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ABSTRACT: In this paper, we focus on the characteristics of the landslides developed in the epicentral 
area of AD 1556 M~8.5 Huaxian Earthquake, and discuss their relations to the active normal faults in the 
SE Weihe Graben, Central China. The results from analyzing high-resolution remote-sensing imagery 
and digital elevation models (DEMs), in combination with field survey, demonstrate that: (i) the 
landslides observed in the study area range from small-scale debris/rock falls to large-scale rock ava-
lanches; (ii) the landslides are mostly developed upon steep slopes of ≥30°; and (iii) the step-like normal-
fault scarps along the range-fronts of the Huashan Mountains as well as the thick loess sediments in the 
Weinan area may facilitate the occurrence of large landslides. The results presented in this study would 
be helpful to assess the potential landslide hazards in densely-populated areas affected by active normal 
faulting. 
KEY WORDS: landslides, active normal faults, Huaxian Earthquake, Weihe Graben, Ordos Block. 

 
0  INTRODUCTION 

Many factors may be responsible for the occurrence of 
landslides, such as moderate to large earthquakes (e.g., Tian et 
al., 2016; Xu et al., 2016; Ren et al., 2014a, b, 2013; Has et al., 
2012; Dai et al., 2011a; Chigira et al., 2010; Ren and Lin, 2010; 
Owen et al., 2008; Harp and Jibson, 1996; Keefer, 1994, 1984), 
typhoons (e.g., Tsou et al., 2011; Fujisawa et al., 2010), as well 
as human activities (e.g., Huang and Chan, 2004; Barnard et al., 
2001). Among them, earthquake-induced landslides particular-
ly that within the epicentral areas of large earthquakes often 
caused serious damages and casualties within a distance of 
several to tens of kilometers (e.g., Meunier et al., 2008, 2007; 
Das et al., 2007; Dadson et al., 2004; Keefer, 2000; Jibson and 
Keefer, 1989). Previous studies also suggested that co-seismic 
landslides tend to be concentrated along co-seismic surface 
rupture zones which are usually controlled by active faults (e.g., 
Ren et al., 2014a; Dai et al., 2011b; Ren and Lin, 2010; Jibson 
et al., 2004). Therefore, investigations on the characteristics of 
the landslides in the epicentral areas of historical earthquakes 
and their relations to active faults are crucial for making an 
assessment of potential landslide hazards particularly that in 
densely-populated regions. 
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In this study, we investigate the characteristics of the 
landslides distributed in the epicentral area of the M~8.5 Hua-
xian Great Earthquake that occurred on January 23, 1556 (be-
tween Weinan and Huayin; Fig. 1). This earthquake caused 
serious damages and >830 000 deaths, including that resulted 
from co-seismic landslides (Yuan and Feng, 2010; CENC, 
2007; Li and Cui, 2007; Xie, 1992; Kuo, 1957). On the basis of 
analyzing remote sensing images and DEMs, combined with 
field observations, we delineate the characteristics of the ob-
served landslides (Fig. 2), and demonstrate the close relation-
ship between the landslides and the active normal faulting. 
Finally, we discuss the implications for assessing potential 
landslide hazards in actively extending regions. 
 
1  GEOLOGICAL BACKGROUND 

The Weihe Graben in Central China (Fig. 1), is situated at 
the south margin of Ordos Block consisting of consolidate 
crystalline basement (SSB, 1988). To the south, it is bounded 
by the Qinling Mountains that were formed in association with 
the collision between the North China Craton (NCC) and the 
South China Block (SCB) in the Triassic (e.g., Ratschbacher et 
al., 2003; Meng and Zhang, 2000). As one of the Cenozoic 
graben systems developing around the Ordos Block, extension-
al deformation in the Weihe Graben started from the Eocene at 
~50 Ma, resulting in >7 km thick sediments (Liu et al., 2013; 
Zhang et al., 1998; SSB, 1988). 

The Huashan Mountains in the eastern part with a peak 
elevation of ~1 700 m above the sea level are mainly composed 
of pre-Mesozoic metamorphic basement rocks (SSB, 1988). A  
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Figure 1. (a) Color-shaded relief map showing the topographic features of the eastern Weihe Graben. The major active fault traces are from Deng (2007). The 

historical earthquake data are from SEIN (2011). The intensity XII of the 1556 M~8.5 Huaxian Earthquake is the maximum in Chinese intensity scale. (b) The 

inset map shows the location of study area along the south margin of the Ordos Block. LPF. Lishan piedmont fault; NMF-WLT. northern margin fault of the 

Weinan Loess Tableland; HPF. Huashan piedmont fault; KZ-GSF. Kouzhen-Guanshan fault; WHF. Weihe fault; NZF. North Zhongtiaoshan fault; NCC. North 

China Craton; SCB. South China Block. 

 

 

Figure 2. 3D perspective view (looking south) of SRTM DEM data showing the distribution of major landslides in the epicentral area of the Huaxian Great 

Earthquake between Huayin and Weinan cities. The vertical exaggeration (V.E.) is 3. 

 
previous investigation based on fission track dating has demon-
strated its uplift started at ~68.2 Ma, and the uplift-rate has 
accelerated to ~0.19 mm/yr since ~17.8 Ma (Yin et al., 2001). 

To the west, the Weinan Loess Tableland is mainly composed 
of Quaternary alluvial deposits and >100 m-thick loess sedi-
ments (Fig. 1a; SSB, 1988), and was uplifted probably since 
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~1.2 Ma (Feng and Dai, 2004). 
Several moderate to large historical earthquakes have oc-

curred in the SE Weihe Graben, which can be dated back to BC 7 
(Deng, 2007; SSB, 1988). In particular, previous studies have 
speculated the magnitude of the AD 1556 Huaxian Earthquake is 
as large as ~8.5, and inferred the region between Weinan and 
Huayin as the epicentral area according to the building damages 
and loss of people (Yuan and Feng, 2010; SSB, 1988). Major 
active faults include Huashan piedmont fault (HPF) and northern 
margin fault of the Weinan Loess Tableland (NMF-WLT) (Fig. 
1a). They are both characterized by normal-slip motion with 
average throw-rates of ~1.5–3.0 mm/yr during the Late        
Pleistocene–Holocene (Rao et al., 2015, 2014; Deng et al., 2003; 
SSB, 1988; Li and Ran, 1983). Moreover, paleoseismological 
investigations demonstrate that Holocene surface-rupturing 
earthquakes have repeatedly occurred along these belts (Rao et 
al., 2015; Zhang et al., 1995; SSB, 1988; Xu et al., 1988). 
 
2  DATA AND METHODS 

In this study, 1-m IKONOS (Greek word for “image”) and 

0.5-m World View spatial-resolution satellite images were used 
to identify landslides. Between them, the World View as a rela-
tively new satellite was launched in September 2007, which has 
an average revisit time of 1.7 days and is capable of collecting 
0.5 m imagery over one million square kilometers per day 
(Digital Global, Inc., 2016). 

Firstly, we mapped the extents of major landslides by in-
tegrating SRTM (shutter radar topography mission) DEMs 
(Figs. 3a and 4) with remote sensing images in perspective 
views (Figs. 3b and 5a). Then, we carried out fieldwork to ob-
serve the detailed characteristics of the landslides according to 
the distribution from our analysis (Figs. 3c–3e, 5b and 6b). 
Classifications of landslide types in this study are based on the 
guidebook provided by the U.S. Geological Survey (Highland 
and Bobrowsky, 2008). As slope morphology (particularly 
slope angle) may play significant roles in controlling landslide 
development (e.g., Ren and Lin, 2010; Chuang et al., 2009; 
Owen et al., 2008), topographic analysis was also carried out 
based on DEMs (Fig. 8). Finally, in combination with the fea-
tures of active normal fault zones observed in the field, we 

 

 

Figure 3.  (a) Color-shaded relief map and (b) 3D perspective view (looking south) of IKONOS image reveal the extent of Zhangling Landslide (Site 1 in Fig. 

2). (c) The interpreted arc-shaped slide scars (A) and inner scarps (B and C) observed in the field. The profiles generated from DEMs (d) and measured by using 

the laser rangefinder (e) demonstrate the topographic characteristics in detail. 
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Figure 4. Color-shaded relief map showing the extent and slide direction of 

the Lianhuasi Landslide. 

 

discussed the relationship between the landslides and the active 
normal faulting (Figs. 9 and 10). All the remote sensing images 
and DEMs were processed by using ENVI software, including 
3D interpretations and topographic analysis. 
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Figure 5. (a) World view of 0.5-m resolution image along the range-front of 

Huashan Mountains. V.E.=5. (b) Panoramic photograph reveals the largest 

Lianhuasi Landslide developed. 

 
3  DISTRIBUTION AND CHARACTERISTICS 

In the study area, large-volume landslides including the 
Zhangling and Lianhuasi landslides are pronounced along the 
northern margins of Weinan Loess Tableland and Huashan 
Mountains, respectively (Fig. 2). Besides, landslides have also 
been identified in mountainous regions. The characteristics are 
described in detail as below. 
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Figure 6. (a) Geological section reveals the landslide masses deposited across the active normal fault zone (drawn from SSB (1988)). (b) Rock avalanches 

observed in the field (Site 2 in Fig. 2). (c) The core-drilled data from ancient Baiya Lake demonstrate 2 layers of slump deposits (mainly sandy gravels) are 

intercalated with the contrasting lacustrine sediments (clay) (drawn from SSB (1988)), indicating the landslides probably repeatedly occurred at this site. 
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3.1  Zhangling Landslide 
The Zhangling Landslide is located at Site 1, ~15 km east to 

the Weinan City (Fig. 2), which is the largest landslide in the 
loess area. The northward protuberance of topography characte-
rizes the color-shaded relief map (Fig. 3a), revealing the approx-
imate extent of this landslide. Detailed analysis demonstrates the 
arc-shaped slide scar (A) and two sets of inner scarps (B and C), 
and a conservative slide-area of ~2.75 km2 is estimated (Fig. 3a). 
These characteristics are especially pronounced from a perspec-
tive view of the 1-m IKONOS image (Fig. 3b), which can also be 
observed in the field (Fig. 3c). The morphology of the slide scars 
and the masses re-deposited at the rear of individual slides are 
evident on the topographic profiles constructed from DEMs (Fig. 
3d) and that measured in the field (Fig. 3e). 
 
3.2  Lianhuasi Landslide 

At Site 2, DEMs and 0.5-m World View image reveal the 
slide-area of Lianhuasi Landslide is >6 km2 and the run-out 
distance reaches ~4 km from its main scar (Figs. 4 and 5a). 
Even if the range-fronts have been modified by modern quarry-
ing, the morphology of the slide scar is still pronounced (Fig. 
5b). It is the largest landslide mapped along the Huashan pied-
mont, where the slide masses characterized by large-scale rock 
avalanches are widely distributed and still can be observed in the 
field (Figs. 6a and 6b). Moreover, at least 2 layers of slump de-
posits (consisting of sandy gravels) intercalated with the lacu-
strine sediments (clay) were identified from the core-drillings 
acquired in ancient Baiya Lake (Fig. 6c; SSB, 1988), revealing 
the probably repeated occurrence of landslides at this site. 
 
3.3  Other Landslides 

Other landslides have also been mapped from remote 
sensing images, such as that observed at Site 3. The observed 
landslide is <500 m2, and is featured by rock/debris falls along 
the margin of uplifted fluvial and loess sediments (Fig. 7a). It is 
worthy to note that quarrying along the range-fronts of the 
Huashan Mountains as shown in Fig. 5, has contributed to 
and/or aggravated the landslide development. In the mountain-
ous regions, however, it is easier to map the slope failure along 
river valleys with slide-areas of 0.007–0.196 km2 (Table 1), 
including rock falls, rockslide and topple (Figs. 7b–7d; see Fig. 
2 for the locations). 
 
4  SLOPE ANALYSIS 

Based on the DEMs the results of our analysis indicate 
that higher slope values as much as 65º characterize the Hua-
shan Mountains, whereas the low-lying Weihe Graben is almost 
flat with much gentler slopes (Fig. 8a). Differences are also 
obvious if we see from the profiles. In contrast to the highly 
rugged mountainous regions, slopes in the basin area are most-
ly <10° (Fig. 8b). The topographic transition zone along the 
basin boundary with slopes of 30º–52º (Fig. 8b), is the place 
where the giant landslides occurred (e.g., Lianhuasi Landslide; 
Figs. 4–6). Since the range fronts have been strongly modified 
by modern human activity (mostly quarrying), we analyzed the 
slopes of the landslides identified in the Huashan Mountains. 
As shown in Fig. 8c, all the slopes upon which landslides oc-
curred are steep with angles of ≥40°. 

5  DISCUSSION 
5.1  Relationship between Landslides and Active Normal 
Faulting 

Remote sensing interpretations and topographic analysis 
demonstrate that the observed landslides are mostly developed 
along the steep inner valleys of the Huashan Mountains (≥40º; 
Fig. 8c), and along the north margin zones (e.g., Lianhuasi 
Landslide). This results are consistent with the slope morphol-
ogies of the landslides produced by the tectonic thrusting (e.g., 
Ren and Lin, 2010; Owen et al., 2008), and strike-slip faulting 
(e.g., Xu and Xu, 2014; Xu et al., 2013). Meanwhile, the topo-
graphic transition zone corresponds to the active normal-fault 
zones, which are characterized by step-like fault scarps with 
steep faults as observed in the field (Fig. 9). Both the field 
mapping and the numeral modelling suggested that step-like 
slopes could locally affect the seismic ground motion (topo-
graphic amplification), and consequently trigger intense pro-
gressive failures upon steep slopes (e.g., Alfaro et al., 2012; 
Lenti and Martino, 2012; Sepúlveda et al., 2005). Affected by 
active faulting, the rocks are strongly deformed and mostly 
consist of highly sheared and fractured rock masses (Fig. 9b). 
Due to tectonic weakening they would lose their internal cohe-
sion and hence reduce their strengths, facilitating the occur-
rence of rock-slope failures (Dai et al., 2011b; Korup, 2004). 
Moreover, large-volume landslides (e.g., rock avalanches) are 
able to transport across the stepped slopes in active normal 
fault zones for long distances up to several kilometers (Fig. 10). 
Thus, we suggest the occurrence of landslides are facilitated by 
active normal faulting. Meanwhile, the relationship between 
the landslides and the stepped normal faults under tectonic 
extension demonstrated here provides a basis for comparing 
with other tectonic settings. The landslides produced by strike-
slip faulting may be distributed symmetrically on both sides of 
surface rupture zones (e.g., Gorum et al., 2014; Xu and Xu, 
2014), whereas more landslides are generated on the hanging 
wall than that on the footwall, and might be affected by the 
geometry of thrust faults (e.g., Xu et al., 2015, 2014, 2013; 
Wang et al., 2002). 
 
5.2  Implications for the Potential Landslide Hazards 

During earthquakes, large portions of damages and ca-
sualties were caused by seismic-induced landslides, and 
moreover some of large landslides tend to recur in the same 
places (Soloneko, 1977). Thus, studies on characteristics of 
major landslides particularly that in epicentral areas of histor-
ical earthquakes are important keys to assess the landslide 
potential. In the study area, the Lianhuasi Landslide along the 
Huashan piedmont is the largest one, which was previously 
inferred to be triggered by the AD 1556 earthquake (Figs. 5–7; 
Yuan and Feng, 2010; Li and Cui, 2007; SSB, 1988). Howev-
er, based on re-analysis of historical documents Zhou (2010) 
suggested the AD 1072 earthquake probably caused the Lian-
huasi Landslide. By contrast, a recent OSL (optical stimulated 
luminescence) dating of the loess sediments covering the 
slide-related breccias delineated it was likely formed before 
187 kyr ago (Du et al., 2013). Actually, to precisely bracket 
the timing of a paleo-slide and even to establish its seismic 
origin are often difficult (Jibson, 2009; Jibson and Keefer, 
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1993). But, at least it provides us a picture of the partial ef-
fects of a possible earthquake on the Huashan piedmont fault, 
which has been considered to be active and capable of gene-
rating large earthquakes (Rao et al., 2014; Zhang et al., 1995; 
SSB, 1988; Xu et al., 1988).  

Meanwhile, we suggest attention should also be paid to 
the Weinan area where the thickness of loess sediments is >100 

m (Figs. 1 and 2). It is fit for the occurrence of a giant loess 
landslide (e.g., Derbysgire, 2001; Soloneko, 1977). The size 
could be similar to the Zhangling Landslide which was sug-
gested to be produced by the AD 1556 Huaxian Earthquake 
according to its location and morphological features recorded 
by historical documents (Fig. 3; Yuan and Feng, 2010; SSB, 
1988; He, 1986). The potential hazards might be comparable  

 
Table 1  Inventory of the landslides analyzed in this study 

Number Lat. (°N) Lon. (°E) Area (km2) Slope (°) Descriptions 

1 34.500 658 110.106 451 0.019 50 Huangpuyu Valley 

2 34.485 678 110.101 076 0.098 58 Huangpuyu Valley 

3 34.495 386 110.096 686 0.095 45 Huangpuyu Valley 

4 34.479 666 110.058 986 0.098 53 Xiaoyu Valley 

5 34.470 842 110.053 420 0.196 45 Xiaoyu Valley 

6 34.450 414 110.060 230 0.096 44 Xiaoyu Valley 

7 34.492 384 109.967 368 0.083 47 Dafuyu Valley 

8 34.475 623 109.973 165 0.042 55 Dafuyu Valley 

9 34.474 180 109.968 055 0.044 60 Dafuyu Valley 

10 34.458 015 109.960 097 0.120 44 Dafuyu Valley 

11 34.444 419 109.960 513 0.195 60 Dafuyu Valley 

12 34.497 105 109.951 892 0.020 62 Dafuyu Valley 

13 34.456 035 109.942 727 0.146 52 Dafuyu Valley 

14 34.512 057 109.943 538 0.027 57 Liuyu Valley 

15 34.497 669 109.942 689 0.026 48 Liuyu Valley 

16 34.499 654 109.912 179 0.124 51 Fangshanyu Valley 

17 34.497 010 109.878 802 0.110 45 Gouyu Valley 

18 34.490 401 109.889 377 0.059 47 Gouyu Valley 

19 34.480 156 109.882 767 0.051 55 Gouyu Valley 

20 34.473 878 109.886 072 0.046 52 Gouyu Valley 

21 34.471 234 109.893 012 0.068 43 Gouyu Valley 

22 34.493 706 109.876 489 0.106 50 Gouyu Valley 

23 34.454 710 109.867 896 0.164 48 Xiaofuyu Valley 

24 34.449 423 109.840 467 0.085 52 Xiaofuyu Valley 

25 34.476 191 109.808 081 0.058 48 Tanyu Valley 

26 34.459 363 109.825 820 0.058 47 Tanyu Valley 

27 34.451 471 109.811 597 0.038 53 Taipingyu Valley 

28 34.449 471 109.768 087 0.007 41 Shidiyu Valley 

29 34.441 549 109.779 447 0.031 46 Shidiyu Valley 

30 34.444 864 109.776 950 0.028 47 Shidiyu Valley 

31 34.433 230 109.794 863 0.128 50 Shidiyu Valley 

32 34.425 055 109.798 490 0.056 64 Shidiyu Valley 

33 34.428 818 109.813 597 0.051 56 Shidiyu Valley 

34 34.423 601 109.828 299 0.022 50 Shidiyu Valley 

35 34.408 114 109.836 832 0.029 44 Shidiyu Valley 

36 34.412 410 109.818 326 0.013 52 Shidiyu Valley 

37 34.402 534 109.820 423 0.030 40 Shidiyu Valley 

38 34.400 980 109.823 398 0.026 42 Shidiyu Valley 

39 34.435 092 109.746 781 0.042 45 Mayu Valley 

40 34.411 387 109.775 551 0.019 42 Mayu Valley 

41 34.505 812 109.847 340 >6 45 Lianhuasi Landslide 

42 34.495 925 109.616 827 ~2.75 48 Zhangling Landslide 

43 34.457 308 109.725 226 0.000 4 35 Weinan Loess margin 
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Figure 7. (a) Debris and rock falls observed at Site 3 along the northern margin of the Weinan Loess Tableland. (b) The rock fall, slide and topple observed in 

the Huashan mountainous regions ((b) Site 4; (c) Site 5; (d) Site 6 in Fig. 2). 

 

 

Figure 8. (a) Slope angle map indicates the contrasting topographic features between the Weihe Graben and the uplifted blocks including the Huashan and 

Weinan Loess Tableland; (b) steep slopes (as much as ~65º) characterize the mountainous area, whereas the low-lying flat Weihe Graben are mostly <10º in 

slope angle; (c) slope angles of the landslides in the Huashan Mountains. 
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Figure 9. (a) Stepped normal-fault scarps observed along the Huashan 

piedmont (Site 7 in Fig. 2); (b) the exposed fault plane separating the frac-

tured bedrock from the loess with sandy gravels. 

 

 

Figure 10. Schematic diagram showing the characteristics of the tectonic 

landforms affected by active normal faulting along the transition zone be-

tween Huashan and Weihe Graben. Meanwhile, the fault-generated step-like 

scarps facilitated the occurrence of the landslides. 

 
with the landslides triggered by the AD 1920 M 8.5 Haiyuan 
Earthquake (Zhang and Wang, 2007; Close and McCormick, 
1922). Therefore, it is particularly crucial for our study area, 
because it is densely populated and the historical seismicity 
was high. The results presented here may also be helpful to 
better understand the mechanism of gravity-driven movements 
(e.g., Gori et al., 2014; Carbonel et al., 2013; Moro et al., 2012), 
and how active normal faulting controls the landscape of range-

fronts in actively extending regions (e.g., Osmundsen et al., 
2009; Densmore et al., 1998).  

 
6  CONCLUSIONS 

On the basis of analyzing remote sensing images and 
DEM data, combined with field observations, we have reached 
the following conclusions. 

(i) The landslides observed in the study area range from 
small-scale debris/rock fall to large-scale rock avalanches. 

 (ii) The landslides are mostly developed upon steep 
slopes of ≥30°.  

(iii) The step-like normal-fault scarps along the range-
fronts of the Huashan Mountains as well as the thick loess se-
diments in Weinan area may facilitate the occurrence of large 
landslides. 
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