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developed by forced regression. Lowstand and Transgressive 
system tracts (LST and TST) are represented as amalgamated 
channel sands and thick floodplain dominated sections respec-
tively. These marine sequence model terminologies being used 
in fluvial sequences may be inappropriate and questionable, as 
it has no connection to the sea (Rhee, 2006). Currie (1997) 
suggested analogous terms like ‘degradational system tract’ for 
LST and ‘transitional system tract’ for TST in fluvial sequence 
model. This model is exactly the same as Wright and Marriott 
(1993), the nomenclature had been just modified. 

Ethridge et al. (1998) proposed a fluvial sequence model 
in LST, TST and HST based on the relative proportion of 
channel fills. As per this model, fluvial sequences show overall 
fining upwards characteristics with amalgamated channel sands 
at bottom, thus defining LST and interpreted as a product of 
braided depositional system. TST stays in the middle, characte-
rized by high sinuosity meandering channel deposits within 
floodplain dominated successions. The transition from LST to 
TST is gradational. HST stays at the top part, here proportion 
of floodplain deposits decrease, channel fills become laterally 
interconnected due to increasing degree of lateral channel avul-
sion. This model was again a manifestation of marine sequence 
framework onto fluvial deposits. 

Marine sequences are commonly presented in dip section 
and fluvial sequences are illustrated in strike section (Rhee, 
2006). Therefore interpreting strike oriented fluvial successions 
using dip oriented marine sequence models might be proble-
matic (Rhee, 2006; Adams and Bhattacharya, 2005). A full 
cycle of accommodation variation results in a genetic sequence. 
During negative accommodation periods, sequence boundaries 
are formed. But it is not always necessary, as we get parase-
quences, T-R sequences of Johnson and Murphy (1984). Sys-
tem tracts are deciphered on the basis of stacking pattern, type 
of bounding surfaces and relative positions within a sequence 
(Catuneanu, 2006; Posamentier and Allen, 1999; Van Wagoner, 
1995; Van Wagoner et al., 1990, 1988, 1987; Posamentier et al., 
1988). Considering shoreline dependency as a playing factor, 
there can be two types of systems––shoreline dependent system 
tracts, where sedimentation and accommodation are the out-
comes of shoreline trajectories. Second one is the shoreline 
independent system, where sedimentation remains unaffected 
by relative positions of shoreline (Catuneanu et al., 2011; Hol-
brook et al., 2006) and this scenario happens in upstream con-
trolled fluvial depositional settings. Shanley and McCabe 
(1994), Boyd et al. (2000), Catuneanu et al. (2011) interpreted 
these shoreline independent fluvial sequences to be consisting 
of low- and high-accommodation system tracts based on the 
varied degrees of channel amalgamations. Blum and Tӧrnqvist 
(2000) suggested that these types of sequences commonly have 
time offset to the shoreline dependent sequences. As per Catu-
neanu et al. (2009), low accommodation system tract (LAST) is 
characterized by channel dominated facies, while high accom-
modation system tract (HAST) is defined by floodplain/ over-
bank dominated facies. 
 
5  SEQUENCE STRATIGRAPHIC MODEL OF BARA-
KAR FORMATION 

We have followed the model of fluvial sequence stratigra-

phy by Catuneanu et al. (2009) in our study area. Our study 
identifies four major fining upward depositional cycles in Ba-
rakar Formation in the studied Gondwana Basin, these are 
named as Cycle-1, 2, 3 and 4 (Figs. 5 and 6, prepared using X-
section module of GEO suite of software). Each depositional 
sequence consists of LAST at bottom and HAST on top of it, 
bounded by sub-aerial unconformities. LAST is characterized 
by erosional based, vertically stacked, amalgamated multistory 
channel sandstone dominated facies and scarcely preserved 
floodplain facies (light shaded areas in Figs. 5 and 6) indicating 
a braided river system (Sen et al., 2016). HAST is characte-
rized by overbank dominated facies (dark shaded areas in Figs. 
5 and 6). HAST segments of the marked cycles are characte-
rized by more cumulative coal thickness with respect to the 
LAST segments, indicating HAST periods are favorable for 
yielding calm and quiet floodplains of vegetation growth, i.e., 
peat, in a meandering river system (Sen et al., 2016). 

Sequence stratigraphic model of west and eastern part of 
the study area have been presented in Figs. 5 and 6 respectively. 
Four distinct depositional cycles have been demarcated in the 
western part of the study area, represented as Cycle 1 to 4 (Fig. 
5), details of which are as below. 

(1) Cycle-1: the bottommost cycle. HAST of Cycle-1 con-
sists of S-8 group of seams. Well-B was not drilled/logged till 
Segment-E of S-8 group of coal seam, hence HAST-LAST 
boundary could not be picked in this well. The bottom of 
LAST in Cycle-1 has been demarcated at the end depth of logs 
of the studied wells, as those were not drilled further, so it was 
beyond the scope of study. S-8 group of seams reveal splitting 
tendency towards west (Fig. 5).  

(2) Cycle-2 is characterized by a thinner LAST (30–35 m) 
and a HAST of good thickness of 90–100 m in all the four wells 
(Fig. 5). This is characterized by serrated gamma ray response 
of frequent sand/silt-shale-coal intercalation, indicating higher 
accommodation space with a good pace of sedimentation. It 
consists of four major coal seams (S-3, S-4, S-5 and S-6) and 
minimum three shaley coals/carbonaceous shale units, which are 
laterally continuous. Seams encountered in Cycle-2 HAST are 
relatively thinner, when compared to other coal seams (i.e., S-1, 
S-2 and S-8). Cycle-2 LAST consists of a fining upward cycle 
ending up in S-7 coal seam. S-7 seam can be divided in 3 units, 
as can be seen in density logs of all the four wells. 

(3) Cycle-3 again has a thicker HAST (75–100 m, with 
thickness increasing from east to westward) at top and a rela-
tively thin LAST (35–45 m) at base. Cycle-3 LAST is very 
distinguishable in logs with 25 m thick sand showing cylindric-
al gamma signature and it ends up with S-2 coal seam at top. 
This multi-storey channel sand (amalgamated) indicates chan-
nel accretion. Cycle-3 HAST consists of thick S-1 seam, being 
the top most coal seam of Barakar Formation in the study area. 
HAST is characterized by frequent silt-shale intercalations, 
similar to Cycle-2 HAST. 

(4) Cycle-4 is the top most depositional cycle with LAST 
defined by a clean thick sandstone (cylindrical gamma re-
sponse) of 35–45 m thickness, while HAST is only 8–15 m 
thick. HAST top of Cycle-4 demarcates the Barakar-Barren 
Measure boundary, clearly distinguishable in logs with a very 
high gamma spike. This cycle does not consist of any coal 
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