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ABSTRACT: Using seismic attributes as features for classification in feature space, in various aims such 
as seismic facies analysis, is conventional for the purpose of seismic interpretation. But sometimes seismic 
data may have no attributes or it is hard to define a small and relevant set of attributes in some applica-
tions. Therefore, employing techniques that perform facies modeling without using attributes is neces-
sary. In this paper we present a new method for facies modeling of seismic data with missing attributes 
that called dissimilarity based classification. In this method, classification is based on dissimilarities and 
facies modeling will be done in dissimilarity space. In this space dissimilarities consider as new features 
instead of real features. A support vector machine as a powerful classifier was employed in both feature 
space (feature-based) and dissimilarity space (feature-less) for facies analysis. The proposed feature-less 
and feature-based classification is applied on a real seismic data from an Iranian oil field. Facies model-
ing using seismic attributes provide better results, but the feature-less classification outcome is also satis-
factory and the facies correlation is acceptable. Indeed, the power of attributes to discriminate different 
facies causes to that facies analysis using attributes provide more reliable results comparing to feature-
less facies analysis. 
KEY WORDS: facies analysis, dissimilarity, feature, seismic attributes, classification, support vector-
classifier. 
 

0  INTRODUCTION 
Seismic facies analysis is one of the important steps in 

seismic interpretation that is based on data classification 
through pattern recognition. Research in statistical pattern rec-
ognition has traditionally been dominated by feature vector 
approaches: objects are represented by feature sets of equal size. 
These are represented in vector spaces followed by the devel-
opment of classifiers separating as effectively as possible the 
feature vector sets of different classes. 

Almost the entire facies analysis is based on the seismic at-
tribute, as a feature vector, and involves classification in feature 
space in which each dimension stands as a seismic attribute. Sev-
eral studies for seismic facies analysis (SFA) have been proposed 
using seismic attributes (i.e., Paparozzi et al., 2011; Marroquín et 
al., 2009; Carrillat et al., 2008; Farzadi, 2006; Saggaf et al., 2003; 
Bhatt and Helle, 2002; West et al., 2002; Simaan, 1991; Dumay 
and Fournier, 1988; Mathieu and Rice, 1969). An important 
drawback of these approaches is that on a priori grounds attributes 
have to be defined that are strongly related with class differences. 
This set may not be too large both for computational reasons as 
well as to preserve the generalization power of the resulting 
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classifiers. Feature spaces of increasing dimensionality finally 
deteriorate the recognition performance. 

In this study we will reinvestigate the possibility of avoid-
ing the necessity of finding attributes. We will return to one of 
the most naive approaches: distances or dissimilarities between 
direct sensor representations of the seismic samples. So we 
don’t look for good attributes and we discuss the possibility to 
construct classifiers entirely in dissimilarity space, without a 
relation with the feature space. The classifier trained with com-
plete objects in the dissimilarity space and applies this classi-
fier to objects with missing data using the possibility to com-
pute object dissimilarities even if objects are incompletely 
given. It aims to predict a label for every object according to 
the class that it belongs to, using a classification model that has 
been built from a training set. The labeled dataset (training) are 
collected from well logs using electro facies analysis (EFA) 
(Sutadiwirya et al., 2008) that in this method the logs are clas-
sified into a set of electro facies. The support vector classifier 
(SVC) is employed, as a powerful and flexible classifier, for 
both feature-based classification (in feature space) and feature-
less classification (in dissimilarity space). Real data from an oil 
field in Iran are selected to examine our analysis. 

 
1  METHOD 
1.1  Dissimilarity Based Classification 

The feature-less classification method in dissimilarity space 
was first introduced by Duin et al. (1997). After that this method 
was improved by Pekalska and Duin (2005, 2002) and was used 
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in various pattern recognition problems. Suppose that d(yi,yj) is 
the dissimilarity value between the objects (seismic samples) yi 
and yj, if i, j appertain to the same class the dissimilarity value is 
zero otherwise the dissimilarity amount is not zero and they be-
long to different classes. The dissimilarity of two seismic sam-
ples including P attributes (features) is computed as below 
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The variables Yiq are the components of row vector y. As-
sume R is a representation set (R: yn and n=1, …, N), the dis-
similarity vector of a new object yr is calculated by Eq. (2).  
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Each component of vector d is dissimilarity between ob-
ject yr and all objects of representation set. This vector is now 
considered as a new feature for dissimilarity based classifica-
tion. For creating dissimilarity space, the dissimilarity matrix 
(D) should be computed between all objects. Each column of 
matrix D is a dissimilarity vector and stand as a dimension of 
dissimilarity space. 

As mentioned, the dissimilarity between the objects of the 
same class is small but between the objects of different class is 
large. According to this property, the same objects place close 
together in dissimilarity space but different objects split from each 
other. In other words, different classes separated and overlapping 
between them are reduced in dissimilarity space. Therefore, the 
discriminant boundary between different classes could be found 
more accurate (Duin et al., 2010; Pekalska and Duin, 2005, 2002). 

 
1.2  Support Vector Classifier 

The SVC is a powerful classification technique that pro-
posed by Vapnik (1998) which has also been followed around 
the world. The optimization criterion here is the width of the 
margin between the classes. The concept of margin is the emp-
ty area around the decision boundary defined by the distance to 
the nearest training samples (Fig. 1). These samples, so-called 
support vectors, finally define the classification function (van 
der Heijden et al., 2004). Their number is minimized by maxi-
mizing the margin. 

Suppose labeled objects (seismic samples) as y1, …, yN 
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Figure 1. A schematic of support vector classifier. 

with labels βn∈{-1, 1} for a two-class problem that the labels 
specify the class of each sample. A linear discriminant function 
is described as below 

0
T)( WyWy f                                                           (3) 

That W is the gradient vector of f(y). From Fig. 1, the val-
ue of this function is zero on separation boundary and 
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The two above equations is summarized into below equation, 
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The margin amount is equal to 
W

2
. Therefore, to maxi-

mize the margin the value of ||W||2 should be minimized  
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The decision boundary should be as far away from the da-
ta of both classes as possible by maximizing the margin. An 
optimization approach for maximizing the margin and mini-
mizing the distance is Lagrange multipliers, using that 
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Variables W and W0 are two independent parameters that 
L should be minimized with respect to them and maximized 
with respect to αn. After calculating the partial derivates of L 
with respect to W and W0 and setting them to zero, equations 
below are determined 
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By using Eq. (9), Eq. (8) can transform to its dual-form 
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Now, we should maximize L with respect to αn to compute 
and use them in Eq. (9) to find W and thereafter f(y). Usually 
many of αn have zero values and therefore have no role to find W 
and discriminant function. The samples yn which their related αn 
are not zero, they are called support vectors. 

For non-linear separable data kernel method (Scholkopf et al., 
1999) will be applied that it maps data into higher dimensional 
spaces to linearize the data in those dimensions. Thereafter it finds 
linear hyper plane there with maximum margin. This trick is used, 
because finding linear classifiers is much easier than non-linear 
ones (Vapnik, 1998). The important advantage of the SVC is that 
it offers a possibility to train generalizable, nonlinear classifiers in 
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high-dimensional spaces using a small training set. Moreover, for 
large training sets, it typically selects a small support set which is 
necessary for designing the classifier, thereby minimizing the 
computational requirements during testing. 

 
1.3  SVC in Dissimilarity Space 

As mentioned above the dissimilarity space is created using 
dissimilarity vectors as new features, therefore SVC in dissimi-
larity space is introduced using dissimilarity vectors (DФ) instead 
of feature vectors (y). Consider the labeled samples y1, …, yN as 
training set,  the mapping operator related to object y is  

 T1 ),(),...,,(: yyDyyDyD NΦ                                  (11) 

From Eq. (11), each object y map to dissimilarity space by 
using DФ which is a vector of distances between y and all N 
training set. Using the new features (DФ), a linear discriminant 
function in the dissimilarity space is defined as below 

0
T )()( WyDWy  Φf                                                 (12) 

Same as feature space the best discriminant function could 
be fined using support vector strategy by maximizing the mar-
gin. A nonlinear discriminant function in dissimilarity space 
could be obtained by using kernel trick same as feature space. 
In fact, dissimilarity vectors convert the original space to a 
higher-dimensional space and the relation between kernel (K) 
and dissimilarities is defined as below  

K=DDT                                                                            (13) 
 

2  APPLICATION 
2.1  Real Data 

A carbonate reservoir in Iran was processed to gain an in-
sight into the feasibility of feature-less and feature-based facies 
analysis. Figure 2 shows a schematic cross-view of formations 
in this oil field. The lithology of the formation is heterogeneous 
and is divided into limestone, sandstone, dolomite, and shale as 
dominant lithologies which are reliably estimated from well 
logs and core data (Telmadarreie et al., 2012).  

Seismic data in reservoir limits were cropped between time 
2 000 to 2 200 ms including 10 wells (Fig. 3). The favorable 
lithofacies in this reservoir could be sandstone or limestone, 
sandstone is highly porous facies with proper pore structure type 
and limestone is a facies with high fracture density. Finding these 
facies using a reliable lithofacies analysis helps us to define the 
reservoir zone accurately. Figure 4 shows the seismic data at 
time slice (a horizontal display) 2 076 ms of 3D data. 

For collecting data labeled as training dataset, the label 
codes are needed from facies log which can be obtained through 
electro facies analysis. EFA was performed using the logs neu-
tron porosity (NPHI), bulk density (RHOB), sonic log (DT) and 
gamma ray (GR) to obtain facies logs. EFA is based on the   
multi-resolution graph based clustering (MRGC) as a subset of 
heretical clustering methods that analyzes the well logs to iden-
tify different groups of electro facies (Sutadiwirya et al., 2008). 
From the results, each facies log contains dominant lithology 
including dolomite, limestone, sandstone, and shale. 

An optimal training dataset should cover homogenously the 
whole seismic cube. Therefore, 7 wells were selected for collect-
ing training data set, and 3 wells (wells MN-282, MN-283, and 
MN-343) remained hidden to verify the resulted facies analysis 
using feature-less classification and feature-based classification. 
For validation of both approaches, the SFA results are compared 
to the known facies present at hidden wells.  
 
2.2  Facies Analysis Using Attributes (Feature-Based) 

Seismic attributes quantify specific data characteristics, 
and so represent subsets of the total information. Generally, the 
definition of seismic attributes includes all quantities derived 
from seismic data that can provide some qualitative informa-
tion about the physical parameters of the carbonate reservoirs. 
Facies analysis performs through the pattern recognition that 
seismic attributes are used as effective discriminators for the 
purpose of facies classification. 

In this step, we first extracted 14 attributes containing: ap-
parent polarity, attenuation, cosine of phase, dominant frequency, 
envelope, first derivative of envelope, instant frequency, instant 

 

 

Figure 2. A schematic cross-view of carbonate reservoir case of study. 
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Figure 3. The seismic data in reservoir boundary including 10 wells. 

 

 

Figure 4. Seismic data at time slice (a horizontal display) 2 076 ms of 3D 

data. 

 
phase, is frequency, quadratic amplitude, reflection intensity, 
relative acoustic impedance (RAI), root mean square (RMS) 
amplitude, and second derivative of envelope. It is worth noting 
that some of these attributes are redundant and add to complexity 
of feature space, thus a set of appropriate attributes must be cho-
sen. We concluded that the best attributes for SFA in this prob-
lem are cosine of phase, envelope, RAI, and is frequency (Bag-
heri and Riahi, 2014; Bagheri et al., 2013). 

A cross plot of two selected attributes (RAI and envelope) 
shown in Fig. 5 implies that choosing suitable attributes suc-
cessfully separate samples. According to this plot, it’s clear that 
each class (facies) discriminates effectively using these attrib-
utes and simplifies the lithofacies classification. Thus, classifi-
cation of different facies using these attributes makes it more 
sensible and easier. 

The next step is building a powerful classifier that need 
training set (labeled samples) which is collected through EFA. 
For creating a classifier, labeled data set is divided into training 
and testing set. Next, SVC is trained in feature space using 
training set and classifier is validated using testing set through 
calculating their mean square error (MSE) criterion. To do this, 
70% of representation set was selected as a training set and 
30% as a testing set for calculating MSE. The resulting MSE 
related to feature-based facies analysis obtained 10.05% that is 
relatively low. 

After retrieving discriminant functions associated with 
SVC corresponding to lowest MSE, we mapped it on unlabeled  

 

Figure 5. Cross plot of RAI and envelope. Different facies discriminated 

using these attributes. 

 
samples to obtain the spatial distribution of the reservoir facies. 
The result of feature-based facies analysis using SVC is shown 
in Fig. 6. In order to validate feature-based classification, we 
calculated the facies correlation in each hidden well, MN-282, 
MN-283, and MN-343, from the estimated and observed facies. 
The average facies correlation in 3 wells obtained 44% which 
show high level of validation and correlation coefficient in this 
case. It is because of the ability of seismic attributes to dis-
criminate different facies in feature space. 
 
2.3  Facies Analysis without Using Attributes (Feature-Less) 

The main problem of feature-based facies analysis is that 
on a priori grounds, seismic attributes have to be defined that 
are strongly related with class differences. The attribute set 
may not be too large both for computational reasons as well as 
to preserve the generalization power of the resulting classifiers. 
Feature spaces of increasing dimensionality finally deteriorate 
the recognition performance. In this section we try to perform 
feature-less facies analysis in dissimilarity space that is created 
without using attributes. In dissimilarity space dissimilarities 
are considered as new features instead of seismic attributes. 

The procedure of building a classifier in dissimilarity 
space is same as feature space that is mentioned above. The 
classifier trained with labeled objects in the dissimilarity space 
and applies this classifier on unlabeled object to specify its 
class that it belongs to. The average resulting MSE related to 
feature-less classification, during building classifier, is obtained 
as 21.83%, which is not low. 

Same as feature-based classification, after retrieving dis-
criminant functions associated with SVC corresponding to its 
lowest MSE, we mapped it on unlabeled samples to obtain 
facies model. The result of feature-less facies analysis using 
SVC is shown in Fig. 7. In order to validate feature-less classi-
fication, we calculated the average facies correlation in tree 
hidden wells from the estimated and observed facies. The aver-
age facies correlation is obtained 19.33% which show low level 
of validation and correlation coefficient. 

From the results, the feature-based classification shows 
more performance comparing to feature-less classification in 
facies analysis. The main reason of this result is related to over-
lapping samples of different facies in dissimilarity space. In other  
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Figure 6. Feature-based resulted seismic facies using SVC at time slice       

2 076 ms in feature space. 

 

 

Figure 7. Feature-less resulted seismic facies using SVC at time slice 2 076 

ms in dissimilarity space. 

 
words not using seismic attributes, as discriminators, causes the 
overlapping of different facies samples and non-separable data. 

 
3  CONCLUSIONS 

The main goal of this study is to argue and illustrate that it 
is feasible to build classifiers on object dissimilarities for the 
purpose of seismic facies analysis. This opens a new type of 
applications in which feature representations are replaced by 
distance measures. At the cost of large learning sets and com-
plicated learning systems, discriminant functions have to be 
found. Object based discriminant analysis will be of impor-
tance in applications where no natural discriminative features 
are given, but instead some object similarity measure can be 
supplied. One of the most promising aspects of object based 
discriminant analysis is that it removes the need for small sets 
of good features in case of small training sets. 

The power of SVC is to find an accurate discriminator 
boundary, because of its ability to train nonlinear classifiers in 
high-dimensional spaces using a small training set. This char-
acteristic of SVC is the reason we employed this classifier for 
facies analysis. This classifier is applied in feature space and 
dissimilarity space to evaluate feature-based and feature-less 
classification performance for facies analysis. The higher per-
formance of feature-based facies analysis compared to feature- 
less is investigated in two steps. First, the misclassification 
error using feature-based classification is less than feature-less 
classification. Second, the high level of facies correlation in 
hidden well susing seismic attributes in feature space compared to 
feature-less (dissimilarity based) classification. These two valida-
tion steps demonstrate the ability of seismic attributes for facies 

analysis. Generally, the lack of attributes generates statistical-
variations in the data and consequent deterioration in the classifi-
cation model and, as a result, classification accuracy is reduced. 

Regardless of the mathematical algorithm, facies correla-
tion and reliability of facies analysis depend on the quality of 
data. Usually, various steps of seismic processing such as filter-
ing, stacking and migration disturb or destroy trace amplitudes. 
This deficiency causes reduced facies correlation and accuracy 
of facies analysis. 

Finally it should be noted that, although feature-based classi-
fication shows better performance compared to feature-less classi-
fication in facies analysis, it couldn’t be applied to a problem with 
missing attributes. On the other hand, feature-less classification is 
more computationally efficient and it is able to give us a general 
view of the reservoir facies distribution in a short time. 
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