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ABSTRACT: The Luoping Biota discovered from the early Middle Triassic (Anisian) Guanling For-
mation of southwestern China represents a fully recovered shallow marine ecosystem, marking the
end point of Early Triassic biotic recovery following the end-Permian mass extinction. Contempora-
neously preserved are prolific trace fossils, which offer good opportunities to understand the palaeoe-
cology of marine invertebrates from a fully recovered shallow marine ecosystem. Here we present a
newly discovered sinuous branching burrow from the fossil-bearing unit in Member II of the
Guanling Formation. Several features, including the horizontal regular sinuous nature, the branching
pattern, typical H-junction, and the small wavelength/amplitude ratio of these sinuous structures with-
in the burrow systems justify assignment of these traces as Sinusichnus sinuosus, a trace possibly pro-
duced by decapod crustaceans. Close association of S. sinuosus with Rhizocorallium commune suggests
a deposit-feeding strategy of these trace makers. The newly reported Anisian material from the
Guanling Formation in Luoping represents first report of Sinusichnus from South China. The global
record of Sinusichnus occurrence suggests that these burrows might have an older history than Early
Middle Triassic.

KEY WORDS: Sinusichnus sinuosus, decapod crustacean, trace fossil, Middle Triassic, Luoping,
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0 INTRODUCTION

The end-Permian mass extinction (EPME) is considered
the largest catastrophic event of the Phanerozoic, causing a loss
of ~95% of marine species and 81% of terrestrial vertebrate
species (Stanley, 2016; Erwin, 2006; Erwin et al., 2002). There
has been a consensus that this biotic crisis is closely associated
with the devastated palacoenvironmental conditions triggered
by the mass eruption of Siberian Basalt during the Latest Per-
mian (Shen et al., 2011). Due to the long persistence of such
stressful environmental conditions in the marine realm, the
biotic recovery in the aftermath of the EPME lingered for some
5 Ma (Zhang F F et al., 2018; Tian et al., 2014; Song et al.,
2012). It was not until the Early Middle Triassic that fully re-
covered shallow-marine ecosystems were re-established (Chen
and Benton, 2012), which is typically represented by the Luop-
ing Biota of the Middle Triassic Guanling Formation of south-
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western China (Chen and Benton, 2012; Hu et al., 2011). Pro-
lific vertebrate and invertebrate fossils from this biota revealed
a highly developed shallow marine ecosystem after the EPME
(Liu et al., 2014; Benton et al., 2013; Chen and Benton, 2012;
Hu et al., 2011). In addition to the abundantly preserved body
fossils, trace fossils were also widely distributed in the fossil-
bearing units with high diversity and abundance (Luo et al.,
2017a, b; Zhang et al., 2014; Benton et al., 2013). A compari-
son of trace fossil assemblages from the Luoping Biota and
those from the Early Triassic suggests that trace makers might
well have recovered immediately after the EPME (Luo et al.,
2017b). Among the traces produced by decapod crustaceans
(e.g. Rhizocorallium, Spongeliomorpha, and Thalassinoides) in
Luo-ping, new trace fossil materials found recently revealed
the occurrence of another branching trace with highly regular
sinuosity, justifying a reasonable assignment to the crustacean
burrow Sinusichnus sinuosus, which has not been discovered
from South China until recently (Luo et al., 2017b). The aim of
this paper is to describe the morphology of this new trace fossil
in detail and discuss its palaecoecology. A summary of all re-
ported occurrence of Sinusichnus has also been generated, with
emphasis on the spatial and temporal distribution of this highly
regularly branching trace.
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1 GEOLOGICAL SETTING AND STRATIGRAPHY
During the early Middle Triassic, the Luoping area was
located on the southwestern part of the Yangtze Block and was
separated from the Nanpanjiang Basin by a shoal complex
(Enoset al., 2006; Lehrmann et al., 2005; Feng et al., 1997; Fig.
la). Several spatially and temporally separated intraplatform
basins or depressions (e.g., the Panxian, Luoping, Xingyi, and
Guanling) have been discovered from the Late Anisian, Late
Ladinian and Carnian intervals, respectively, yielding excep-
tionally preserved reptile fossils (Benton et al., 2013; Hu et al.,
2011). The preservation of those fossil Lagerstétten was aided
by particular palacoenvironmental conditions in these basins,
such as restricted circulation, density stratification of the water
column, and dysoxic to anoxic bottom waters during the burial
of the faunas (Benton et al., 2013). In Luoping, abundant ma-
rine reptile faunas and invertebrate fossils (including trace fos-
sils) were preserved in dark-colored, micritic limestones
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representing the upper part of the Member II of the Guanling
Formation (Hu et al., 2011). The Guanling Formation is subdi-
vided into two members. Member I is composed of siliciclastic
sediments, representing deposition in subtidal to intertidal envi-
ronments (Hu et al., 1996). Member II consists of micritic li-
mestones, bioclastic limestones, oncoidal limestones and do-
lomites in the lower and middle parts, and black muddy limes-
tones, cherty limestones, and grey dolomite in the upper part.
The Guanling Formation in the Luoping area, overall, records a
deepening upward sequence (Zhang et al., 2008).

Three excavated sections, namely the Dawazi (or Daaozi),
Shangshikan, and Xiangdongpo revealed the well preservation
of the Luoping Biota, which have been studied extensively in
terms of the stratigraphy, sedimentology, palaeontology and
taphonomy (e.g., Luo et al., 2017a, b, 2013; Feldmann et al.,
2015, 2012; Liu et al., 2014; Schweitzer et al., 2014; Zhang et
al., 2014; Benton et al., 2013; Huang et al., 2013; Wen et al.,
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Figure 1. (a) Middle Triassic palacogeographic map of South China showing the palacogeographic setting of the Luoping area during that time (base map was

modified from Feng et al. (1997)); (b) Location of the studied Xiangdongpo Section in the Luoping County, eastern Yunnan Province, SW China. Location of

the other two excavated sections (Dawazi or Daaozi, and Shangshikan) with abundant fossils of the Luoping Biota are also shown.
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2012a, b; Chen and Benton, 2012; Hu et al., 2011; Zhang et al.,
2009, 2008; Fig. 1b). A thickly bedded limestone unit among
these three sections aided the correlation among the three sec-
tions. The trace fossil studied herein was discovered from the
Xiangdongpo Section. Three stratigraphic units were defined in
this section, which represent deposition in shallow subtidal to
offshore environment (Luo et al., 2017b; Fig. 2).
Biostratigraphical study suggests that the Luoping Biota is
of Anisian Age. This is supported by both conodont zonation
and bivalve assemblages. The Nicoraellakockeli conodont
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Zone has been found from the fossil bearing unit at the Dawazi,
Shangshikan, and Xiangdongpo sections (Zhang et al., 2014;
Bai et al.,, 2011a, b; Hu et al., 2011; Huang et al., 2009). This
conodont zone includes elements such as Nicoraellagermani-
cus, Nicoraellakockeli and Cratognathodus sp., indicative of a
Pelsonian Age of the Middle Anisian (Huang et al., 2009;
Zhang et al., 2009). Meanwhile, the underlying Member 1 of
the Guanling Formation yields bivalve assemblages of Anisian
Age in South China (Zhang et al., 2008). Further, several clay
beds discovered from Member I of the Guanling Formation
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Figure 2. Stratigraphic columns showing the distribution of trace fossils and bioturbation levels of the Xiangdongpo (XDP) Section at Luoping, Yunnan Prov-

ince (modified from Luo et al., 2017b). Stars indicate horizons with Sinusichnus occurrences. The bioturbation scheme follows Reineck (1963) and Taylor and

Goldring (1993).
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Figure 3. (a)—(d), Sinuous burrow system of Sinusichnus sinuosus preserved as positive hyporelief on soles of wackestones at the Xiangdongpo Section, Luo-

ping County. Note the T-shaped (arrow in (a)) and Y-shaped (arrow in (b)) branching of burrow system. (c) and (d) are the sketches of the burrow systems in (a)

and (b) respectively.

were regarded as marker beds of the base of the Anisian in
southwestern China (Zhang et al., 2009; Enoset al., 2006).

2 DESCRIPTION OF TRACE FOSSIL MATERIALS
2.1 Morphology

Sinusichnus occurs at two horizons of the Xiangdongpo
Section (Fig. 2). The first horizon shows scarce presence of
Sinusichnus in association with large sized Thalassinoides (Fig.
2). This layer exhibits a nodular appearance on the field expo-
sure. Sinusichnus burrows at this horizon are characterized by
branched burrow systems, with burrow fillings having a darker
color than the host rock. Burrow fillings of Thalassinoides are
silicified, but fragments of shells and gastropods can be dis-
cerned. At the second horizon, Sinusichnus are present in the
basal part of bioturbated wackestones with silicified nodules
(Fig. 2). The well-preserved specimens at this horizon facilitate
a detailed examination of trace fossil morphology. Specimens
studied were preserved as positive or negative hyporeliefs and
can be found at areas spanning several square decimeters. Ho-
rizontal burrows are unlined and show regular sinuous tunnels,
while less regular to straight tunnels are also observed in the
same branching system (Figs. 3a—3d). Burrow width is uniform
in a single branching system. Y- or T-shaped branching pattern
dominates (Figs. 3a—3b). On some occasions, two closely em-
placed triple junctions form an H-like configuration (Fig. 4b).

Branching points with four branches are also observed occasio-
nally (Fig. 4a). The burrowing system penetrates shallowly into
the sediments at very shallow depths (no more than 1.5 cm).
Burrow surfaces are smooth to knobby. In the vertical profile,
retrusive spreiten are not observed. Associated large Rhizoco-
rallium are characterized by their long, tongue-shaped burrows,
with occasional primary successive branching. These features,
combined the dumbbell-like cross-section view justify them as
R. commune (Knaust, 2013; Rodriguez-Tovar and Pérez-Valera,
2008). U-shaped R. commune is more abundant than Sinusich-
nus on the bedding plane. The marginal tubes of Rhizocoral-
lium range from 18 to 25 mm in diameter. Sinusichnus burrows
were locally cross-cut by Rhizocoralliumor vice versa. There is
no distinct color difference between the burrow filling of Sinu-
sichnus, Rhizocorallium, and their host rocks.

Several mathematical approaches have been applied to the
study of geometry and regularity of Sinusichnus (e.g., Be-
latistegui et al., 2014; de Gibert et al., 1999). These approaches
include the measurement of wavelength (1) and amplitude (4)
of the sinuous tunnels within Sinusichnus burrow system. The
diameter (d) is also measured (see Fig. Sa for details). Mea-
surements of the former two were plotted in a bivariate diagram
to investigate their correlations (Fig. 5b). Data of 18 measure-
ments show a significant correlation between A and 4 (R’=
0.724 5), which has been observed in other reported Sinusichnus
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Figure 4. Field photos showing the association of Sinusichnus (Si) and Rhizocorallium (Rh) on soles of wackestones. (a) Tongue-shaped Rhizocorallium (Rh),

and the small, sinuous and branching Sinusichnus (Si). Hammer for scale is 38 cm long. (b) Densely occurred Sinusichnus with Rhizocorallium at the bottom.

Note the characteristic H-shaped morphology of Sinusichnus. Note the H-like configuration is composed of two closely emplaced triple junctions (white arrow).

(e.g., Belatstegui et al., 2014; de Gibert et al., 1999). The only
difference is the value of slope. De Gibert et al. (1999) reported S.
sinuosus materials from the Lower Pliocene strata in France and
Spain, with a slope value at 5.19. Belatstegui et al. (2014) meas-
ured Sinusichnus specimens from six localities in Spain and re-
vealed three slope values at around 1.1, 2.5 and 4.05. Diameters
of Sinusichnus remain identical in each particular burrow system
but varied slightly between different specimens. A total mea-
surement of 102 specimens reveals a burrow width ranging from
4 to 16 mm, with an average value at 8.8 mm (Fig. 5c).

3 DISCUSSIONS
3.1 Taxonomic Discussion

The newly discovered trace fossil materials are extremely
similar to the ichnogenus Sinusichnus established by de Gibert
(1996). This is revealed by its regular sinuous and branching
morphology of horizontal tunnels. Except the type ichnospecies
S. sinuosus established by de Gibert (1996), Kappel (2003)
proposed another ichnospecies S. priesti based on trace fossil
materials from the Upper Cretaceous strata in Germany. The
only feature distinguishing S. sinuosus from S. priesti is the
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Figure 5. (a) Schematic figure showing the measurement of the wavelength
(4), the amplitude (4) and diameters (d) of sinuous tunnels within Sinusich-
nus specimens from the Middle Triassic Guanling Formation in Luoping,
Yunnan Province; (b) correlation plot of wavelength (1) versus amplitude (4)
based on measurements of Sinusichnus specimens at Luoping; (c) histogram

figure showing the size distribution of Sinusichnus burrow diameters.

presence of bioglyphs on the latter. No scratching marks or biog-
lyphs have been observed in the Luoping specimens, thus allow-
ing a reasonable assignment to S. sinuosus. It is noted, however,
that the specimens studied here are less regular in some part of
the burrow system when compared with Sinusichnus from the
Pliocene and Miocene strata (e.g., Belatstegui et al., 2014; Bua-
tois et al., 2009). While the positive correlation between wave-
length (4) and amplitude (4) of the Luoping specimens has also
been found in typical S. sinuosus (de Gibert et al., 1999), further
supporting the studied trace fossils are S. sinuosus.

Several trace fossils are comparable to Sinusichnus in
morphology and this has been discussed in detail in previous
studies (e.g., Belatstegui et al., 2014; Buatois et al., 2009; de
Gibert et al., 1999). These traces include members of the Tha-
lassinoides group (e.g., Thalassinoides, Ophiomorpha; Sei-
lacher, 2007) and the graphoglyptid trace Protopaleodictyon. In
addition, the similarity between Sinusichnus and the horizontal
meandering burrows such as Cochlichnus and Cosmorhaphe
has also been mentioned (Belaustegui et al., 2014). The newly
discovered specimens from the Middle Triassic Guanling For-
mation reveal several characteristics that distinguish it from all

the above-mentioned traces. Firstly, it shows the typical Y-
shaped branching, which ruled out its possible assignment to
the sinuous Cochlichnus or Cosmorhaphe. The latter two sinu-
soidal burrows are both smooth, unbranched grazing traces
although the latter occasionally branched (Bordy et al., 2011;
de Gibert et al., 1999; McCann and Pickerill, 1988). The regu-
lar sinuous morphology in the new specimen (Figs. 3a—3d, 4a—
4b) was never present in Thalassinoides. Additionally, the
absence of pelleted lining in branching tunnels in our speci-
mens distinguishes it from Ophiomorpha.

It has also been mentioned that Sinusichnus resembles cer-
tain graphoglyptid traces, in particular, Protopaleodictyon and
Megagrapton (Belatistegui et al., 2014; de Gibert et al., 1999;
de Gibert, 1996). However, the found specimen did not dis-
playshort, blind apical elements or appendages at each undula-
tion typical of Protopaleodictyon incompositum (Uchman,
1998). For the latter, the branching burrows of Megagrapton
are instead slightly curved or straight and the branching angles
are nearly 90° (Héntzschel, 1975), which morphology is very
different from the materials reported herein.

3.2 Palaeoecology of Sinusichnus from Luoping, Southwes-
tern China

It has been noted that Sinusichnus presents morphological
similarities with other branching burrows now clustered within
the Ophiomorphid traces (e.g. Thalassinoides, Ophiomorpha,
Spongeliomorpha, Pholeus and Gyrolithes, sensu, Seilacher,
2007). These Ophiomorphid traces are currently interpreted as
dwelling or feeding traces (Ekdale, 1992), which suggests a
similar ethological mode for Sinusichnus trace makers. On the
other hand, de Gibert et al. (1999) pointed out that the highly
regular sinuosity of branches within Sinusichnus burrow sys-
tems is very characteristic of agrichnial structures, indicating
possible farming or trapping strategies. Further, de Gibert et al.
(1999) discussed four proposed ethological modes of Sinusich-
nus and favored an ethological change during the ontogeny of
the producer from juvenile to adult. For instance, in the Lower
Pliocene BaixEbre Basin in Spain, the small and large Sinu-
sichnus burrowing systems were preserved together (de Gibert
et al., 1999; de Gibert, 1996).

The studied S. sinuosus specimens herein might suggest
certain deposit-feeding behavior of the trace makers. This is
supported by the evidence that the sinuous branching burrow
systems are distributed in very shallow tiers. Further, it was
found that S. sinuosus from the Guanling Formation in Luoping
are in close association with R. commune. The cross-cutting
relationships of these two ichnotaxa show that they most likely
belong to the same tier. Thus, they might be produced by or-
ganisms sharing similar feeding habits and colonize at the same
time. The deposit feeding behavior of trace maker producing R.
commune has been recognized by several researchers (e.g.,
Knaust, 2013). The trace makers producing S. sinuosus and R.
commune probably lived at shallow depths to feed on bacteria
within sediments. The search for bacteria as food resources of S.
sinuosus trace makers is further supported not only by the net-
work shaped specimens, but the abundant preservation of reti-
culated ridge structures in strata (Luo et al., 2013). The latter
represent the former presence of microbial mat, implying a
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prolific distribution of microbes in sediments serving as food
resources for the deposit-feeding organisms producing S. sinu-
osus and other deposit feeders.

Several animals have been proposed as the potential trace
maker of Sinusichnus, which include decapod crustaceans and
isopods (Knaust, 2016; Belatstegui et al., 2014; Buatois et al.,
2009; de Gibert, 1996). S. sinuosus from Luoping might also be
produced by decapod crustaceans. In fact, the body fossil
record suggested that decapod crustaceans were abundantly
preserved in the Luoping Biota, which includes a newly estab-
lished family and several new species (e.g., Feldmann et al.,
2017, 2015, 2012; Huang et al., 2013).

3.3 Temporal and Spatial Distribution of Sinusichnus

Since de Gibert (1996) established the ichnospecies Sinu-
sichnus sinuosus based on Lower—Middle Pliocene specimens
from Spain and France, more and more similar structures as-
signed to Sinusichnus have been reported from different locali-
ties and stratigraphical ranges (Belatstegui et al., 2014; Buatois
et al., 2009; Kappel, 2003). Table 1 summarizes discovered
trace fossil Sinusichnus from all over the world. These data
also include some unpublished data. The oldest known occur-
rence of reported ichnotaxa could be traced back to the Middle
Triassic (Knaust et al., 2016). The study on the ichnology of
the Middle Triassic Udelfangen Formation established a new
ichnospecies Sinisichnus seilacheri, which was probably pro-
duced by isopod crustaceans (Knaust et al., 2016; Table 1).
Other reported occurrence includes S. sinuosus from the Upper
Cretaceous Hidden Lake Formation, and several more exam-
ples from Miocene and Pliocene (Belatstegui et al., 2014; Bua-
tois et al., 2009; de Gibert et al., 1999; de Gibert, 1996; Table
1). Our reported trace fossil materials from the Middle Triassic
strata at Luoping in South China represent the first report from
South China, and further supports the long stratigraphic range
of Sinusichnus sinuosus starting from the Anisian. In addition,
recent studies suggest that Sinusichnus might have an even
longer stratigraphic range dating back to the Late Devonian
(Table 1, unpublished data). These occurrences include one
occurrence from the Late Devonian Wutong Formation in Wu-
han, China, and another one from the Lower Triassic Jialing-
jiang Formation in Sichuan, China. Whether these older exam-
ples are produced by decapod crustaceous or isopod crusta-
ceans remains to be answered.

4 CONCLUSION

New Middle Triassic trace fossils were found from the
Guanling Formation in Luoping, Yunnan Province. The trace
fossil materials were associated with the Luoping Biota as-
signed to the Anisian in age. Various morphological features
suggest that these traces can be tentatively assigned to the de-
capod trace Sinusichnus sinuosus. Thus, these new trace fossil
materials represent the first reported Sinusichnus from South
China, strengthening its early appearance since Anisian. How-
ever, the global record of Sinusichnus might suggest that these
burrows could have an older history back to the Late Devonian.
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