsten deposits in South China 
for which a crustal source of ore metals are assumed (e.g., 
Zheng et al., 2017; Zhang et al., 2015; Hu et al., 2012; Feng et 
al., 2011; Peng et al., 2006). In addition, the Hermyingyi mon-
zogranites have negative εNd(t) (-11.3 to -10.6) and εHf(t) (-12.4 
to -10.0) values, with Paleoproterozoic TDM2 ages (1.7–1.9 Ga) 
for both Nd and Hf isotopes, indicating that they were derived 
from partial melting of the Paleoproterozoic continental crust 
with no or little mantle component (Jiang et al., 2017). There-
fore, it is suggested that the ore-forming metals from the Her-
myingyi deposit were predominantly magmatic and are related 
to the granitic intrusion. 
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5.3  Regional Metallogenic Implication 
According to the aforementioned discussion, the Re-Os 

isochron age in this study and previously published zircon 
U-Pb age of the Hermyingyi monzogranite are nearly identical 
(70.0±0.4 Ma; Jiang et al., 2017), in addition, the occurrence of 
the ore veins is in close proximity to the Hermyingyi monzo-
granite and the relatively narrow range of δ34S values of sul-
fides coupled with the low Re contents in molybdenite, we 
suggest for a genetic link between the W-Sn mineralization and 
the emplacement of the Hermyingyi monzogranite in the Her-
myingyi deposit. 

Previous studies have demonstrated that the granites 
within the Western Province of SE Asia are mainly distributed 
in central and southern Myanmar (e.g., Charusiri et al., 1993). 
The recent zircon U-Pb age determinations show that the gra-
nitic magmatism in central and southern Myanmar mainly oc-
curred within a relatively wide age range of 130–45 Ma (Jiang 
et al., 2017; Than Htun et al., 2017; Gardiner et al., 2017, 2016; 
Mitchell et al., 2012; Barley et al., 2003). Among them, the 
W-Sn mineralized granites yield Late Cretaceous–Paleogene 
ages of 75–45 Ma (Jiang et al., 2017; Than Htun et al., 2017; 
Gardiner et al., 2017, 2016). In addition, the Late Cretaceous– 
Paleogene W-Sn deposits and related granites have been re-
cently identified from the Tengliang granite belt in Tengchong 
Block, western Yunnan, which has been regarded as the north-
ern continuation of the Western Province (Hou et al., 2007). Ma 
et al. (2013) obtained a cassiterite U-Pb age of 75.5±2.6 Ma for 
the Dasongpo Sn deposit. Chen et al. (2014) reported cassiterite 
U-Pb ages from the Tieyaoshan, Xiaolonghe and Lailishan Sn 
deposits of 119.3±1.7, 71.9±2.3, and 47.4±2.0 Ma, respectively. 
The zircon U-Pb dates of 73.3±0.5, 52.7±0.3 and 53.0±0.4 Ma 
were also reported for the Xiaolonghe and Lailishan granites, 
respectively (Chen et al., 2015). Integrating our new geochro-
nological study with the high precise geochronological data 
published previously, it may imply an important regional W-Sn 
mineralization event related to Late Cretaceous–Paleogene 
granitic magmatism in the Western Province of SE Asia. Of 
course, more precise geochronological studies in the region are 
needed to confirm this assumption. 

It is noteworthy that South China, which is located in the 
vicinity of SE Asia, hosts abundant Late Cretaceous granitoids 
(110–75 Ma, mostly 95–80 Ma) and associated W-Sn deposits 
(e.g., Zhao et al., 2017; Mao et al., 2013). As argued by Mao et 
al. (2013) and Zhao et al. (2017), the Cretaceous polymetallic 
W-Sn mineralization (134–80 Ma) also represents a significant 
episode of W-Sn metallogenic events in South China. Liu et al. 
(2007) obtained a cassiterite U-Pb age of 82.0±9.6 Ma for the 
Dulong Sn deposit. Yang et al. (2008) reported a molybdenite 
Re-Os age of 83.4±2.1 Ma for the Gejiu Sn-Cu deposit. More 
recently, Zheng et al. (2017) obtained a molybdenite Re-Os age 
of 79.4±1.1 Ma for the Xishan W-Sn deposit, western Guang-
dong Province, consistent with the zircon U-Pb age of 79.1±0.3 
Ma for the alkali feldspar granite. These available geochrono-
logical data suggest that the W-Sn mineralization and related 
granitic magmatism in the Western Province of SE Asia took 
place obviously younger than those in South China. Why are 
there so many large-sized Late Cretaceous–Paleogene W-Sn 
deposits in SE Asia and what was the geodynamic setting for 

their formation? Whether there also exists a latest Cretaceous 
or younger W-Sn metallogenic event in South China? The solu-
tions to these questions are of great scientific and economic 
importance and need numerous systematic further studies in the 
future. 
 
6  CONCLUSIONS 

(1) Re-Os dating of five molybdenites yield model ages 
varying from 67.8±1.6 to 69.2±1.6 Ma, with a weighted mean 
age of 68.7±1.2 Ma, in consistent with a well-defined 
187Re/187Os isochron age of 68.4±2.5 Ma (MSWD=0.18, 2σ). 
The nearly identical Re-Os isochron age and previously pub-
lished zircon U-Pb age of the Hermyingyi monzogranite 
(70.0±0.4 Ma) (MSWD=0.9, 2σ) indicate a genetic link be-
tween the monzogranitic magmatism and W-Sn mineralization. 
Our new high precise geochronological data reveal that W-Sn 
mineralization and related granitic magmatism took place dur-
ing the Late Cretaceous (70–68 Ma). 

(2) The low Re contents (22.9 ppb to 299 ppb) in molyb-
denite, coupled with δ34S values in the range of +1.9‰ to  
+5.6‰ of sulfides suggest that ore-forming metals were pre-
dominately magmatic related to the crust melting of granites. 
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