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1  GEOLOGICAL SETTING AND STRATIGRAPHY 
During the early Middle Triassic, the Luoping area was 

located on the southwestern part of the Yangtze Block and was 
separated from the Nanpanjiang Basin by a shoal complex 
(Enoset al., 2006; Lehrmann et al., 2005; Feng et al., 1997; Fig. 
1a). Several spatially and temporally separated intraplatform 
basins or depressions (e.g., the Panxian, Luoping, Xingyi, and 
Guanling) have been discovered from the Late Anisian, Late 
Ladinian and Carnian intervals, respectively, yielding excep-
tionally preserved reptile fossils (Benton et al., 2013; Hu et al., 
2011). The preservation of those fossil Lagerstätten was aided 
by particular palaeoenvironmental conditions in these basins, 
such as restricted circulation, density stratification of the water 
column, and dysoxic to anoxic bottom waters during the burial 
of the faunas (Benton et al., 2013). In Luoping, abundant ma-
rine reptile faunas and invertebrate fossils (including trace fos-
sils) were preserved in dark-colored, micritic limestones 

representing the upper part of the Member II of the Guanling 
Formation (Hu et al., 2011). The Guanling Formation is subdi-
vided into two members. Member I is composed of siliciclastic 
sediments, representing deposition in subtidal to intertidal envi-
ronments (Hu et al., 1996). Member II consists of micritic li-
mestones, bioclastic limestones, oncoidal limestones and do-
lomites in the lower and middle parts, and black muddy limes-
tones, cherty limestones, and grey dolomite in the upper part. 
The Guanling Formation in the Luoping area, overall, records a 
deepening upward sequence (Zhang et al., 2008).  

Three excavated sections, namely the Dawazi (or Daaozi), 
Shangshikan, and Xiangdongpo revealed the well preservation 
of the Luoping Biota, which have been studied extensively in 
terms of the stratigraphy, sedimentology, palaeontology and 
taphonomy (e.g., Luo et al., 2017a, b, 2013; Feldmann et al., 
2015, 2012; Liu et al., 2014; Schweitzer et al., 2014; Zhang et 
al., 2014; Benton et al., 2013; Huang et al., 2013; Wen et al.,  

 

 

Figure 1. (a) Middle Triassic palaeogeographic map of South China showing the palaeogeographic setting of the Luoping area during that time (base map was 

modified from Feng et al. (1997)); (b) Location of the studied Xiangdongpo Section in the Luoping County, eastern Yunnan Province, SW China. Location of 

the other two excavated sections (Dawazi or Daaozi, and Shangshikan) with abundant fossils of the Luoping Biota are also shown. 
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2012a, b; Chen and Benton, 2012; Hu et al., 2011; Zhang et al., 
2009, 2008; Fig. 1b). A thickly bedded limestone unit among 
these three sections aided the correlation among the three sec-
tions. The trace fossil studied herein was discovered from the 
Xiangdongpo Section. Three stratigraphic units were defined in 
this section, which represent deposition in shallow subtidal to 
offshore environment (Luo et al., 2017b; Fig. 2).  

Biostratigraphical study suggests that the Luoping Biota is 
of Anisian Age. This is supported by both conodont zonation 
and bivalve assemblages. The Nicoraellakockeli conodont 

Zone has been found from the fossil bearing unit at the Dawazi, 
Shangshikan, and Xiangdongpo sections (Zhang et al., 2014; 
Bai et al., 2011a, b; Hu et al., 2011; Huang et al., 2009). This 
conodont zone includes elements such as Nicoraellagermani-
cus, Nicoraellakockeli and Cratognathodus sp., indicative of a 
Pelsonian Age of the Middle Anisian (Huang et al., 2009; 
Zhang et al., 2009). Meanwhile, the underlying Member I of 
the Guanling Formation yields bivalve assemblages of Anisian 
Age in South China (Zhang et al., 2008). Further, several clay 
beds discovered from Member I of the Guanling Formation 

 

 

Figure 2. Stratigraphic columns showing the distribution of trace fossils and bioturbation levels of the Xiangdongpo (XDP) Section at Luoping, Yunnan Prov-

ince (modified from Luo et al., 2017b). Stars indicate horizons with Sinusichnus occurrences. The bioturbation scheme follows Reineck (1963) and Taylor and 

Goldring (1993). 
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Figure 3. (a)–(d), Sinuous burrow system of Sinusichnus sinuosus preserved as positive hyporelief on soles of wackestones at the Xiangdongpo Section, Luo-

ping County. Note the T-shaped (arrow in (a)) and Y-shaped (arrow in (b)) branching of burrow system. (c) and (d) are the sketches of the burrow systems in (a) 

and (b) respectively.  

 
were regarded as marker beds of the base of the Anisian in 
southwestern China (Zhang et al., 2009; Enoset al., 2006).  

 
2  DESCRIPTION OF TRACE FOSSIL MATERIALS 
2.1  Morphology 

Sinusichnus occurs at two horizons of the Xiangdongpo 
Section (Fig. 2). The first horizon shows scarce presence of 
Sinusichnus in association with large sized Thalassinoides (Fig. 
2). This layer exhibits a nodular appearance on the field expo-
sure. Sinusichnus burrows at this horizon are characterized by 
branched burrow systems, with burrow fillings having a darker 
color than the host rock. Burrow fillings of Thalassinoides are 
silicified, but fragments of shells and gastropods can be dis-
cerned. At the second horizon, Sinusichnus are present in the 
basal part of bioturbated wackestones with silicified nodules 
(Fig. 2). The well-preserved specimens at this horizon facilitate 
a detailed examination of trace fossil morphology. Specimens 
studied were preserved as positive or negative hyporeliefs and 
can be found at areas spanning several square decimeters. Ho-
rizontal burrows are unlined and show regular sinuous tunnels, 
while less regular to straight tunnels are also observed in the 
same branching system (Figs. 3a‒3d). Burrow width is uniform 
in a single branching system. Y- or T-shaped branching pattern 
dominates (Figs. 3a‒3b). On some occasions, two closely em-
placed triple junctions form an H-like configuration (Fig. 4b). 

Branching points with four branches are also observed occasio-
nally (Fig. 4a). The burrowing system penetrates shallowly into 
the sediments at very shallow depths (no more than 1.5 cm). 
Burrow surfaces are smooth to knobby. In the vertical profile, 
retrusive spreiten are not observed. Associated large Rhizoco-
rallium are characterized by their long, tongue-shaped burrows, 
with occasional primary successive branching. These features, 
combined the dumbbell-like cross-section view justify them as 
R. commune (Knaust, 2013; Rodríguez-Tovar and Pérez-Valera, 
2008). U-shaped R. commune is more abundant than Sinusich-
nus on the bedding plane. The marginal tubes of Rhizocoral-
lium range from 18 to 25 mm in diameter. Sinusichnus burrows 
were locally cross-cut by Rhizocoralliumor vice versa. There is 
no distinct color difference between the burrow filling of Sinu-
sichnus, Rhizocorallium, and their host rocks.  

Several mathematical approaches have been applied to the 
study of geometry and regularity of Sinusichnus (e.g., Be-
laústegui et al., 2014; de Gibert et al., 1999). These approaches 
include the measurement of wavelength (λ) and amplitude (A) 
of the sinuous tunnels within Sinusichnus burrow system. The 
diameter (d) is also measured (see Fig. 5a for details). Mea-
surements of the former two were plotted in a bivariate diagram 
to investigate their correlations (Fig. 5b). Data of 18 measure-
ments show a significant correlation between λ and A (R2= 
0.724 5), which has been observed in other reported Sinusichnus 
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Figure 4. Field photos showing the association of Sinusichnus (Si) and Rhizocorallium (Rh) on soles of wackestones. (a) Tongue-shaped Rhizocorallium (Rh), 

and the small, sinuous and branching Sinusichnus (Si). Hammer for scale is 38 cm long. (b) Densely occurred Sinusichnus with Rhizocorallium at the bottom. 

Note the characteristic H-shaped morphology of Sinusichnus. Note the H-like configuration is composed of two closely emplaced triple junctions (white arrow). 

 

(e.g., Belaústegui et al., 2014; de Gibert et al., 1999). The only 
difference is the value of slope. De Gibert et al. (1999) reported S. 
sinuosus materials from the Lower Pliocene strata in France and 
Spain, with a slope value at 5.19. Belaústegui et al. (2014) meas-
ured Sinusichnus specimens from six localities in Spain and re-
vealed three slope values at around 1.1, 2.5 and 4.05. Diameters 
of Sinusichnus remain identical in each particular burrow system 
but varied slightly between different specimens. A total mea-
surement of 102 specimens reveals a burrow width ranging from 
4 to 16 mm, with an average value at 8.8 mm (Fig. 5c).  

3  DISCUSSIONS 
3.1  Taxonomic Discussion 

The newly discovered trace fossil materials are extremely 
similar to the ichnogenus Sinusichnus established by de Gibert 
(1996). This is revealed by its regular sinuous and branching 
morphology of horizontal tunnels. Except the type ichnospecies 
S. sinuosus established by de Gibert (1996), Kappel (2003) 
proposed another ichnospecies S. priesti based on trace fossil 
materials from the Upper Cretaceous strata in Germany. The 
only feature distinguishing S. sinuosus from S. priesti is the  
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Figure 5. (a) Schematic figure showing the measurement of the wavelength 

(λ), the amplitude (A) and diameters (d) of sinuous tunnels within Sinusich-

nus specimens from the Middle Triassic Guanling Formation in Luoping, 

Yunnan Province; (b) correlation plot of wavelength (λ) versus amplitude (A) 

based on measurements of Sinusichnus specimens at Luoping; (c) histogram 

figure showing the size distribution of Sinusichnus burrow diameters. 

 
presence of bioglyphs on the latter. No scratching marks or biog-
lyphs have been observed in the Luoping specimens, thus allow-
ing a reasonable assignment to S. sinuosus. It is noted, however, 
that the specimens studied here are less regular in some part of 
the burrow system when compared with Sinusichnus from the 
Pliocene and Miocene strata (e.g., Belaústegui et al., 2014; Bua-
tois et al., 2009). While the positive correlation between wave-
length (λ) and amplitude (A) of the Luoping specimens has also 
been found in typical S. sinuosus (de Gibert et al., 1999), further 
supporting the studied trace fossils are S. sinuosus. 

Several trace fossils are comparable to Sinusichnus in 
morphology and this has been discussed in detail in previous 
studies (e.g., Belaústegui et al., 2014; Buatois et al., 2009; de 
Gibert et al., 1999). These traces include members of the Tha-
lassinoides group (e.g., Thalassinoides, Ophiomorpha; Sei-
lacher, 2007) and the graphoglyptid trace Protopaleodictyon. In 
addition, the similarity between Sinusichnus and the horizontal 
meandering burrows such as Cochlichnus and Cosmorhaphe 
has also been mentioned (Belaústegui et al., 2014). The newly 
discovered specimens from the Middle Triassic Guanling For-
mation reveal several characteristics that distinguish it from all 

the above-mentioned traces. Firstly, it shows the typical Y-
shaped branching, which ruled out its possible assignment to 
the sinuous Cochlichnus or Cosmorhaphe. The latter two sinu-
soidal burrows are both smooth, unbranched grazing traces 
although the latter occasionally branched (Bordy et al., 2011; 
de Gibert et al., 1999; McCann and Pickerill, 1988). The regu-
lar sinuous morphology in the new specimen (Figs. 3a–3d, 4a–
4b) was never present in Thalassinoides. Additionally, the 
absence of pelleted lining in branching tunnels in our speci-
mens distinguishes it from Ophiomorpha. 

It has also been mentioned that Sinusichnus resembles cer-
tain graphoglyptid traces, in particular, Protopaleodictyon and 
Megagrapton (Belaústegui et al., 2014; de Gibert et al., 1999; 
de Gibert, 1996). However, the found specimen did not dis-
playshort, blind apical elements or appendages at each undula-
tion typical of Protopaleodictyon incompositum (Uchman, 
1998). For the latter, the branching burrows of Megagrapton 
are instead slightly curved or straight and the branching angles 
are nearly 90º (Häntzschel, 1975), which morphology is very 
different from the materials reported herein.  
 
3.2  Palaeoecology of Sinusichnus from Luoping, Southwes-
tern China 

It has been noted that Sinusichnus presents morphological 
similarities with other branching burrows now clustered within 
the Ophiomorphid traces (e.g. Thalassinoides, Ophiomorpha, 
Spongeliomorpha, Pholeus and Gyrolithes, sensu, Seilacher, 
2007). These Ophiomorphid traces are currently interpreted as 
dwelling or feeding traces (Ekdale, 1992), which suggests a 
similar ethological mode for Sinusichnus trace makers. On the 
other hand, de Gibert et al. (1999) pointed out that the highly 
regular sinuosity of branches within Sinusichnus burrow sys-
tems is very characteristic of agrichnial structures, indicating 
possible farming or trapping strategies. Further, de Gibert et al. 
(1999) discussed four proposed ethological modes of Sinusich-
nus and favored an ethological change during the ontogeny of 
the producer from juvenile to adult. For instance, in the Lower 
Pliocene BaixEbre Basin in Spain, the small and large Sinu-
sichnus burrowing systems were preserved together (de Gibert 
et al., 1999; de Gibert, 1996).  

The studied S. sinuosus specimens herein might suggest 
certain deposit-feeding behavior of the trace makers. This is 
supported by the evidence that the sinuous branching burrow 
systems are distributed in very shallow tiers. Further, it was 
found that S. sinuosus from the Guanling Formation in Luoping 
are in close association with R. commune. The cross-cutting 
relationships of these two ichnotaxa show that they most likely 
belong to the same tier. Thus, they might be produced by or-
ganisms sharing similar feeding habits and colonize at the same 
time. The deposit feeding behavior of trace maker producing R. 
commune has been recognized by several researchers (e.g., 
Knaust, 2013). The trace makers producing S. sinuosus and R. 
commune probably lived at shallow depths to feed on bacteria 
within sediments. The search for bacteria as food resources of S. 
sinuosus trace makers is further supported not only by the net-
work shaped specimens, but the abundant preservation of reti-
culated ridge structures in strata (Luo et al., 2013). The latter 
represent the former presence of microbial mat, implying a  
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prolific distribution of microbes in sediments serving as food 
resources for the deposit-feeding organisms producing S. sinu-
osus and other deposit feeders. 

Several animals have been proposed as the potential trace 
maker of Sinusichnus, which include decapod crustaceans and 
isopods (Knaust, 2016; Belaústegui et al., 2014; Buatois et al., 
2009; de Gibert, 1996). S. sinuosus from Luoping might also be 
produced by decapod crustaceans. In fact, the body fossil 
record suggested that decapod crustaceans were abundantly 
preserved in the Luoping Biota, which includes a newly estab-
lished family and several new species (e.g., Feldmann et al., 
2017, 2015, 2012; Huang et al., 2013). 
 
3.3  Temporal and Spatial Distribution of Sinusichnus 

Since de Gibert (1996) established the ichnospecies Sinu-
sichnus sinuosus based on Lower–Middle Pliocene specimens 
from Spain and France, more and more similar structures as-
signed to Sinusichnus have been reported from different locali-
ties and stratigraphical ranges (Belaústegui et al., 2014; Buatois 
et al., 2009; Kappel, 2003). Table 1 summarizes discovered 
trace fossil Sinusichnus from all over the world. These data 
also include some unpublished data. The oldest known occur-
rence of reported ichnotaxa could be traced back to the Middle 
Triassic (Knaust et al., 2016). The study on the ichnology of 
the Middle Triassic Udelfangen Formation established a new 
ichnospecies Sinisichnus seilacheri, which was probably pro-
duced by isopod crustaceans (Knaust et al., 2016; Table 1). 
Other reported occurrence includes S. sinuosus from the Upper 
Cretaceous Hidden Lake Formation, and several more exam-
ples from Miocene and Pliocene (Belaústegui et al., 2014; Bua-
tois et al., 2009; de Gibert et al., 1999; de Gibert, 1996; Table 
1). Our reported trace fossil materials from the Middle Triassic 
strata at Luoping in South China represent the first report from 
South China, and further supports the long stratigraphic range 
of Sinusichnus sinuosus starting from the Anisian. In addition, 
recent studies suggest that Sinusichnus might have an even 
longer stratigraphic range dating back to the Late Devonian 
(Table 1, unpublished data). These occurrences include one 
occurrence from the Late Devonian Wutong Formation in Wu-
han, China, and another one from the Lower Triassic Jialing-
jiang Formation in Sichuan, China. Whether these older exam-
ples are produced by decapod crustaceous or isopod crusta-
ceans remains to be answered. 
 
4  CONCLUSION 

New Middle Triassic trace fossils were found from the 
Guanling Formation in Luoping, Yunnan Province. The trace 
fossil materials were associated with the Luoping Biota as-
signed to the Anisian in age. Various morphological features 
suggest that these traces can be tentatively assigned to the de-
capod trace Sinusichnus sinuosus. Thus, these new trace fossil 
materials represent the first reported Sinusichnus from South 
China, strengthening its early appearance since Anisian. How-
ever, the global record of Sinusichnus might suggest that these 
burrows could have an older history back to the Late Devonian. 
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